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1 Introduction

The recent Great Recession has highlighted the potential importance of financial market imper-

fections for macroeconomic fluctuations. This note briefly discusses how to incorporate financial

market imperfections in a tractable way to an otherwise standard RBC model.

Modeling financial frictions in a fully micro-founded way is technically challenging. If fully

micro-founded, to get financial frictions into a model one needs some degree of market incomplete-

ness and some level of heterogeneity. The financial system aggregates the savings of households and

funnels it to finance investment in physical capital by firms. This funneling of savings can either be

equity or debt, and as we have shown absent some other frictions it does not matter which. Indeed,

in the standard RBC model it doesn’t matter if we think about the household directly making

capital accumulation decisions rather than firms, and making this counterfactual assumption often

makes life easier by making the problem of a firm effectively static.

Financial market imperfections, or financial market frictions, generically refer to situations in

which the funneling of saving from households to firms gets messed up somehow. In the real world,

a very large fraction of firm financing comes in the form of conventional debt. Without formally

modeling why, in models with financial frictions we will assume that firms must finance some of

their operations via debt. In reality, part of this is because debt finance is more efficient than equity

finance because financial intermediaries play important informational roles (i.e. banks making loans

know a lot more about a company than individuals thinking about purchasing new equity).

There are two popular ways to throw a wrench into the use of debt to finance operations. The

first dates back to Townsend (1979) and is known as the “cost state verification” (CSV) problem.

This has been brought to the fore in macroeconomic models in Bernanke and Gertler (1989),

Carlstrom and Fuerst (1997), and Bernanke, Gertler, and Gilchrist (1999). Here the problem is

one of information asymmetry. Borrowers have private information about their projects and have

limited liability. This gives rise to an optimal contracting problem between a lender and a firm.

This gives rise to an external finance premium, wherein firms pay a higher interest rate to raise

money from external sources (e.g. a bank). The more net worth a firm has, the more financing it
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can do internally. Hence, fluctuations in asset prices (which affect net worth) affect firm investment

decisions.

The alternative setup is sometimes known as “costly enforcement” and dates back to Kiyotaki

and Moore (1997). Here there is no asymmetric information per se, but there is costly enforcement.

In the event of default, the lender can only recover a fraction of the debt. Like the CSV framework,

this also leads to an optimal contracting problem. What ends up happening is there ends up being

a collateral constraint wherein a borrower can only borrow up to a fraction of the value of his assets,

which in this case is the stock of capital. We can think about a financial market shock as a shock

to the fraction of the value of assets a borrower can borrow. Furthermore, asset price fluctuations

will affect the borrowing limit. In this way, just like in the CSV framework, fluctuations in asset

prices can directly affect firm investment decisions.

The collateral constraint version of the model is much easier to deal with, particularly as a

reduced form way to think about financial frictions. It is the route I am going to take here; the

CSV approach is much more intensive. In the model we’re going to work with, I will simply specify

(without formally deriving) what a firm has to finance out of debt, and will then include a constraint

in which total borrowing cannot exceed a fraction of the value of the firm’s capital stock (i.e. its

collateral). This will allow us to illustrate most of the ideas of financial frictions without digging

into the weeds of the CSV approach. We will think about a financial shock as an exogenous change

in the fraction of the value of a firm’s capital that it can borrow. There are some downides to

the collateral constraint approach. In this framework, there is no default in equilibrium (whereas

there is the CSV framework as well as in reality). Furthermore, there are no credit spreads in the

collateral constraint framework. Finally, we can’t think about the role of idiosyncratic risk in the

way one might with the CSV framework.

In the next section I will focus on a setup in which the firm has to finance its payments to labor

with an intraperiod loan (what is called working capital), and the amount it can finance is tied to

the value of its capital. Because this financial friction directly affects the firm’s choice of labor, it

generates a labor wedge and financial shocks can induce co-movement among aggregate variables.

In subsequent sections I will consider the case where investment in new physical capital must be

financed via either intra or interperiod debt. This will also lead to interesting dynamics but it

will be difficult to generate co-movement among consumption and labor in response to a financial

shock, at least within the context of an otherwise standard RBC type model. In addition to a

financial shock, I will also analyze how the presence of a financial constraint impacts the responses

to a productivity shock.

2 A Simple Collateral Constraint Model

The household problem is fairly standard. Differently than what we’ve been doing, we assume that

the firm owns the capital stock and makes capital accumulation decisions. We are going to require

that the firm borrow to finance its payments to labor (what is known as “working capital”) via an

intra-period loan. The amount that the firm can borrow depends on the value of its capital stock.
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For this to make sense, we need the firm to own the capital stock.

The household problem is:

max
Ct+j ,Nt+j ,Bt+j+1

Et

∞∑
j=0

βj

{
lnCt+j − θ

N1+χ
t+j

1 + χ

}
s.t.

Ct+j +Bt+j+1 −Bt+j ≤ wt+jNt+j + Πt+j + rt+j−1Bt+j

The terms here are all standard. Bt is the stock of savings/debt with which a household enters

a period, with rt−1 the real interest rate on that savings. Πt is a dividend distribution from the

firm. A Lagrangian is:

L = Et

∞∑
j=0

{
lnCt+j − θ

N1+χ
t+j

1 + χ
+ λt+j [wt+jNt+j + Πt+j + (1 + rt+j−1)Bt+j − Ct+j −Bt+j+1]

}
The first order conditions are standard:

∂L
∂Ct

= 0⇔ 1

Ct
= λt (1)

∂L
∂Nt

= 0⇔ θNχ
t = λtwt (2)

∂L
∂Bt+1

= 0⇔ λt = βEtλt+1(1 + rt) (3)

These are standard. The multiplier can be eliminated, leaving:

θNχ
t =

1

Ct
wt (4)

1

Ct
= βEt

1

Ct+1
(1 + rt) (5)

The firm produces output using a standard Cobb-Douglas production function:

Yt = AtK
α
t N

1−α
t (6)

There is a capital adjustment cost. Capital accumulates according to:

Kt+1 = It −
φ

2

(
It
Kt
− δ
)2

Kt + (1− δ)Kt (7)

Investment is financed out of dividends, and for simplicity assume that the firm issues no

intertemporal debt. The dividend payout is then:

Πt = Yt − wtNt − It
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So far, this is all fairly standard. What differentiates the setup relative to a frictionless RBC

model is the inclusion of a working capital constraint. In particular, we assume that the firm must

pay labor in advance of producing output, and finances this labor payment with an intraperiod

loan. Since the loan is intratemporal (as opposed to the standard intertemporal debt), there is no

interest on this loan.

We assume that the amount the firm can borrow equals a fraction of the value of its capital. In

particular, the firm faces the following constraint:

wtNt ≤ ξtqtKt (8)

Here, wtNt denotes total wage payments, qt is the value of capital, Kt is how much capital

the firm has, and ξt is an exogenous and stochastic borrowing limit. The basic idea is that, if the

borrower defaults on the working capital loan, the lender can only seize a fraction, ξt < 1, of the

firm’s assets. This setup is sometimes known as the costly enforcement model – since a firm might

renege on its debt, a lender will only allow a firm to borrow up to a fraction of its debt.

Let’s setup a Lagrangian for the firm. The firm discounts future profit flows by the stochastic

discount factor of the household, Etβ
j λt+j
λt

. There are two constraints. Let qt be the multiplier on

the accumulation equation (since the units of the firm’s problem are goods, qt has the interpretation

of reflecting how many goods the firm would give up for an additional unit of installed capital).

The firm’s Lagrangian is:

L = Et

∞∑
j=0

βj
λt+j
λt

{
At+jK

α
t+jN

1−α
t+j − wt+jNt+j − It+j + . . .

qt+j

[
It+j −

φ

2

(
It+j
Kt+j

− δ
)2

Kt+j + (1− δ)Kt+j −Kt+j+1

]
+ µt+j [ξt+1qt+jKt+j − wt+jNt+j ]

}

The first order conditions are:

∂L
∂Nt

= 0⇔ wt(1 + µt) = (1− α)AtK
α
t N
−α
t (9)

∂L
∂It

= 0⇔ 1 = qt

[
1− φ

(
It
Kt
− δ
)]

(10)

∂L
∂Kt+1

= 0⇔ qt = βEt
λt+1

λt

[
αAt+1K

α−1
t+1 N

1−α
t+1 + . . .

qt+1

(
(1− δ) + µt+1ξt+1 −

φ

2

(
It+1

Kt+1
− δ
)2

+ φ

(
It+1

Kt+1
− δ
)
It+1

Kt+1

)]
(11)

If we look at these first order conditions, if the collateral constraint did not bind (i.e. µt = 0),

then we would have identical conditions to a standard model with a capital adjustment cost. One
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can see here that if the constraint does bind, however, then there is a wedge between the wage and

the marginal product of labor (and hence a wedge between the MRS and the marginal product of

labor, hence a labor wedge). If the constraint becomes “tighter,” we would expect the multiplier

on the constraint to become bigger, which will function much like an increase in a tax on labor

income.

The market-clearing conditions are standard. Since the firm issues no intertemporal debt, then

the household cannot have any stock of savings. The full set of equilibrium conditions can therefore

be written:

1

Ct
= λt (12)

θNχ
t = λtwt (13)

λt = βEtλt+1(1 + rt) (14)

wt(1 + µt) = (1− α)AtK
α
t N
−α
t (15)

1 = qt

[
1− φ

(
It
Kt
− δ
)]

(16)

qt = βEt
λt+1

λt

[
αAt+1K

α−1
t+1 N

1−α
t+1 +qt+1

(
(1− δ) + µt+1ξt+1 −

φ

2

(
It+1

Kt+1
− δ
)2

+ φ

(
It+1

Kt+1
− δ
)
It+1

Kt+1

)]
(17)

Yt = AtK
α
t N

1−α
t (18)

Yt = Ct + It (19)

Kt+1 = It −
φ

2

(
It
Kt
− δ
)2

Kt + (1− δ)Kt (20)

wtNt ≤ ξtqtKt (21)

lnAt = ρA lnAt−1 + sAεA,t (22)

ln ξt = (1− ρξ) ln ξ + ρξ ln ξt−1 + sξεξ,t (23)

I assume that the exogenous productivity variable obeys the usual AR(1) in the log. In addition,

I assume that the fraction of the value of a firm’s capital that may be borrowed, ξt, follows a

stationary AR(1) process, with non-stochastic mean of ξ. There are twelve equations and twelve

variables – Ct, λt, wt, Nt, µt, rt, Kt, At, Yt, It, ξt, and qt.

2.1 Non-Stochastic Steady State

Let us solve for the non-stochastic steady state. Variables without time subscripts denote steady

state values. We will consider two regions – one in which the collateral constraints binds and the

other in which it does not. If the constraint does not bind, then µ = 0 and the steady state is the

same as in the standard model.
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From the first order condition for investment as well as the capital accumulation equation, it

is clear that q = 1. We can then solve for the steady state capital-labor ratio from the dynamic

capital supply Euler equation:

K

N
=

(
α

1
β − (1− δ)− µξ

) 1
1−α

(24)

Note that this expression holds regardless of whether the constraint binds or not. If the con-

straint does not bind, then this is the usual expression for the capital-labor ratio. If the constraint

binds, then µ > 0 and the capital-labor ratio will be larger than in the standard case. This may

seem odd that capital-labor would be larger in the constrained case, but note that the constraint ap-

plies to labor; so a more binding constraint will tend to reduce N , which drives up the capital-labor

ratio.

How would we know what µ is? It is either 0 (non-binding) or positive. Suppose that the

collateral constraint binds. Then from the constraint evaluated in steady state we know:

w = ξ
K

N

From the first order condition for labor demand, we also know that:

w =
1

1 + µ
(1− α)

(
K

N

)α
Combining these, we have:

ξ
K

N
=

1

1 + µ
(1− α)

(
K

N

)α
Or:

ξ(1 + µ) = (1− α)

(
K

N

)α−1
Using what we now know about K

N , this can be written:

ξ(1 + µ) = (1− α)

1
β − (1− δ)− µξ

α

Then solving for µ, we get:

µ =
1− α
ξ

(
1

β
− (1− δ)

)
− α (25)

We can see here that the multiplier is decreasing in ξ, which is the fraction of the value of capital

that can be borrowed against. This makes sense – the bigger is the fraction, the “less binding”

is the collateral constraint, and hence the lower will be the multiplier. We can also solve for the

cutoff value of ξ for which the constraint will in fact be borrowing. This is is found by solving for
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the values of ξ where µ > 0:

ξ <
1− α
α

(
1

β
− (1− δ)

)
(26)

If ξ is bigger than this, then the constraint will not bind and we will be back in the normal case.

Now let us proceed. Combine the labor supply and labor demand conditions evaluated in the

steady state:

θNχ =
1

C

1

1 + µ
(1− α)

(
K

N

)α
Multiply both sides by N :

θN1+χ =
N

C

1

1 + µ
(1− α)

(
K

N

)α
From the resource constraint, we know that:

C

N
=

(
K

N

)α
− δK

N

Hence, we can solve for N as:

N =

[
1

θ
(1 + µ)−1

(1− α)
(
K
N

)α(
K
N

)α − δKN
] 1

1+χ

(27)

How does the value of ξ affect N? There is both a direct effect and an indirect effect. A higher

ξ makes µ smaller, which makes (1 +µ)−1 bigger, and therefore works to make N bigger. A higher

ξ also makes K
N bigger, which works in the same direction. We would therefore expect N to be

increasing in ξ. Once we know N , it is straightforward to solve for the rest of the steady state.

2.2 Impulse Responses to Shocks

I assume the following parameter values: β = 0.99, α = 1/3, δ = 0.02, φ = 4, θ = 7.71, χ = 1,

ρA = 0.98, sA = 0.01, ρξ = 0.90, and sξ = 0.01. If the collateral constraint were not binding, with

these parameter values labor hours would be 1/3 in steady state. With these parameter values, the

cutoff value of ξ where the constraint binds is ξ = 0.0602. Because I want to solve the model using

perturbation techniques, I went to approximate about a point where the constraint binds, and then

implicitly ignore any possibility of the constraint perhaps not binding at some point in the future.

I therefore assume ξ = 0.05, which means that in the steady state the constraint binds.

In what follows, I show impulse responses for two cases: one where the constraint binds (the

parameterization described above), and another in which it does not. This allows us to compare

how the economy reacts to the two kinds of shocks with and without the constraint binding. Below

are impulse responses to the productivity shock:
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Figure 1: IRFs to Productivity Shock
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First, note that µt increases significantly after the productivity shock. This means that the

collateral constraint is “tighter.” The increase in qt is pretty similar whether the constraint binds

or not. Hence, what the increase in µt means is that the firm would like to increase total payments

to labor (wtNt) by more than the value of the firm’s capital increases. The increase in µt is

isomorphic to an increase in the tax on labor. This means that Nt increases less than it would in

the unconstrained case. Here we actually see that Nt decreases on impact in the constrained case.

As a result, output goes up by significantly less than in the unconstrained case. Even though output

goes up by quite a bit less, the impact response of investment is quite similar in the constrained and

unconstrained cases. What accounts for this? The firm has an incentive to increase its investment

by a lot, because this results in more capital in the future, which allows the firm to borrow more in

the future to finance labor payments. In essence, investment today helps relax the credit constraint

in the future. Hence, investment increases similarly after the productivity shock regardless of

whether the collateral constraint binds or not. Since output goes up by significantly less, but

the investment response is roughly the same as before, it follows that consumption increases by
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significantly less when the collateral constraint binds.

Hence, the collateral constraint here dampens the responses to a productivity shock. Is there a

so-called “financial accelerator” mechanism present in the model? The basic idea of the financial

accelerator is that exogenous shocks (such as productivity shocks) impact the value of capital,

qt, which affects the ability to borrow (i.e. credit markets). This is somewhat mechanical here

– changes in qt affect the borrowing limit. Hence, the idea of the financial accelerator is that

exogenous shocks might have bigger effects on output through an effect on asset prices and hence

credit conditions than if financial frictions were absent. Given that output responds significantly

less to the productivity shock when the constraint binds than when it does not, that does not seem

to be the case here.

To better see if there is a financial accelerator mechanism, it is useful to consider two cases

where the financial constraint binds in both. But in one, assume that φ = 0, so that qt = 1. In the

other, let φ > 0. The responses are shown below in Figure 2.

Figure 2: IRFs to Productivity Shock, Adj. Cost vs. No Adj. Cost
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The difference between these two cases, of course, is that qt can react when φ > 0, and it is

constant when there is no adjustment cost. If you look closely enough at the figure, you will see

that output reacts more on impact (but only by a little) when φ = 4 than when φ = 0. What

is happening here is that Nt falls by less. The mechanism is straightforward. When φ = 0, total

labor payments cannot change on impact because qtKt is then predetermined. But when φ > 0,

wtNt can go up on impact, even though Kt cannot. This means that if the shock can affect qt (the

price of capital), it can have a bigger effect than if it cannot. This is loosely a financial accelerator

mechanism. The financial accelerator mechanism here turns out to be pretty weak, however, which

is often true in models of this sort. What drives this is that the model does not predict a very

big increase in qt after the productivity shock. It is often true that macro models have difficulty

generating lots of asset price volatility, so that the financial accelerator mechanism is weak.

Another thing is worth pointing out when looking at Figures 1-2. In particular, you will note

that the model with a binding collateral constraint produces a bit of a hump-shaped response of

output to the productivity shock. Indeed, in Figure 2 we see that the apparent hump-shape is

even stronger without an adjustment cost to capital than with one. What is driving this? For

this, it is easiest to focus on the responses shown in Figure 1. When the constraint binds, the

output response is much smaller than when the constraint does not bind. The same is not true

for investment. But differently, the binding collateral constraint results in increase in the volatility

of investment relative to output. This is fairly intuitive. When productivity improves, absent the

constraint the firm would like to hire more labor. One thing the firm can do to ease the constraint is

to accumulate more capital. While this won’t let the firm hire more labor immediately, it will once

the capital comes on line. This means that the firm has an incentive to do more investment, which

strengthens the model’s internal propagation mechanism. The extra capital that is accumulated

(relative to the initial increase in output) generates more interesting output dynamics than in the

model with no collateral constraint. Put another way, binding financial constraints often have the

effect of increasing propagation and persistence, in a way somewhat similar to the inclusion of

capital/investment adjustment costs. This is an older point that is made in Carlstrom and Fuerst

(1997) in the context of a costly state verification (CSV) setup.

Next, let us consider the responses to a financial shock (a shock to ξt). This is obviously only

relevant in the situation in which the collateral constraint binds. The responses are shown below

in Figure 3.
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Figure 3: IRFs to Financial Shock
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The increase in ξt makes the collateral constraint “less binding” and consequently results in a

fall in µt. Mechanically in terms of how the other equations of the model look, this looks like a

decrease in a distortionary tax rate on labor income. As a result, firms hire more labor and output

rises. This results in higher consumption. Investment (and also qt) also rise, albeit not by very

much. In other words, a shock to the fraction of collateral a firm can borrow against for working

capital (what we can loosely interpret as a financial shock) can lead to a broad-based movement

in economic activity. Hence, a reduction in ξt (a negative financial shock) could generate a broad-

based decline in output and other aggregates. It can do so precisely because it generates a labor

wedge and hence looks like a time-varying tax on labor income.

3 Alternative Setups

Next I’m going to consider two alternative setups. These involve different factors which must be

financed by debt, and hence different things which are directly affected by the collateral constraint.
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First, I will assume that both payments to labor and investment must be financed by working

capital. In the second setup, I will assume there is no working capital requirement, but that

investment must be financed with intertemporal debt, and that this intertemporal debt is subject

to the collateral requirement.

3.1 Investment Financed by Working Capital as Well

Let’s consider the same setup as above, but this time assume that the firm must use working capital

to finance its investment as well as its labor input. This leaves the firm problem unaffected relative

to our baseline setup, but the collateral constraint is now:

wtNt + It ≤ ξtqtKt (28)

The only first order condition affected by this difference is the one over investment, which now

becomes:

1 + µt = qt

[
1− φ

(
It
Kt
− δ
)]

(29)

This conveys something interesting. In particular, even if φ = 0, the price of capital, qt, could be

different than one in steady state, and fluctuate outside of steady state, if the collateral constraint

binds.

3.1.1 Steady State

Let’s solve for the steady state of the revised problem. From the accumulation equation, it must

still be the case that I = δK. This means that steady state q is:

q = 1 + µ (30)

The expression for the steady state capital stock is the same as earlier:

K

N
=

(
α

1
β − (1− δ)− µξ

) 1
1−α

(31)

As before, begin by assuming that the collateral constraint binds. With I = δK, after plugging

in for q we can then get an expression for the steady state real wage:

w = (ξ(1 + µ)− δ) K
N

From the labor demand condition, we also know that:

w =
1

1 + µ
(1− α)

(
K

N

)α
Then we have:
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1

1 + µ
(1− α)

(
K

N

)α
= (ξ(1 + µ)− δ) K

N

This can be written:

1

1 + µ
(1− α) = (ξ(1 + µ)− δ)

(
K

N

)1−α

Given that K
N is now known as a function of µ, this expression can be solved for µ (it is albeit

significantly more complicated than above).

3.1.2 Impulse Responses

I solve the model using the same parameterization as above in the case where the collateral con-

straint only applies to working capital for labor payments. Impulse responses to the productivity

shock are shown in Figure 4.

Figure 4: IRFs to Productivity Shock
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When productivity increases, the firm would like to hire more labor and do more investment, so

the constraint tightens. Consequently, µt increases. Similarly to the previous case, hours worked

declines on impact. Differently than before, investment increases substantially less (relative to the

unconstrained case). This is kind of mechanical given that investment now must be financed via

working capital. The smaller increase in investment means that we get less propagation of the

productivity shock relative to the case where working capital is only needed for labor payments.

Hence, the output impulse response is not as hump-shaped.

Next, consider a financial shock. This eases the constraint, and hence results in µt falling.

Differently than above, this results in qt falling, not rising. Essentially, capital is less valuable.

In spite of the decline in qt, investment rises (because of the decline in µt). Consumption also

declines, rather than rises, on impact here. The way to think about this is that prior to the

financial shock, the economy was investing less (and hence consuming more) than it would like to

in an unconstrained world. The easing of the constraint (when it applies to both payments to labor

and investment) induces a substitution away from private consumption towards investment.

Figure 5: IRFs to Financial Shock
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3.2 Collateral Constraint Applies to Intertemporal Debt

Suppose that, for unmodeled reasons, the firm finances all investment with new one period in-

tertemporal debt (as opposed to the intratemporal debt considered in the working capital cases).

That is, suppose that each period the firm issues new debt, Dt+1, to finance its current investment.

In other words, we must have:

It = Dt+1 (32)

Each period, the firm is required to pay off principle plus interest on the debt it brought into

the period. This amounts to paying off (1 + rt−1)It−1. Hence, the dividend the firm pays out is:

Πt = Yt − wtNt − (1 + rt−1)It−1 (33)

Now, the collateral constraint applies only to intertemporal debt. In particular:

Dt+1 ≤ ξtqtKt (34)

Since Dt+1 = It, this means that the firm’s current investment is constrained by the value of

its existing capital. The accumulation equation is the same as before. The firm problem now is:

L = Et

∞∑
j=0

βj
λt+j
λt

{
At+jK

α
t+jN

1−α
t+j − wt+jNt+j − (1 + rt−1)It+j−1 + . . .

qt+j

[
It+j −

φ

2

(
It+j
Kt+j

− δ
)2

Kt+j + (1− δ)Kt+j −Kt+j+1

]
+ µt+j (ξt+jqt+jKt+j − It+j)

}

The first order conditions are:

∂L
∂Nt

= 0⇔ wt = (1− α)AtK
α
t N
−α
t (35)

∂L
∂It

= 0⇔ µt + βEt
λt+1

λt
(1 + rt) = qt

[
1− φ

(
It
Kt
− δ
)]

(36)

∂L
∂Kt+1

= 0⇔ qt = βEt
λt+1

λt

[
αAt+1K

α−1
t+1 N

1−α
t+1 + . . .

qt+1

(
(1− δ) + µt+1ξt+1 −

φ

2

(
It+1

Kt+1
− δ
)2

+ φ

(
It+1

Kt+1
− δ
)
It+1

Kt+1

)]
(37)

The first order condition with respect to Kt is the same as before. The first order condition for

Nt now looks standard, without any wedge between the wage and the marginal product of labor.

What is slightly different than before is the first order condition with respect to investment. From
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the household’s first order condition, we know that βEt
λt+1

λt
(1 + rt) = 1. Hence, this condition can

be written:

1 + µt = qt

[
1− φ

(
It
Kt
− δ
)]

(38)

This looks identical to the case where investment must be financed via working capital (as

opposed to an intertemporal loan). If the collateral constraint does not bind, then µt = 0, and this

is the same first order condition as before (or as what would emerge in the standard RBC model).

This is simply Modigliani-Miller – if there is no financial constraint, the equilibrium conditions will

be identical if we force the firm to finance investment with debt (this case) or equity (the earlier

case considered when there was a working capital constraint on labor).

The household holds all debt issued by the firm. The full set of equilibrium conditions can

therefore be written:

1

Ct
= λt (39)

θNχ
t = λtwt (40)

λt = βEtλt+1(1 + rt) (41)

wt = (1− α)AtK
α
t N
−α
t (42)

1 + µt = qt

[
1− φ

(
It
Kt
− δ
)]

(43)

qt = βEt
λt+1

λt

[
αAt+1K

α−1
t+1 N

1−α
t+1 + . . .

qt+1

(
(1− δ) + µt+1ξt+1 −

φ

2

(
It+1

Kt+1
− δ
)2

+ φ

(
It+1

Kt+1
− δ
)
It+1

Kt+1

)]
(44)

Yt = AtK
α
t N

1−α
t (45)

Yt = Ct + It (46)

Kt+1 = It −
φ

2

(
It
Kt
− δ
)2

Kt + (1− δ)Kt (47)

It ≤ ξtqtKt (48)

lnAt = ρA lnAt−1 + sAεA,t (49)

ln ξt = (1− ρξ) ln ξ + ρξ ln ξt−1 + sξεξ,t (50)

What we see here is that there really isn’t a difference between requiring the firm to finance

its investment with an intratemporal loan or intertemporal debt – for investment, the first order

16



conditions are the same.

3.2.1 The Steady State

We need to solve for the non-stochastic steady state. The capital-labor ratio in steady state is the

same as in the working capital constraint model:

K

N
=

(
α

1
β − (1− δ)− µξ

) 1
1−α

(51)

The wage can be determined directly from this. From the accumulation equation, we also know

that I = δK. From the first order condition for investment, we then have:

1 + µ = q (52)

In other words, if the constraint binds, q > 1. Further, qt could fluctuate outside of steady

state even without an adjustment cost (in a sense, similar to the discussion above, the collateral

constraint on intertemporal debt functions like an adjustment cost). From the collateral constraint

at equality, using I = δK, we get:

δ = ξ(1 + µ) (53)

This means that:

µ =
δ

ξ
− 1 (54)

Hence, for the collateral constraint to bind, we must have ξ < δ (so that µ > 0). Once we have

µ, we can then have K
N , and we can use that to solve for N as:

N =

[
1

θ

(1− α)
(
K
N

)α(
K
N

)α − δKN
] 1

1+χ

(55)

This is similar to the case where the collateral constraint applies to working capital, but there

is no explicit µ term present.

3.2.2 Impulse Responses

The model is parameterized as above. I set ξ = 0.015, which ensures that the collateral constraint

binds in the steady state. Impulse responses to the productivity shock (Figure 6) and financial

shock (Figure 7) are shown below:
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Figure 6: IRFs to Productivity Shock
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We can see here that the intertemporal collateral constraint dampens the output response to a

productivity shock. When productivity increases, µt increases (essentially, the collateral constraint

becomes tighter). The firm would like to do more investment, but can only increase its investment

by the amount that its capital increases in value. Labor hours essentially do not react at any horizon,

meaning that the output response is close to equal to the increase in exogenous productivity. In

contrast, consumption increases by more in the economy with the constraint than without. What

is going on? When productivity improves, the firm would like to increase its investment, but is

unable to do so by much because of the constraint binding. Because investment can’t go up by

much, consumption goes up by more. But consumption going up by more means that hours go

up by less (there is a bigger offsetting wealth effect on labor supply), leaving labor hours roughly

unchanged.

Next, consider the responses to the financial shock. When ξt increases, µt falls (the constraint

becomes looser). This results in a decline in qt – capital is less valuable because it’s not as necessary

to ease the collateral constraint. Investment increases, in a rather mechanical way – you can borrow
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more, so you invest more. Note that investment and qt no longer move in the same direction here.

Consumption declines. The reason consumption declines is that you want to do more investment

– essentially, prior to the shock the economy is constrained from doing as much investment as it

wants, and the easing of the constraint means that you substitute away from consumption and into

investment. The fall in consumption results in hours going up (and the wage going down, though

this is not shown). As a result of the increase in hours, output goes up.

Figure 7: IRFs to Financial Shock
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You will note that these responses look very similar to the case where both labor and investment

must be financed via working capital.

19


