Fiscal Policy and Ricardian Equivalence ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims
University of Notre Dame

Spring 2018

Readings

- GLS Ch. 12.1-12.2

Fiscal Policy

- The term fiscal policy refers to government spending and tax collection
- We will study fiscal policy in a particularly simple environment - endowment economy with no production
- Basic conclusions will carry over to a model with production
- Key result: Ricardian Equivalence. Ricardian Equivalence states that the manner in which a government finances its spending (debt or taxes) is irrelevant for understanding the equilibrium effects of changes in spending
- We will also discuss the "government spending multiplier"

Environment

- Time lasts for two periods, t and $t+1$
- Government does an exogenous amount of expenditure, G_{t} and G_{t+1}. We do not model the usefulness of this expenditure (i.e. public good provision)
- Like the household, the government faces two flow budget constraints:

$$
\begin{aligned}
G_{t} & \leq T_{t}+B_{t} \\
G_{t+1}+r_{t} B_{t} & \leq T_{t+1}+B_{t+1}-B_{t}
\end{aligned}
$$

- B_{t} : stock of debt government debt issued in t and carried into $t+1$
- Government can finance its period t spending by raising taxes $\left(T_{t}\right)$ or issuing debt (B_{t}, with initial level $B_{t-1}=0$)
- Same in period $t+1$, except government also has interest expense on debt, $r_{t} B_{t}$

Intertemporal Budget Constraint

- Note that $B_{t}>0$ means debt (opposite for household savings) and $B_{t}<0$ means government saving
- Terminal condition: $B_{t+1}=0$
- Intertemporal budget constraint is then:

$$
G_{t}+\frac{G_{t+1}}{1+r_{t}}=T_{t}+\frac{T_{t+1}}{1+r_{t}}
$$

- Conceptually the same as the household
- Government's budget must balance in an intertemporal present value sense, not period-by-period

Household Preferences

- Representative household. Everyone the same
- Household problem the same as before. Lifetime utility:

$$
U=u\left(C_{t}\right)+\beta u\left(C_{t+1}\right)+\underbrace{h\left(G_{t}\right)+\beta h\left(G_{t+1}\right)}_{\text {Can Ignore }}
$$

- Cheap way to model usefulness of government spending: household gets utility from it via $h(\cdot)$
- As long as "additively separable" manner in which household receives utility is irrelevant for understanding equilibrium dynamics
- Hence we will ignore this

Household Budget Constraints

- Faces two within period flow budget constraints:

$$
\begin{aligned}
C_{t}+S_{t} & \leq Y_{t}-T_{t} \\
C_{t+1}+S_{t+1}-S_{t} & \leq Y_{t+1}-T_{t+1}+r_{t} S_{t}
\end{aligned}
$$

- Household takes T_{t} and T_{t+1} as given
- Imposing terminal condition that $S_{t+1}=0$ yields household's intertemporal budget constraint:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}-T_{t}+\frac{Y_{t+1}-T_{t+1}}{1+r_{t}}
$$

Household Optimization

- Standard Euler equation:

$$
u^{\prime}\left(C_{t}\right)=\beta\left(1+r_{t}\right) u^{\prime}\left(C_{t+1}\right)
$$

- Can write household's IBC as:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}+\frac{Y_{t+1}}{1+r_{t}}-\left[T_{t}+\frac{T_{t+1}}{1+r_{t}}\right]
$$

- But since present value of stream of taxes must equal present value of stream of government spending, this is:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}+\frac{Y_{t+1}}{1+r_{t}}-\left[G_{t}+\frac{G_{t+1}}{1+r_{t}}\right]
$$

Taxes Drop Out

- From the household's perspective, knowing that the government's IBC must hold, we can get:

$$
C_{t}+\frac{C_{t+1}}{1+r_{t}}=Y_{t}-G_{t}+\frac{Y_{t+1}-G_{t+1}}{1+r_{t}}
$$

- In other words, T_{t} and T_{t+1} drop out
- From household's perspective, it is as though $T_{t}=G_{t}$ and $T_{t+1}=G_{t+1}$
- This means that the consumption function (which can be derived qualitatively via indifference curves and budget lines) does not depend on T_{t} or T_{t+1} :

$$
C_{t}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)
$$

Intuition

- All the household cares about when making its consumption/saving decision is the present discounted value of the stream of income
- A cut in taxes, not met by a change in spending, means that future taxes must go up by an amount equal in present value
- Example:
- Cut T_{t} by 1
- Holding G_{t} and G_{t+1} fixed, the government's IBC holding requires that T_{t+1} go up by $\left(1+r_{t}\right)$
- Present value of this is $\frac{1+r_{t}}{1+r_{t}}=1$, the same as the present value of the period t cut in taxes - i.e. it's a wash from the household's perspective

Ricardian Equivalence

- Ricardian Equivalence due to Barro (1979), named after David Ricardo
- Basic gist: the manner of government finance is irrelevant for how a change in government spending impacts the economy
- Increasing G_{t} by increasing T_{t} ("tax finance") will have equivalent effects to increasing G_{t} by increasing B_{t} ("deficit finance")
- Why? Current debt is equivalent to future taxes, and household is forward-looking
- Debt must equal present value of government's "primary surplus" (taxes less spending, excluding interest payments):

$$
B_{t}=\frac{1}{1+r_{t}}\left[T_{t+1}-G_{t+1}\right]
$$

- Issuing debt equivalent to raising future taxes

Ricardian Equivalence in the Real World

- Ricardian Equivalence rests on several dubious assumptions:

1. Taxes must be lump sum (i.e. additive)
2. No borrowing constraints
3. Households forward-looking
4. No overlapping generations (i.e. government does not "outlive" households)

- Nevertheless, the basic intuition of Ricardian Equivalence is potentially powerful when thinking about the real world

Fiscal Policy in an Endowment Equilibrium Model

- Market-clearing requires that $B_{t}=S_{t}$ - government borrowing equals household saving
- Equivalently, "aggregate saving" equals zero:

$$
S_{t}-B_{t}=0
$$

- But this is:

$$
Y_{t}-T_{t}-C_{t}-\left(G_{t}-T_{t}\right)=0
$$

- Which implies:

$$
Y_{t}=C_{t}+G_{t}
$$

Equilibrium Conditions

- Household optimization:

$$
C_{t}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)
$$

- Market-clearing:

$$
Y_{t}=C_{t}+G_{t}
$$

- Exogenous variables: $Y_{t}, Y_{t+1}, G_{t}, G_{t+1}$.
- Taxes irrelevant for equilibrium!
- IS and Y^{s} curves are conceptually the same as before, but now G_{t} and G_{t+1} will shift the IS curve

The Government Spending Multiplier

- Total desired expenditure is:

$$
Y_{t}^{d}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)+G_{t}
$$

- Impose that income equals expenditure:

$$
Y_{t}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)+G_{t}
$$

- Totally differentiate, holding r_{t}, Y_{t+1}, and G_{t+1} fixed:

$$
d Y_{t}=\frac{\partial C^{d}}{\partial Y_{t}}\left(d Y_{t}-d G_{t}\right)+d G_{t}
$$

- Or: $d Y_{t}=d G_{t}$
- This tells you that, holding r_{t} fixed, output would change one-for-one with government spending - i.e. the "multiplier" would be 1. This gives horizontal shift of the IS curve to a change in G_{t}

The Multiplier without Ricardian Equivalence

- Suppose that the household is not forward-looking, so desired expenditure, equal to total income, is:

$$
Y_{t}=C^{d}\left(Y_{t}-T_{t}, r_{t}\right)+G_{t}
$$

- Suppose that there is a deficit-financed increase in expenditure, so that T_{t} does not change. Totally differentiating:

$$
d Y_{t}=\frac{\partial C^{d}}{\partial Y_{t}} d Y_{t}+d G_{t}
$$

- Simplifying one gets a "multiplier" of:

$$
\frac{d Y_{t}}{d G_{t}}=\frac{1}{1-M P C}>1
$$

- Note: this assumes (i) no Ricardian Equivalence and (ii) fixed real interest rate

"Rounds of Spending" Intuition

- One can think of several "rounds" of spending happening within a period
- In round 1, government spending goes up by 1
- With no Ricardian equivalence, this generates 1 of income, which generates MPC of extra consumption in round 2. This extra MPC of consumption in round 2 generates MPC extra income, which generates $M P C^{2}$ of extra consumption in round 3 , and so on:

$$
\frac{d Y_{t}}{d G_{t}}=1+M P C+M P C^{2}+M P C^{3}+\cdots=\frac{1}{1-M P C}
$$

- With Ricardian Equivalence, process is similar, but initially only a $1-M P C$ infusion of spending (because household reacts to increase in G_{t} as though taxes have increased):

$$
\frac{d Y_{t}}{d G_{t}}=(1-M P C)+M P C(1-M P C)+M P C^{2}(1-M P C)+\cdots=\frac{1-M P C}{1-M P C}=1
$$

Graphical Effects: Increase in G_{t}

Crowding Out

- An increase in G_{t} has no effect on Y_{t} in equilibrium
- Hence, private consumption is completely "crowded out": $d C_{t}=-d G_{t}$
- To make this compatible with market-clearing, r_{t} must rise
- Increase in G_{t+1} has opposite effect: r_{t} falls to keep current C_{t} from declining
- Again, r_{t} adjusts so as to undo any desired smoothing behavior by household
- Multiplier is zero in equilibrium. Not a consequence of Ricardian Equivalence, but rather assumption of endowment economy where output cannot react

Graphical Effects: Increase in G_{t+1}

