
Graduate Macro Theory II:

Notes on Solving Linearized Rational Expectations Models

Eric Sims

University of Notre Dame

Spring 2017

1 Introduction

The solution of many discrete time dynamic economic models is a system of non-linear difference

equations. One method for approximating the solution to these models is by log-linearizing the

system of equations about a point (typically the steady state), thereby translating the system of

non-linear difference equations into a system of (approximately) linear difference equations. This

note describes how to arrive at the approximate policy functions/decision rules once the system of

equations has been transformed into a log-linearized system.

2 Details

Let Xt be an (n+m)× 1 vector of variables expressed as percentage deviations from steady state

(i.e. a typically element of Xt is x̃k,t for k = 1, ..., n + m). Let n be the number of “jump” or

“forward-looking” variables, while m is the number of states or predetermined variables. In a

deterministic growth model, for example, n = 1 (consumption) and m = 1 (the capital stock),

while in the stochastic growth model n = 1 (consumption) and m = 2 (capital stock and TFP).

I’m going to partition the vector of variables into two parts – x1,t is n × 1 vector containing the

jump variables while x2,t is m × 1 vector containing the state variables. The linearized solution

takes the form:

Et

x1,t+1
n×1

x2,t+1
m×1


(n+m)×1

= M
(n+m)×(n+m)

x1,tn×1

x2,t
m×1


(n+m)×1

EtXt+1 = MXt (1)

1



Note that I have to put an expectations operator in front of the variables dated t+ 1 since I’m here

allowing the model to have a stochastic element.

We can typically derive a closed form expression for M in terms of the underlying parameters of

the model once it has been log-linearized. But this does not mean that we have the solution to the

model. M tells us how the variables in the system will evolve given an initial starting point. But

we only have the initial starting point for the state variables – we do not know where to “start”

the jump variables. We have to work harder to figure that out, essentially imposing a terminal

condition of non-explosion. The rest of what we do in these notes is working out how to find that

starting position for the non-predetermined variables.

Recall the definition of eigenvalues and eigenvectors. An eigenvalue is a scalar, λ, and an

eigenvector is a vector, v, which jointly satisfy:

Mv = λv (2)

(M− λI) v = 0 (3)

Unless you’ve screwed up, there will be the same number of distinct eigenvalues as there are

rows/columns in the square matrix M (i.e. in this case there will n + m eigenvalues), some of

which may be complex. There will also be the same number of distinct eigenvectors as there

are rows/columns of M. Index these eigenvalues/eigenvectors by k = 1, ..., n + m. The above

definition will hold for each k = 1, ..., n+m. In other words:

Mv1 = λ1v1 ... Mv2 = λ2v2 ... Mvn+m = λn+mvn+m

This means that we can stack these up as follows:

M


v1,1 v2,1 · · · vn+m,1

v1,2 v2,2 · · ·
...

...
...

. . .
...

v1,n+m v2,n+m · · · vn+m,n+m

 =


v1,1 v2,1 · · · vn+m,1

v1,2 v2,2 · · ·
...

...
...

. . .
...

v1,n+m v2,n+m · · · vn+m,n+m




λ1 0 · · · 0

0 λ2 0
...

... 0
. . .

...

0 · · · · · · λn+m


Use the following notation to simplify this a bit:

2



Γ =


v1,1 v2,1 · · · vn+m,1

v1,2 v2,2 · · ·
...

...
...

. . .
...

v1,n+m v2,n+m · · · vn+m,n+m



Λ =


λ1 0 · · · 0

0 λ2 0
...

... 0
. . .

...

0 · · · · · · λn+m


Using this notation, we have:

MΓ = ΓΛ (4)

M = ΓΛΓ −1 (5)

It is convenient to note that you can arrange the eigenvalues and eigenvectors in whatever order

you want, just so long as the kth column of Γ corresponds with the kth eigenvalue which occupies

the (k, k) position of Λ. As such, it is helpful to “order” the eigenvalues from smallest to largest

(in absolute value . . . if there are complex parts of the eigenvalues, order them by modulus, where

the modulus the square root of the sum the squared non-complex and complex components; e.g. if

y = x+ zi, then the modulus is
√
x2 + z2. If z = 0, the modulus is just the absolute value).

More generally, let:

Λ =

 Λ1
Q×Q

0

0 Λ2
B×B


Here Λ1 is a Q × Q diagonal matrix containing the Q stable eigenvalues, while Λ2 is a B × B

diagonal matrix containing the B unstable eigenvalues (obviously Q + B = n + m, but neither n

nor m are necessarily guaranteed to equal Q or B, respectively . . . this will be discussed in more

depth below).

Using the eigenvalue/eigenvector decomposition of M, we can rewrite the system as follows

now:

EtXt+1 = ΓΛΓ−1Xt

Pre-multiply each side by Γ−1 to get:

EtΓ
−1Xt+1 = ΛΓ−1Xt

3



Now define the auxiliary vector Zt as follows:

Zt = Γ−1Xt

Given this renaming, we can write the system as:

EtZt+1 = ΛZt

Et

[
Z1,t+1

Z2,t+1

]
=

 Λ1
Q×Q

0

0 Λ2
B×B

[Z1,t

Z2,t

]

I’ve just partitioned Zt into two parts – Z1,t is partitioned as the first Q variables in Zt while Z2,t

is the second B elements of Zt. Because we’ve effectively rewritten this as a VAR(1) process with

a diagonal coefficient matrix, Z1,t and Z2,t evolve independently of one another. We can write the

expected values updating forward in time as:

EtZ1,t+T = ΛT1 Z1,t

EtZ2,t+T = ΛT2 Z2,t

Because the eigenvalues in Λ1 are all stable (absolute value less than one), ΛT1 → 0 as T →∞.

The same does not hold true for the second expression, which is partitioned into the explosive

eigenvalues. Because the eigenvalues in Λ2 are all unstable, EtZ2,t+T → ∞ as T grows unless

Z2,t = 0. We cannot let Z2,t+T →∞ while simultaneously being consistent with (a) transversality

conditions and/or (b) feasibility constraints.

To fix ideas, let me write out in long hand what Γ−1 is:

Γ−1 =

G11
Q×n

G12
Q×m

G21
B×n

G22
B×m


(Q+B)×(n+m)

Since Q+B = n+m this is obviously still a square matrix, but the individual partitions need

not necessarily be square matrices. Recall that there are Q stable eigenvalues and B unstable

ones, while there are n jump variables and m state variables. Let’s write out in long hand what

the Z’s are:

Z1,t
Q×1

= G11
Q×n

x1,t
n×1

+ G12
Q×m

x2,t
m×1

Z2,t
B×1

= G21
B×n

x1,t
n×1

+ G22
B×m

x2,t
m×1

4



As noted above, the transversality/feasibility conditions require that Z2,t = 0. We can use this to

then solve for the initial position of the jump variables (x1,t) in terms of the given initial conditions

of the states (x2,t):

0
B×1

= G21x1,t +G22x2,t

Solving, this yields:

G21x1,t = −G22x2,t

Provided that G21 is a square matrix, we can invert G21 and then we can solve this as:

x1,t = −G−1
21 G22x2,t

In other words, this is our linearized policy function. For a given state vector (i.e. given values

of x2,t) this will tell us what the value of the jump variables need to be. Now quickly, what does it

mean for G21 to be square/invertible? Recall that the dimension of G21 is B × n, where B is the

number of unstable eigenvalues and n is the number of jump variables. Put differently, we must

have an equal number of unstable eigenvalues as we do jump variables – this is the condition for

saddle point stability. If we don’t have enough unstable eigenvalues, there will an infinite number

of solutions. If we have too many unstable eigenvalues, there will be no solution.

3 Example: The Deterministic Growth Model

The non-stochastic neoclassical growth model with CRRA preferences, Cobb-Douglas production,

and the level of technology normalized to unity can be reduced to a system of non-linear difference

equations:

c−σt = βc−σt+1

(
αkα−1

t+1 + (1− δ)
)

kt+1 = kαt − ct + (1− δ)kt

Log-linearization of these equations about the steady state yields:

−σc̃t = −σc̃t+1 + β(α− 1)R∗k̃t+1

k̃t+1 =
1

β
k̃t −

c∗

k∗
c̃t

Above R∗ = αk∗α−1 (i.e. the steady state marginal product of capital) and c∗

k∗ is the steady state

ratio of consumption to capital, both of which are function of underlying parameters of the model.

This can be re-arranged into the VAR(1) form as:

5



Et

[
c̃t+1

k̃t+1

]
=

[
1− c∗

k∗
β(α−1)R∗

σ
(α−1)R∗

σ

− c∗

k∗
1
β

][
c̃t

k̃t

]
I assign the following values to the parameters: σ = 1 (log utility), β = 0.95, δ = 0.1, and

α = 0.33. These values imply k∗ = 3.16 and c∗ = 1.146. The numerical values of this matrix are

easily seen to be:

M =

[
1.0352 −0.1023

−0.3625 1.0526

]
The Matlab function “[lam,V,j] = eig order(M);” will produce a diagonal matrix of eigenvalues

ordered from smallest to largest (this is the output matrix “lam”) and the matrix of eigenvectors

corresponding with these eigenvalues (the output matrix “V” will be the matrix of eigenvectors).

The output “j” is the index of the the first unstable eigenvalue. The eigenvalues of M come out to

be 0.85 and 1.24, so the conditions for saddle path stability are satisfied (i.e. one explosive root,

one stable root). I find that Γ−1 is:

Γ−1=

[
−1.0759 −0.5462

1.0547 −0.5861

]
My Zt matrix then takes the following form:

Z1,t = −1.0759c̃t − 0.5462k̃t

Z2,t = 1.0547c̃t − 0.5861k̃t

Using the eigenvalue decomposition, we know that (with only two variables the diagonal matrices

of eigenvalues are just scalars):

Z1,t+T = λT1 Z1,t

Z2,t+T = λT2 Z2,t

Satisfaction of the transversality and feasibility conditions requires that Z2,t = 0. This means

our linearized policy function is:

c̃t =
0.5861

1.0547
k̃t = 0.5557k̃t

Note that this is in log-deviations from steady state. To recover the policy function in levels

we have to fool around a little bit:

6



ct − c∗

c∗
= 0.5557

kt − k∗

k∗

ct − c∗ = 0.5557
c∗

k∗
kt − 0.5557c∗

ct = 0.4443c∗ + 0.5557
c∗

k∗
kt

Below is a plot of this linearized policy function vs. the policy function I obtain for the same

parameterization of the model using value function iteration:

0 1 2 3 4 5 6
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Policy Functions

Kt

C t

 

 

Linearized
VFI

As one can see, the fit is pretty good, especially near the steady state. The approximation

grows worse as σ gets bigger (the policy function becomes more concave).

Another Example: The Stochastic Growth Model

This example is identical to above, except I allow for stochastic TFP shocks. The non-linear

system of difference equations can be written:

c−σt = βEtc
−σ
t+1

(
αat+1k

α−1
t+1 + (1− δ)

)
kt+1 = atk

α
t − ct + (1− δ)kt

ln at = ρ ln at−1 + et

et is a white noise process. I assume that a∗ = 1, which means that the mean of the log

of technology is zero. One can show that the log-linearized equations are (note that in the log-

7



linearization you don’t need to first take logs of the technology process, since it is already in log

form):

c̃t+1 −
βR∗

σ
ãt+1 −

β(α− 1)R∗

σ
k̃t+1 = c̃t

k̃t+1 = k∗α−1ãt −
c∗

k∗
c̃t +

1

β
k̃t

ãt = ρãt−1 + et

Above, note that et = et − e∗ = et. In other words, it is an absolute deviation from “steady

state”, which is zero by assumption of it being white noise. You obviously can’t express it as a

percentage deviation about a steady state, because any deviation from zero would be infinite. If

we re-write this isolating the t+ 1 variables on the right hand side, we get:

Et

c̃t+1

k̃t+1

ãt+1

 =

1− β(α−1)R∗

σ
c∗

k∗
(α−1)R∗

σ
βR∗(ρ+(α−1)k∗α−1)

σ

− c∗

k∗
1
β k∗α−1

0 0 ρ


c̃tk̃t
ãt


Using the same parameterization as in the deterministic example with ρ = 0.95, I find that the

eigenvalues of this matrix are 0.8512,0.95, and 1.2367, so the conditions for saddle points stability

are satisfied. The inverse of the matrix of eigenvectors are seen to be:

Γ−1 =

−1.0759 −0.5462 3.5671

0 0 3.4172

1.0547 −0.5861 −0.6041


The components of the Z matrixes are then:

Z1,t
2×1

=

[
−1.0759

0

]
c̃t +

[
−0.5462 3.5671

0 3.4172

][
k̃t

ãt

]

Z2,t
1×1

= 1.0547c̃t +
[
−0.5861 −0.6041

] [k̃t
ãt

]

Stability requires that Z2,t = 0 since that is associated with the explosive eigenvalue. We can

then solve for the policy function as:

c̃t =
−1

1.0547

[
−0.5861 −0.6041

] [k̃t
ãt

]
c̃t = 0.5557k̃t + 0.5728ãt

Given this policy function and an initial condition for k̃t, I can shock ãt and then let the system

8



play out. Below are the impulse responses to a one unit shock to technology:

0 5 10 15 20
2

4

6

8

10
x 10

−3 Productivity

0 5 10 15 20
4

6

8

10
x 10

−3 Consumption

0 5 10 15 20
0

0.005

0.01

0.015
Capital

Dealing with “Static” Variables

“Static” variables are defined as variables in the model which only show up at date t – i.e. they

are not explicitly forward-looking (jump variables) or explicitly backward-looking (state variables),

though these variables often are implicitly forward-looking through their dependence of jump vari-

ables (like consumption). The basic strategy is to simply solve for the static variables in terms of

the jump and state variables. You proceed by finding the policy functions for the jump variables

just like you did above.

Some kinds of “static” variables are easier to deal with than others. The easy ones are variables

which are essentially just log-linear combinations of the jump variable and state variables. An

example is output:

yt = atk
α
t

ỹ = ãt + αk̃t

Another easy one is investment. From the aggregate resource constraint, log-linearized we know

that:

ỹt =
c∗

y∗
c̃t +

I∗

y∗
Ĩt

Here I∗ = δk∗. We can then back out investment as:

Ĩt =
y∗

I∗
ỹt −

c∗

I∗
c̃t

Put differently, once we know the two states, we have ỹ. It is this reason that sometimes these

9



variables are called “redundant” variables, because they are simply linear combinations of jump

variables and state variables. Below I show impulse responses of output and investment to the

productivity shock using the same parameterization as above.

0 5 10 15 20
6

7

8

9

10

11
x 10

−3 Output

0 5 10 15 20
0.005

0.01

0.015

0.02

0.025

0.03
Investment

Some static variables present more headaches. An example of one is from a model in which

there is variable labor. As an example, suppose that the within period utility function takes the

following form:

u(ct, nt) =
c1−σt

1− σ
− ψ n

1+θ
t

1 + θ

The production function for this economy would take the form:

yt = atk
α
t n

1−α
t

One can show that the consumption Euler and capital accumulation equations takes the follow-

ing form:

c−σt = βEtc
−σ
t+1(αat+1k

α−1
t+1 n

1−α
t + (1− δ))

kt+1 = atk
α
t n

1−α
t − ct + (1− δ)kt

The question is: how do we deal with the nt? The answer is is that there is also a first order

condition for optimal labor supply. You can show that it takes the following form:

ψnθt = c−σt (1− α)atk
α
t n

−α
t

In words, this says that the marginal disutility of work equals the marginal utility of consumption

times the real wage (the marginal product of capital). What you can do is to solve for nt in terms

of the jump and state variables:

10



nθ+αt =
1

ψ
c−σt (1− α)atk

α
t

nt =

(
1

ψ
c−σt (1− α)atk

α
t

) 1
θ+α

Given this, you can substitute this wherever nt shows up in the first order conditions and you’re

back to the kind of system we had before, though it is admittedly more complicated. In practice,

the easier thing to do is often to log-linearize all the equations first, and then eliminate the log-

linearized ñt.

Getting the Dynamics Right

Suppose that you want to construct impulse responses or simulate data from the linearized

model. As an example, suppose that we take the deterministic growth model and want to compute

what happens in expectation if the capital stock starts out below steady state. The simple thing

to do would be to start at some k̃0, set c̃0 = −G−1
2,1G2,2k̃0, and then trace out expected future

dynamics as: [
c̃t

k̃t

]
= Mt

[
c̃0

k̃0

]
= Mt

[
−G−1

21 G2,2k̃0

k̃0

]
This is analytically correct, but is prone to numerical problems. Why? Recall the whole idea

of saddle point stability. If you are at all off the policy function, even by a very small amount,

the system eventually explodes (this is driven by the presence of unstable eigenvalues/roots in M).

In practice, there will be small numerical errors in the policy function, −G−1
2,1G2,2. We’re talking

numerical errors to several decimal places, but the system still can’t tolerate these. Particularly

at longer horizons. If you do the exercise I’m talking about above, everything will look great for

about 100 periods . . . but out at longer horizons the system starts to explode.

There is a straightforward way of dealing with this and avoiding the potential for explosion that

results from small numerical errors. Consider the general case. Decompose M into blocks:

M =

 M1,1
n×n

M1,2
n×m

M2,1
m×n

M2,2
m×m


Write the original system out in “long hand” using this notation:

Etx1,t+1 = M1,1x1,t +M1,2x2,t

Etx2,t+1 = M2,1x1,t +M2,2x2,t

Now, plug in the policy function to eliminate x1,t in both expressions:

11



Etx1,t+1 =
(
−M1,1G

−1
2,1G2,2 +M1,2

)
x2,t

Etx2,t+1 =
(
−M2,1G

−1
2,1G2,2 +M2,2

)
x2,t

Define a new matrix, A, as follows:

A =

 0
n×n

−M1,1G
−1
2,1G2,2 +M1,2

0
m×n

−M2,1G
−1
2,1G2,2 +M2,2


Then write the system as:

Et

[
x1,t+1

x2,t+1

]
= A

[
x1,t

x2,t

]
Effectively what this does is imposes the policy function so that you can write the AR coefficient

matrix with only coefficients on x2,t, the vector of states. This turns out to eliminate the problem.

You can then proceed as follows – you can “start” the system at some arbitrary value of the state,

start the controls at the appropriate place given the policy function, and then iterate forward using

the new A instead of M.

4 Dealing with Static and Redundant Variables in an Easier Way

Above I briefly discussed how static (variables that are optimally chosen but are not inherently

forward-looking, like labor supply) and redundant (variables that are defined in terms of other

variables, like output or investment) variables need to be “eliminated” to solve for the linearized

policy functions using the approach laid out here. This is correct and can be done by hand, but it

is algebraically intensive and can get annoying. Below I discuss a way in which to do this in a way

that just involves manipulation of a few matrixes.

Suppose our model is composed of the following (non-linearized) equations:

1

Ct
= βEt

(
1

Ct+1
(Rt+1 + (1− δ))

)
Kt+1 = It + (1− δ)Kt

Yt = AtK
α
t N

1−α
t

Rt = αAtK
α−1
t N1−α

t

wt = (1− α)AtK
α
t N

−α
t

θNχ
t =

1

Ct
wt

12



Yt = Ct + It

lnAt = ρ lnAt−1 + εt

This is 8 equations and 8 variables: Ct, Rt, wt, At, Kt, Yt, Nt, and It. We could recover a

simple stochastic growth model if χ→∞, which would imply that Nt is constant. We could then

pick θ to normalize Nt = 1, which would allow us to eliminate it altogether. Yt and It would then

just be redundant – they would be combinations of At, Kt, and Ct. wt and Rt would be static –

they come out of optimization, but once Nt is fixed they are again just functions of At and Kt.

We could eliminate these, leaving a system of just Ct (the jump), Kt (endogenous state), and At

(exogenous state), and proceed as above).

But let’s think about the more general case. Let’s log-linearize each equation not eliminating

any static or redundant variables. The log-linearized equilibrium conditions are (variables without

a subscript denote non-stochastic steady state values):

−C̃t = −EtC̃t+1 + βREtR̃t+1

K̃t+1 = δĨt + (1− δ)K̃t

Ãt = ρÃt−1 + εt

χÑt = −C̃t + w̃t

Ỹt = Ãt + αK̃t + (1− α)Ñt

Ỹt =
C

Y
C̃t +

I

Y
Ĩt

w̃t = Ãt + αK̃t − αÑt

R̃t = Ãt + (α− 1)K̃t + (1− α)Ñt

Let’s stack all of these up into vectors. Let:

Xt =



C̃t

K̃t

Ãt

Ñt

Ỹt

Ĩt

w̃t

R̃t


Note that I didn’t order these randomly – I start with the forward-looking jump variable, then

the two states, then followed by the redundant/static variables.

We can write out the log-linearized conditions in matrix form as:

13





1 0 0 0 0 0 0 −βR
0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


Et



C̃t+1

K̃t+1

Ãt+1

Ñt+1

Ỹt+1

Ĩt+1

w̃t+1

R̃t+1


=



1 0 0 0 0 0 0 0

0 (1− δ) 0 0 0 δ 0 0

0 0 ρ 0 0 0 0 0

−1 0 0 −χ 0 0 1 0

0 α 1 (1− α) −1 0 0 0
C
Y 0 0 0 −1 I

Y 0 0

0 α 1 −α 0 0 −1 0

0 (α− 1) 1 (1− α) 0 0 0 −1





C̃t

K̃t

Ãt

Ñt

Ỹt

Ĩt

w̃t

R̃t


Or, more compactly:

A0EtXt+1 = B0Xt

There are a bunch of rows of zeros in the A0 coefficient matrix – these rows correspond to the

redundant variables. Note however that we can decompose these matrixes as follows. Let n be the

number of jump variables (here it is 1, C̃t), m be the number of states (here 2, K̃t and Ãt), and q

be the number of redundant/static variables (here 5). We can write:

A0 =

 a11
(n+m)×(n+m)

a12
(n+m)×q

0
q×(n+m)

0
q×q



B0 =

 b11
(n+m)×(n+m)

b12
(n+m)×q

b21
q×(n+m)

b22
q×q


Let yt be the (n+m)× (1) vector of jump and state variables, and xt be the (q × 1) vector of

redundant variables. We can then write this out as:(
a11 a12

0 0

)
Et

[
yt+1

xt+1

]
=

(
b11 b12

b21 b22

)
Et

[
yt

xt

]
From above, we can see that:

0 = b21yt + b22xt

Since b22 is square, we can (in principle) invert it, so we have:

xt = −b−1
22 b21yt

In other words, we can write the vector of redundant variables as a linear combination of the

jump and states variables (which we already knew, but this operationalizes it). Note that the

14



dimension of b−1
22 b21 is q × (n+m). Hence, we can write:(

a11 a12

0 0

)
Et

[
yt+1

−b−1
22 b21yt+1

]
=

(
b11 b12

b21 b22

)
Et

[
yt

−b−1
22 b21yt

]
Or:

(
a11 − a12b−1

22 b21

)
Etyt+1 =

(
b11 − b12b−1

22 b21

)
yt

Note here that the dimensions work out. a11 is (n+m)× (n+m); a12 is (n+m)× q; b−1
22 b21 is

q× (n+m); hence a11−a12b−1
22 b21 is (n+m)× (n+m). b11 is (n+m)× (n+m); b12 is (n+m)× q;

and b−1
22 b21 is q× (n+m); hence b11− b12b−1

22 b21 is (n+m)× (n+m). Since these are both square,

we can invert to form:

Etyt+1 = Myt

Where M =
(
a11 − a12b−1

22 b21

)−1 (
b11 − b12b−1

22 b21

)
. In other words, what we’ve done here

is system reduction – we’ve reduced the system back to the VAR(1) in only the jumps and states,

and given M can solve for the policy function mapping the states into the jump variables exactly

as before. Given this new matrix M only in the system of jump and state variables, we can find the

policy function just as before, with: φ = −G−1
21 G22, with x1,t = φx2,t, where x1,t is the n× 1 vector

jump variables and x2,t is the m × 1 vector of states, and the G matrixes correspond to different

blocks of the inverse matrix of eigenvectors of M appropriately sorted.

Let’s write this out in state space form in terms of the jump and state variables, and then we’ll

come back to the redundant/static variables. Note that we can write the state as:

Etx2,t+1 = M21x1,t +M22x2,t

Using the policy function mapping the state into the jumps, we can write this as:

Etx2,t+1 = (M21φ+M22)x2,t

Now, we may want to write these expression without expectation operators and instead with

shocks. We know that:

x2,t = (M21φ+M22)x2,t−1 +H0εt

Where εt is a k×1 vector of shocks (in the baseline RBC model it is just k = 1, the productivity

shock), and H0 is m× k. In the baseline RBC model if the elements of the states are capital and

the productivity variable, we would know that H0 = [0 1]. Since we know that x1,t = φx2,t, we can

write:

x1,t = φ (M21φ+M22)x2,t−1 + φH0εt

15



We could stack these up to write:[
x1,t

x2,t

]
=

(
φ (M21φ+M22)

M21φ+M22

)
x2,t +

(
φH0

H0

)
εt

Now, we need to get the redundant/static variables back in. Recall that we can write:

xt = −b−1
22 b21yt

Lets define ψ = −b−1
22 b21. This matrix is q × (n+m). Let’s decompose it as follows:

ψ =

(
ψ11
q×n

ψ12
q×m

)
In other words, we can write the redundant/state variables as:

xt = ψ11x1,t + ψ12x2,t

But then using the policy function, we have:

xt = (ψ11φ+ ψ12)x2,t

Then lagging x2,t, we have:

xt = (ψ11φ+ ψ12) (M21φ+M22)x2,t−1 + (ψ11φ+ ψ12)H0εt

Hence, we can characterize the solution as:

Xt = AXt−1 +Bεt

Where:

Xt =

 x1,t

x2,t

xt


Where:

A =

 φ (M21φ+M22)

M21φ+M22

(ψ11φ+ ψ12) (M21φ+M22)



B =

 φH0

H0

(ψ11φ+ ψ12)H0


You can then use this formulation to produce impulse response and model simulations, etc.

16


