Equilibrium with Production and Endogenous Labor Supply

ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims
University of Notre Dame

Spring 2018

Readings

- GLS Chapter 11

Production and Labor Supply

- We continue working with a two period, optimizing, equilibrium model of the economy
- No uncertainty over future, although it would be straightforward to entertain this
- We augment the model with which we have been working along the following two dimensions:

1. We model production and an investment decision
2. Model endogenous labor supply

- The production side is very similar to the Solow model

Firm

- There exists a representative firm. The firm produces output using capital, K_{t}, and labor, N_{t}, according to the following production function:

$$
Y_{t}=A_{t} F\left(K_{t}, N_{t}\right)
$$

- A_{t} is exogenous productivity variable. Abstract from trend growth
- $F(\cdot)$ has the same properties as assumed in the Solow model - increasing in both arguments, concave in both arguments, both inputs necessary. For example:

$$
Y_{t}=A_{t} K_{t}^{\alpha} N_{t}^{1-\alpha}, \quad 0<\alpha<1
$$

Capital Accumulation

- Slightly differently than the Solow model, we assume that the firm makes the capital accumulation decisions
- We assume that the firm must borrow from a financial intermediary in order to finance its investment
- "Equity" versus "debt" finance would be equivalent absent financial frictions, which we will model
- Furthermore, ownership of capital wouldn't make a difference absent financial frictions (i.e. firm makes capital accumulation decision vs. household owning capital and leasing it to firms)
- Current capital, K_{t}, is predetermined and hence exogenous. Capital accumulates according to:

$$
K_{t+1}=I_{t}+(1-\delta) K_{t}
$$

- Exactly same accumulation equation as in Solow model

Prices Relevant for the Firm

- Firm hires labor in a competitive market at (real) wage w_{t} (and w_{t+1} in the future)
- Firm borrows to finance investment at:

$$
r_{t}^{\prime}=r_{t}+f_{t}
$$

- r_{t}^{\prime} is the interest rate relevant for the firm, while r_{t} is the interest rate relevant for the household
- f_{t} is (an exogenous) variable representing a financial friction.

We will refer to this as a credit spread

- During financial crises observed credit spreads rise significantly

Dividends

- The representative household owns the firm. The firm returns any difference between revenue and cost to the household each period in the form of a dividend
- Dividend is simply output (price normalized to one since model is real) less cost of labor in period t (since borrowing cost of investment is borne in future):

$$
D_{t}=Y_{t}-w_{t} N_{t}
$$

- Terminal condition for the firm: firm wants $K_{t+2}=0$ (die with no capital). This implies $I_{t+1}=-(1-\delta) K_{t+1}$, which we can think of as the firm "liquidating" its remaining capital after production in $t+1$
- This is an additional source of revenue for the firm in $t+1$. In addition, firm has to pay interest plus principal on its borrowing for investment in t :

$$
D_{t+1}=Y_{t+1}+(1-\delta) K_{t+1}-w_{t+1} N_{t+1}-\left(1+r_{t}^{\prime}\right) I_{t}
$$

Firm Valuation and Problem

- Value of the firm: PDV of flow of dividends:

$$
V_{t}=D_{t}+\frac{1}{1+r_{t}} D_{t+1}
$$

- Firm problem is to pick N_{t} and I_{t} to maximize V_{t} subject to accumulation equation:

$$
\max _{N_{t}, l_{t}} V_{t}=D_{t}+\frac{1}{1+r_{t}} D_{t+1}
$$

s.t.
$K_{t+1}=I_{t}+(1-\delta) K_{t}$

$$
D_{t}=A_{t} F\left(K_{t}, N_{t}\right)-w_{t} N_{t}
$$

$D_{t+1}=A_{t+1} F\left(K_{t+1}, N_{t+1}\right)+(1-\delta) K_{t+1}-w_{t+1} N_{t+1}-\left(1+r_{t}^{\prime}\right) I_{t}$

First Order Conditions

- Two first order conditions come out of firm problem:

$$
\begin{gathered}
w_{t}=A_{t} F_{N}\left(K_{t}, N_{t}\right) \\
1+r_{t}^{\prime}=A_{t+1} F_{K}\left(K_{t+1}, N_{t+1}\right)+(1-\delta)
\end{gathered}
$$

- Intuition: $\mathrm{MB}=\mathrm{MC}$
- Wage condition exactly same as Solow model expression for wage
- Investment condition can be re-written in terms of earlier notation by noting $R_{t+1}=A_{t+1} F_{K}\left(K_{t+1}, N_{t+1}\right)$ and:

$$
R_{t+1}=r_{t}^{\prime}+\delta=r_{t}+f_{t}+\delta
$$

- Return on capital, R_{t+1}, closely related to real interest rate, r_{t}
- These FOC implicitly define labor and investment demand functions

Labor Demand

- Labor FOC implicitly characterizes a downward-sloping labor demand curve:

$$
N_{t}=N^{d}\left(\underset{+}{w_{t}}, \underset{+}{A_{t}}, \underset{+}{K_{t}}\right)
$$

Investment Demand

- Second first order condition implicitly defines a demand for K_{t+1}, which can be used in conjunction with the accumulation equation to get an investment demand curve:

$$
I_{t}=I^{d}\left(\underset{-}{r_{t}}, A_{t+1}, f_{-}, K_{-}\right)
$$

Household

- There exists a representative household. Households gets utility from consumption and leisure, where leisure is $L_{t}=1-N_{t}$, with N_{t} labor and available time normalized to 1
- Lifetime utility:

$$
U=u\left(C_{t}, 1-N_{t}\right)+\beta u\left(C_{t+1}, 1-N_{t+1}\right)
$$

- Example flow utility functions:

$$
\begin{aligned}
& u\left(C_{t}, 1-N_{t}\right)=\ln C_{t}+\theta_{t} \ln \left(1-N_{t}\right) \\
& u\left(C_{t}, 1-N_{t}\right)=\ln \left[C_{t}+\theta_{t} \ln \left(1-N_{t}\right)\right]
\end{aligned}
$$

- Here, θ_{t} is an exogenous "labor supply shock" governing utility from leisure (equivalently, disutility from labor)
- Notation: u_{C} denotes marginal utility of consumption, u_{L} marginal utility of leisure (marginal utility of labor is $-u_{L}$)

Budget Constraints

- Household faces two flow budget constraints, conceptually the same as before, but now income is partly endogenous:

$$
\begin{aligned}
C_{t}+S_{t} & \leq w_{t} N_{t}+D_{t} \\
C_{t+1}+S_{t+1}-S_{t} & \leq w_{t+1} N_{t+1}+D_{t+1}+D_{t+1}^{\prime}+r_{t} S_{t}
\end{aligned}
$$

- Household takes D_{t}, D_{t+1}, and D_{t+1}^{\prime} (dividend from financial intermediary) as given (ownership different than management)
- Terminal condition: $S_{t+1}=0$. Gives rise to IBC:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=w_{t} N_{t}+D_{t}+\frac{w_{t+1} N_{t+1}+D_{t+1}+D_{t+1}^{\prime}}{1+r_{t}}
$$

First Order Conditions

- Do the optimization in the usual way. The following first order conditions emerge:

$$
u_{C}\left(C_{t}, 1-N_{t}\right)=\beta\left(1+r_{t}\right) u_{C}\left(C_{t+1}, 1-N_{t+1}\right)
$$

- This is the usual Euler equation, only looks different to accommodate utility from leisure

$$
\begin{aligned}
u_{L}\left(C_{t}, 1-N_{t}\right) & =w_{t} u_{C}\left(C_{t}, 1-N_{t}\right) \\
u_{L}\left(C_{t+1}, 1-N_{t+1}\right) & =w_{t+1} u_{C}\left(C_{t+1}, 1-N_{t+1}\right)
\end{aligned}
$$

- Discussion and intuition

Optimal Decision Rules

- Can go from first order conditions to optimal decision rules
- Cutting a few corners, we get the same consumption function as before:

$$
C_{t}=C^{d}\left(\underset{+}{Y_{t}}, Y_{t+1}, r_{t}\right)
$$

- Or, if there were government spending, with Ricardian Equivalence we'd have:

$$
C_{t}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{-}\right)
$$

Labor Supply

- First order condition for N_{t} can be characterized by an indifference curve / budget line diagram similar to the two period consumption case:
- Things are complicated for a few reasons:
- Competing income and substitution effects of w_{t}
- Non-wage income and expectations about future income (including through an interest rate channel) can affect current labor supply
- We will sweep most of this stuff under rug: substitution effect dominates and other things (other than exogenous variable θ_{t}) are ignored
- Can be motivated explicitly with preference specification due to Greenwood, Hercowitz, and Huffman (1988):

$$
u\left(C_{t}, 1-N_{t}\right)=\ln \left[C_{t}+\theta_{t} \ln \left(1-N_{t}\right)\right]
$$

Labor Supply Curve

- Labor supply function under these assumptions:

$$
N_{t}=N_{+}^{s}\left(w_{t}, \theta_{t}\right)
$$

Financial Intermediary

- Will not go into great detail
- In period t, takes in deposits, S_{t}, from household; issues loans in amount I_{t} to firm
- Pays r_{t} for deposits, and earns $r_{t}^{\prime}=r_{t}+f_{t}$ on loans
- f_{t} is exogenous, and $f_{t}>0$ means intermediary earns profit in $t+1$, which is returned to household as dividend:

$$
D_{t+1}^{\prime}=\left(r_{t}+f_{t}\right) I_{t}-r_{t} S_{t}
$$

Market-Clearing

- Market-clearing requires $S_{t}=I_{t}$ (i.e. funds taken in by financial intermediary equal funds distributed to firm for investment)
- This implies:

$$
Y_{t}=C_{t}+I_{t}
$$

- If there were a government levying (lump sum) taxes on household period t resource constraint would just be:

$$
Y_{t}=C_{t}+I_{t}+G_{t}
$$

- Can show that period $t+1$ constraint is the same:

$$
Y_{t+1}=C_{t+1}+I_{t+1}
$$

Equilibrium

- The following conditions must all hold in period t in equilibrium:

$$
\begin{aligned}
C_{t} & =C^{d}\left(Y_{t}, Y_{t+1}, r_{t}\right) \\
N_{t} & =N^{s}\left(w_{t}, \theta_{t}\right) \\
N_{t} & =N^{d}\left(w_{t}, A_{t}, K_{t}\right) \\
I_{t} & =I^{d}\left(r_{t}, A_{t+1}, f_{t}, K_{t}\right) \\
Y_{t} & =A_{t} F\left(K_{t}, N_{t}\right) \\
Y_{t} & =C_{t}+I_{t}
\end{aligned}
$$

- Endogenous: $C_{t}, N_{t}, Y_{t}, I_{t}, w_{t}$, and r_{t}
- Exogenous: $A_{t}, A_{t+1}, K_{t}, f_{t}, \theta_{t}$. Will talk about Y_{t+1} and K_{t+1} later
- Four optimal decision rules, two resource constraints: income $=$ production and income $=$ expenditure

Competitive Equilibrium

- There are now two prices $-r_{t}$ (intertemporal price of goods) and w_{t} (price of labor)
- Different ways to think about what the markets are. One is clear - market for labor, which w_{t} adjusts to clear (i.e. labor supply $=$ demand)
- Can think about either market for goods (i.e. $Y_{t}=C_{t}+I_{t}$) or a loanable funds market $S_{t}=I_{t}$ as being the other market, which r_{t} adjusts to clear. We will focus on market for goods
- Endowment economy special case of this if N_{t} and I_{t} are held fixed
- Will be possible to do some consumption smoothing in equilibrium here, however. Suppose household wants to increase S_{t}. It can do this if r_{t} falls to incentivize more I_{t} (whereas in endowment economy $I_{t}=0$, so S_{t} must remain fixed at 0).

