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1 Introduction

These notes describe optimal monetary policy in the basic New Keynesian model.

2 Re-writing the Basic Model

The basic NK model can be characterized by two main (log-linear) equations: the Phillips Curve

and the Euler/IS equation. Here I have taken the liberty of setting the elasticity of intertemporal

substitution to unity:

π̃t = γ(Ỹt − Ỹ f
t ) + βEtπ̃t+1

Ỹt = EtỸt+1 − r̃t

To economize on notation, let’s define X̃t ≡ Ỹt − Ỹ f
t as the output gap. Similarly, let’s define

r̃ft as the “flexible price real interest rate” (or “natural real interest rate”) as that rate that would

obtain if prices were fully flexible. We can solve for this by looking at the Euler equation:

r̃ft = EtỸ
f
t+1 − Ỹ

f
t

Because of the assumption on preferences, in particular that the coefficient of relative risk

aversion is 1, we know that labor hours would be constant if prices were flexible, so we know

that the flexible price level of output evolves exogenously in line with the level of technology, with

ỹft = ãt. If we assume that technology obeys an AR(1), then we can model the flexible price

equilibrium level of output as following the same AR(1).

Ỹ f
t = ρỸ f

t−1 + εt

This means that we can solve for the flexible price real interest rate as:

r̃ft = (ρ− 1)Ỹ f
t
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Plugging in the process for Ỹ f
t and simplifying we get a process for the natural rate of interest:

r̃ft = (ρ− 1)ρỸ f
t−1 + (ρ− 1)εt

r̃ft = ρr̃ft−1 + (ρ− 1)εt

We can then summarize the main equations of the model as follows:

π̃t = γX̃t + βEtπ̃t+1 (1)

X̃t = EtX̃t+1 − (r̃t − r̃ft ) (2)

r̃ft = ρr̃ft−1 + (ρ− 1)εt (3)

In the background there is also (i) a money demand relationship and (ii) a Fisher relationship.

For now, we can think about the central bank effectively being able to choose r̃t, given a choice of

ĩt and an implied path for Etπ̃t+1. Given that, as well as r̃ft (which is the exogenous driving force),

Xt and πt will be determined.

3 Distortions and Welfare

There are two welfare-reducing distortions in the NK model, one of which is essentially “long run”

and the other which is “short run”. The “long run” distortion is that the flexible price level of

output will be lower than what would obtain in the first best. This is because, in the flexible

price version of the model, firms will set price equal to a markup over marginal cost. Hence there

will be too little employment. The “short run” distortion is due to price stickiness, and leads to

non-optimal fluctuations in relative prices.

We assume that the central bank is concerned with the “short run distortion” and that the

“long run distortion” has been taken care of via some kind of Pigouvian tax. This works out to a

subsidy for labor, equal to the inverse price markup. This means we can interpret ỹft as the optimal

equilibrium value of output from the perspective of the central bank. This means that, other things

being equal, the central bank would like to eliminate output gaps.

4 Optimal Policy

In addition to disliking output gaps, we also assume that the central bank dislikes inflation. We

assume that welfare of the central bank is a present discounted value of a quadratic loss function

in inflation and the output gap. This loss function can actually be derived from taking a quadratic

approximation to household welfare, while using the linearized equilibrium conditions (see Gali or

Woodford’s textbooks for a formal derivation. You may wonder why the central bank cares about

inflation over and above the output gap (which, via the logic above, the central bank would like
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to eliminate). If you go back to the CES aggregator over intermediate goods, you will note that

it is concave, meaning that households (or the final goods firm, if you like) would like to smooth

over intermediate inputs. In a flexible price world, all intermediate producers would choose the

same price (e.g. they all desire a relative price of 1). If aggregate inflation is different from zero,

with price stickiness relative prices at the intermediate firm level get distorted (e.g. there is price

dispersion). This leads to a non-smooth allocation of intermediates, which results in a welfare loss.

Let ω denote the relative weight that the central bank places on the output gap. In the formal

derivation, you can show that this is equal to γ
ε , where γ is the slope of the Phillips Curve and ε is

the price elasticity of demand. The central bank would therefore like to minimize the following:

min
1

2
E0

( ∞∑
t=0

βt
(
π̃2t + ωX̃2

t

))
The 1/2 on the outside is just a scaling term that doesn’t affect the optimum but simplifies

things a bit. As noted above, we can think about the central bank as choosing inflation and the

output gap, given its choice of ĩt, which then determines rt given a path of Etπt+1. This must be

done subject to the constraint of the Phillips Curve, however.

We consider two cases. In the first, called “discretion”, the central bank solves the one period

problem each period. In the other, called “commitment”, the central bank solves the entire problem

at the beginning of time and commits to its policy. We start first with the discretion case. The

problem can be written:

min
π̃t,x̃t

1

2

(
π̃2t + ωX̃2

t

)
s.t.

π̃t = γX̃t + βEtπ̃t+1

Set the problem up as a Lagrangian:

L = −1

2

(
π̃2t + ωX̃2

t

)
+ λ

(
π̃t − γX̃t − βEtπ̃t+1

)
The first order conditions are:

∂L
∂π̃t

= 0⇔ π̃t = λ

∂L
∂x̃t

= 0⇔ ωX̃t = −λγ

Combing FOCs so as to eliminate the Lagrange multiplier, we get:

X̃t = −γ
ω
π̃t (4)
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Loosely speaking, this first order condition can be interpreted as a “lean against the wind”

policy. If the output gap is positive, the Fed will want to pursue a policy in which it lowers

inflation (and vice-versa).

Next, consider the problem under commitment. Here, the objective of the central bank is not

just the current objective, but the present discounted value of the flow objective functions. A

Lagrangian is:

L = E0

∞∑
t=0

βt
(
−1

2

(
π̃2t + ωX̃2

t

)
+ λt

(
π̃t − γX̃t − βEtπ̃t+1

))
The time -1 expectation of inflation at time 0, E−1π̃0, is taken as given. Hence, other that π̃0,

π̃t shows up twice in the period t objective, the period t constraint, and the period t− 1 constraint

(i.e. as Et−1π̃t). Let’s work through the FOCs:

∂L
∂π̃0

= 0⇔ π̃0 = −λ0

∂L
∂π̃t

= 0⇔ −βt−1λt−1β − Et−1βtπ̃t + Et−1β
tλt = 0⇒ Et−1π̃t = Et−1λt − λt−1 ∀t > 0

∂L
∂X̃t

= 0⇔ X̃t = −γ
ω
λt

We can combine these first order conditions to get:

X̃0 = −γ
ω
π̃0

EtXt+1 = Xt −
γ

ω
Etπ̃t+1 ∀t

Start this at the beginning of time and substitute forward:

X̃0 = −γ
ω
π̃0

E0X̃1 = X0 −
γ

ω
E0π̃1 = −γ

ω
π̃0 −

γ

ω
E0π̃1

E0X̃0 = E0X̃1 −
γ

ω
E0π̃2 = −γ

ω
π̃2 −

γ

ω
E0π̃1 −

γ

ω
E0π̃2

...

E0X̃t = −γ
ω

t∑
j=0

π̃t−j

Now, what is the sum of the inflation rates between period 0 and period t? It is the (log) price

level minus the price level in the period before period 0 . Then the first order condition becomes:
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E0X̃t = −γ
ω
E0

(
P̃t − P̃−1

)
(5)

Since this must hold in expectation, and there are no disturbances that show up here either, it

must also hold ex-post. This means we can get rid of the expectations operator in the FOC. To

simplify matters, we can also normalize the initial price level to 0, so the FOC becomes:

X̃t = −γ
ω
P̃t (6)

This looks similar to the first order condition under commitment, but it features the price

level as opposed to price inflation. As such, this kind of rule is called a price level targeting rule.

As t → ∞, Xt → 0, which means that limt→∞E0P̃t = P̃−1. This means that the policy under

commitment implies that the price level always returns to trend.

Now, let’s give a little thought to the solutions under discretion and commitment. From the

FOC for discretion, note that a policy of X̃t = π̃t = 0 is consistent with the FOC holding. But is it

consistent with the other equations of the model holding? It turns out that it is. If you plug these

into the Phillips Curve, you can see that the Phillips Curve can hold at all times with π̃t = X̃t = 0.

From the IS equation, this implies that r̃t = r̃ft at all times. With inflation always equal to zero,

this implies that the nominal interest rate should track the natural rate of interest at all times,

ĩt = r̃ft . Blanchard and Gali (2007) term this result the “Divine Coincidence.” What they mean by

this term is that, in this model, there is no tradeoff between the two objectives in the Fed’s “dual

mandate.” In the simples NK model, a policy of stabilizing inflation completely will automatically

stabilize the output gap, and vice versa.

Interestingly, this also means that there is no gain from commitment over discretion. If the

discretion solution always has both inflation and the gap equal to zero, it achieves the global

minimum of the objective function. There is also no relevant tradeoff between real (gap) and

nominal (inflation) stabilization: the central bank can achieve both. There are a couple of ways to

implement this policy in a Dynare code. The easiest is to simply replace a Taylor rule (or money

supply equation) with the first order condition in the list of equilibrium conditions. This will spit

out a time path for the nominal interest rate and time paths for inflation and the gap.

Below I show impulse responses for a quantitative version of the model. I set γ = 0.3, β = 0.99,

ρ = 0.95, and ε = 10, which implies a weight on the output gap of 0.03. For ease of comparison, I

compare the optimal discretion/commitment responses (as noted above, these are the same) with

the response that would obtain with a Taylor rule of the form ĩt = ρĩit−1 + (1 − ρi)φππ̃t, where I

set ρi = 0.8 and φπ = 1.5. These are impulse responses to a productivity shock (which manifests

itself as a shock to the natural rate of interest):
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Taylor Rule
Discretion

As predicted via our discussion above, the optimal policy results in no movement of the gap or

inflation at any horizon. This also then shows up as a constant price level. In contrast, the Taylor

rule results in a negative output gap (output rises by less than the flexible price level), disinflation,

and a pretty large fall in the price level. The Taylor rule also results in a larger and more persistent

decline in the nominal interest rate than does the optimal policy under discretion.

Would it be possible to implement the optimal discretionary/commitment policy (again, they

are the same here) using a rule for the interest rate or money growth? At least in this circumstance,

the answer is yes.

First, consider a money rule. Suppose that the demand for real balances is given by:

m̃t =
1

ν
Ỹt − κ̃it

The solution discussed above means that Ỹt = Ỹ f
t and ĩt = r̃ft . Plug this in:

m̃t =
1

ν
Ỹ f
t − κr̃

f
t

From above, we have r̃ft = (ρ− 1)Ỹ f
t . Plug this in:

m̃t =
1

ν
Ỹ f
t − κ(ρ− 1)Ỹ f

t =

(
1

ν
(1− κ(ρ− 1))

)
Ỹ f
t

Now we know that Ỹ f
t = ρỸ f

t−1. Hence:

m̃t =
1

ν
Ỹ f
t − κ(ρ− 1)Ỹ f

t =

(
1

ν
(1 + κ(1− ρ))

)
ρỸ f

t−1 +

(
1

ν
(1 + κ(1− ρ))

)
εt

Iterate this back one period to eliminate Ỹ f
t :

m̃t = ρm̃t−1 +

(
1

ν
(1 + κ(1− ρ))

)
εt

Now let’s write this in terms of the nominal money supply, which the central bank controls, by

noting that m̃t = M̃t − P̃t, with π̃t = P̃t − P̃t−1:
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M̃t = ρM̃t−1 − ρπ̃t − (1− ρ)P̃t +

(
1

ν
(1 + κ(1− ρ))

)
εt (7)

In other words, the central bank needs to set the money supply according to an AR(1) in the

level, with AR coefficient equal to the AR coefficient on the technology process. As long as ρ < 1,

it will raise the money supply in response to positive technology shocks. There is also a slight

adjustment for lagged inflation and the price level.

The central bank can also accomplish its goal with a modified Taylor rule. In particular, suppose

it sets the nominal interest rate according to the following rule.

ĩt = r̃ft + φππ̃t + φxX̃t (8)

This Taylor rule looks similar to the Taylor rules we’ve looked at, but with two differences:

there is no smoothing parameter, and there is a “stochastic intercept” equal to the natural rate

of interest. A policy rule of ĩt = r̃ft would result in equilibrium indeterminacy – for an interest

rate rule to work, as we have seen, there needs to be a sufficiently strong reaction to endogenous

variables like inflation and/or the output gap. What is kind of interesting here, however, is that in

equilibrium inflation and the output gap would always be zero with this interest rate rule (provided

φπ and/or φx are sufficiently large). This means that one would observe ĩt = r̃ft , but if the central

bank announced that as the policy rule, it would result in indeterminacy. The central bank in

essence has to promise to move interest rates sufficiently in response to inflation and the output

gap to prevent those from ever occurring.

5 Cost-Push Shocks and an Output-Inflation Tradeoff

Let’s modify the Phillips curve to contain an additional term:

π̃t = γX̃t + βEtπt+1 + ũt (9)

Here ũt is referred to as the “cost-push” term. It is a shock which, in a sense, changes the

output-inflation tradeoff. It is exogenous and the central bank takes it as given. The structural

interpretation of this term is not always very clear – one specific interpretation is time-variation in

ε, which means there are time-varying desired markups. More generally, the cost-push term can

be thought of as something which drives a wedge between marginal cost and the output gap. In

reality it is a convenient shortcut to make the central bank’s problem more interesting. Assume

that it follows an AR(1):

ũt = ρuũt−1 + εu,t (10)

Why does the inclusion of the cost-push term make the central bank’s problem more interesting?

The optimization problem of the central bank is identical to before, and results in the same first

order conditions under discretion and commitment:
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X̃t = −γ
ω
π̃t (11)

X̃t = −γ
ω
P̃t (12)

The reason the cost-push shock makes things more interesting is that it is in general not going

to be feasible to implement a no gap / no inflation equilibrium. If ũt 6= 0, then X̃t = π̃t is not

consistent with the Phillips Curve holding. In other words, the inclusion of the cost-push shock (i)

generates a non-trivial tradeoff for the central bank, as it cannot achieve a zero inflation / zero gap

outcome, and (ii) opens up the door for welfare gains from commitment. Of course, conditional

on a productivity shock (so that ũt = 0), there is no real tradeoff – so it would be optimal for the

central bank to completely stabilize both inflation and the output gap in response to productivity

shocks, with no resulting welfare gain from commitment.

Below I compute impulse responses to a cost-push shock under various different monetary policy

rules. Given the linearity of the model, the responses to the productivity shock are identical to what

I showed above, and under either commitment or discretion both the output gap and inflation are

completely stabilized in response to the productivity shock. Regardless of the kind of policy (either

of the optimal policies or the Taylor rule), the cost-push shock causes the output gap to decline

(output falls) and inflation rises. The first set of plots shows the responses under the baseline

Taylor rule as well as those under the optimal policy under discretion. Interestingly, the simple

Taylor rule appears to do better in the sense of a small decline in the output gap and a smaller

increase in the price level (smaller increase in inflation over most horizons). Under either scenario,

there is a permanent increase in the price level following the cost-push shock.
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Taylor Rule
Discretion

Next, I compare the impulse responses from the optimal policy under discretion with the optimal

policy under commitment. Here we see some stark differences. First, the output gap response is

smaller (on impact) under commitment than under discretion. Second, the inflation response is

much smaller under commitment and much less persistent, so much so that the price level returns

to its original value under commitment, whereas the price level permanently rises under discretion.

Third, there is a very different behavior of the nominal interest rate: under commitment the nominal
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rate initially falls, whereas under discretion it rises.
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Commitment
Discretion

What is the source of the gains from commitment? As you will recall from looking at the first

order conditions, the difference between commitment and discretion boils down to an implicit price

level (commitment) versus inflation (discretion) target. The price level target has the effect of

better anchoring expected inflation, Etπ̃t+1, because agents know that the central bank will always

enact policy so as to return the price level to its target. Better anchored inflation expectations

(e.g. less volatile expected inflation) improves the available tradeoff between current inflation and

the output gap that the central bank can achieve. Mechanically from the Phillips Curve, the more

Etπ̃t+1 moves around, the more either inflation or the output gap will have to move around (or

both), either of which reduce welfare. Hence, a central message that comes out of this exercise is

that commitment and expectations are of central importance for good monetary policy.

6 Optimal Policy Numerically Using Second Order Approxima-

tions

In many contexts, monetary policy being one, we can’t use straight up linearization about a non-

stochastic steady state to think about optimal policy.1 Why is this? In a linearization, expected

values of variables are equal to their steady state values, and in many contexts policy doesn’t affect

the steady state, and hence doesn’t affect means. Concretely, in a linearization the expected value

of utility (or welfare, taken to mean the present discounted value of flow utility) is independent of

policy parameters like what show up in a Taylor rule. Therefore, the natural objective function

for a policy-maker (expected welfare) isn’t impacted by the policy parameters, and the problem is

degenerate.

Define welfare as the present discounted value of the flow utility of a representative agent. This

can be written recursively as:

1Note that in different contexts where policy choices affect the steady state this is not the case. For example, the
level of trend inflation will affect the non-stochastic steady state in the basic New Keynesian model. Similarly, tax
instruments will affect the steady state of a model with fiscal policy.
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Vt = U(Ct, Nt) + βEtVt+1 (13)

Note that this looks like a Bellman equation, but there is no max operator, because I assume that

Ct and Nt have been chosen optimally. The objective of a policy maker will be to pick policies

to maximize the unconditional expectation of welfare, e.g. E(Vt). In a first order approximation,

E(Vt) = V ∗ = 1
1−βU(C∗, N∗), which in this case is independent of the stance of monetary policy.

To think about policy, we therefore need to use a higher order approximation to welfare. There

are two approaches one can take here. In the one described above, you linearize the equilibrium

conditions of the model, but take a second order approximation to the recursive representation of

welfare. Doing that and simplifying yields the quadratic loss function I showed above. In the other

approach, you can take a second order approximation to all the equilibrium conditions, including

the recursive representation of welfare. This isn’t as neat in the sense that it’s not possible to derive

simple quadratic loss functions that are clean, but one can numerically calculate the expected values

of welfare for different policy specifications and compare those to one another.

I’ll do a concrete example. I take the basic NK model where policy is characterized by an

exogenous money supply rule. I solve the model in Dynare using a second order approximation

(rather than first), which is Dynare’s default anyway. Below is the text of my .mod file:

1 var Y C int infl inflr N w mc A vp x1 x2 m dm r Yf gap V;

2 varexo ea em;

3

4 parameters psi beta phi sigma eta epsi theta rhoa rhom sigea sigem pistar;

5

6 load parameter nk money;

7

8 set param value('psi',psi);

9 set param value('phi',phi);

10 set param value('eta',eta);

11 set param value('sigma',sigma);

12 set param value('theta',theta);

13 set param value('rhoa',rhoa);

14 set param value('sigea',sigea);

15 set param value('sigem',sigem);

16 set param value('pistar',pistar);

17 set param value('rhom',rhom);

18 set param value('beta',beta);

19 set param value('epsi',epsi);

20

21 model;

22

23 % (1) Euler equation

24 exp(C)ˆ(−sigma) = beta*exp(C(+1))ˆ(−sigma)*(1+int)*(1+infl(+1))ˆ(−1);
25

26 % (2) Labor supply
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27 psi*exp(N)ˆ(eta) = exp(C)ˆ(−sigma)*exp(w);
28

29 % (3) Money demand

30 exp(m) = theta*((1+int)/int)*exp(C)ˆ(sigma);

31

32 % (4) Marginal cost

33 exp(mc) = exp(w)/exp(A);

34

35 % (5) Resource constraint

36 exp(C) = exp(Y);

37

38 % (6) Production function

39 exp(Y) = exp(A)*exp(N)/exp(vp);

40

41 % (7) Price dispersion

42 exp(vp) = (1−phi)*(1+inflr)ˆ(−epsi)*(1+infl)ˆ(epsi) + (1+infl)ˆ(epsi)*phi*exp(vp(−1));
43

44 % (8) Price evolution

45 (1+infl)ˆ(1−epsi) = (1−phi)*(1+inflr)ˆ(1−epsi) + phi;

46

47 % (9) Reset price

48 1 + inflr = (epsi/(epsi − 1))*(1+infl)*exp(x1)/exp(x2);

49

50 % (10) x1

51 exp(x1) = exp(C)ˆ(−sigma)*exp(mc)*exp(Y) + phi*beta*(1+infl(+1))ˆ(epsi)*exp(x1(+1));

52

53 % (11) x2

54 exp(x2) = exp(C)ˆ(−sigma)*exp(Y) + phi*beta*(1+infl(+1))ˆ(epsi−1)*exp(x2(+1));
55

56 % (12) Productivity

57 A = rhoa*A(−1) + ea;

58

59 % (13) Real balance growth

60 dm = (1−rhom)*pistar − infl + rhom*infl(−1) + rhom*dm(−1) + em;

61

62 % (14) Real balance growth definition

63 dm = m − m(−1);
64

65 % (15) Real interest rate (Fisher relationship)

66 r = int − infl(+1);

67

68 % (16) Flexible price output

69 exp(Yf) = ((1/psi)*(epsi−1)/epsi)ˆ(1/(sigma + eta))*exp(A)ˆ((1+eta)/(sigma + eta));

70

71 % (17) Output gap

72 gap = Y − Yf;

73

74 % (18) Welfare

75 V = C − psi*exp(N)ˆ(1+eta)/(1+eta) + beta*V;
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76

77 end;

78

79 steady;

80

81 shocks;

82 var ea = sigeaˆ2;

83 var em = sigemˆ2;

84 end;

85

86 stoch simul(order=2,irf=20,ar=0,nocorr,nograph);

The above is the same as my earlier Dynare file, except for the fact that I used a second order

approximation and that I included a recursive representation of welfare as an equilibrium condition.

In writing that, since I assume that σ = 1, I write flow utility as log over consumption; since the

model is log-linearized and Dynare interprets “C” as the natural log of consumption, that’s why

consumption appears linear in writing down Vt but note that it’s actually the log.

Below is the non-stochastic steady state of the model:

STEADY-STATE RESULTS:

Y -0.0526803

C -0.0526803

int 0.010101

infl 0

inflr 0

N -0.0526803

w -0.105361

mc -0.105361

A 0

vp 0

x1 2.11105

x2 2.21641

m 4.55249

dm 0

r 0.010101

Yf -0.0526793

gap 0

V -50.268

Below are the moments, including the expected values of the variables:

APROXIMATED THEORETICAL MOMENTS
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VARIABLE MEAN STD. DEV. VARIANCE

Y -0.0549 0.0290 0.0008

C -0.0549 0.0290 0.0008

int 0.0100 0.0000 0.0000

infl 0.0000 0.0060 0.0000

inflr 0.0022 0.0240 0.0006

N -0.0527 0.0129 0.0002

w -0.1077 0.0314 0.0010

mc -0.1077 0.0257 0.0007

A -0.0000 0.0320 0.0010

vp 0.0022 0.0000 0.0000

x1 1.2631 0.0693 0.0048

x2 1.3666 0.0525 0.0028

m 4.5571 0.0290 0.0008

dm 0.0000 0.0082 0.0001

r 0.0100 0.0039 0.0000

Yf -0.0527 0.0320 0.0010

gap -0.0022 0.0129 0.0002

V -50.5002 3.1501 9.9233

We observe here that the mean / expected value of welfare is lower (-50.5002) than steady state

welfare (-50.268). The reason why average welfare is lower than steady state welfare is because

agents don’t like volatility because of concavity in preferences. In a first order approximation this

wouldn’t show up, but in the second order approximation it does.

We can then solve the model under an alternative monetary policy rule. For example, suppose

that we have a money growth rule, but we set the standard deviations of monetary shocks to 0.

This in effect means that the money supply would be constant. Below are the steady state values

and expected values:

STEADY-STATE RESULTS:

Y -0.0526803

C -0.0526803

int 0.010101

infl 0

inflr 0

N -0.0526803

w -0.105361

mc -0.105361

A 0
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vp 0

x1 2.11105

x2 2.21641

m 4.55249

dm 0

r 0.010101

Yf -0.0526793

gap 0

V -50.268

APROXIMATED THEORETICAL MOMENTS

VARIABLE MEAN STD. DEV. VARIANCE

Y -0.0537 0.0276 0.0008

C -0.0537 0.0276 0.0008

int 0.0101 0.0000 0.0000

infl 0.0000 0.0039 0.0000

inflr 0.0009 0.0158 0.0002

N -0.0527 0.0092 0.0001

w -0.1064 0.0258 0.0007

mc -0.1064 0.0184 0.0003

A 0.0000 0.0320 0.0010

vp 0.0009 0.0000 0.0000

x1 1.2560 0.0443 0.0020

x2 1.3606 0.0342 0.0012

m 4.5523 0.0276 0.0008

dm 0.0000 0.0039 0.0000

r 0.0101 0.0025 0.0000

Yf -0.0527 0.0320 0.0010

gap -0.0010 0.0092 0.0001

V -50.3696 3.1488 9.9152

Getting rid of the shock to the money growth rate doesn’t affect the steady state value of

welfare, but it does increase the mean value of welfare (-50.3696 vs. -50.5002). The units of welfare

are not particularly interpretable, so we often want to express the differences in “consumption

equivalent” units. The thought experiment is to say “How much consumption would one be willing

to give up (each period) under one policy to have the same welfare as under a different policy.” It

is arbitrary which policy one takes to be the “baseline” – here I’m going to assume it’s the policy

with no monetary shock.

Let λ denote the fraction of consumption one would be willing to give up in each period in one

economy, call this economy 0. With log utility over consumption, we have:
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E(V 0
t (λ)) = E

[
ln(Ct(1 + λ))− θN

1+χ
t

1 + χ
+ βEtV

0
t+1(λ)

]
Since the λ shows up every period and is deterministic, this reduces to:

E(V 0
t (λ)) =

1

1− β
ln(1 + λ) + E

[
lnCt − θ

N1+χ
t

1 + χ
+ βEtV

0
t+1

]
The term in brackets is just:

E(V 0
t (λ)) =

1

1− β
ln(1 + λ) + E(V 0

t )

Then we want to find the λ that equates this with expected welfare in the alternative economy,

call it economy 1. We have:

E(V 0
t (λ)) = E(V 1

t )

Or:

1

1− β
ln(1 + λ) + E(V 0

t ) = E(V 1
t )

Solving for λ:

λ = exp
(
(1− β)(E(V 1

t )− E(V 0
t ))
)
− 1

If I take the baseline economy 0 to have higher welfare, then the term inside the exp is negative,

which means λ < 0. This makes sense – you would be willing to give up consumption in the high

welfare economy to have the same welfare as another economy governed by a policy resulting in

lower welfare. Using the differences in expected welfare for the two economies in question here,

and a value of β = 0.99, I get a value of λ = −0.0013. This means that an agent would be willing

to forfeit about 0.1 percent of consumption each period in the economy with no monetary shocks

to avoid going to the economy with monetary shocks. This number may not seem large but we

typically find pretty small welfare differences under different macro policies, so it’s not abnormally

low.

I solved the model assuming zero trend inflation. Suppose I solve the model where steady state

inflation is instead set to 0.005 (approximately 2 percent at an annualized frequency). Below are

the steady states and the means:

STEADY-STATE RESULTS:

Y -0.0541634

C -0.0541634

int 0.0151515
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infl 0.005

inflr 0.0216847

N -0.0522648

w -0.106428

mc -0.106428

A 0

vp 0.00189857

x1 1.40985

x2 1.49874

m 4.15053

dm 0

r 0.0101515

Yf -0.0526793

gap -0.00148402

V -50.4537

APROXIMATED THEORETICAL MOMENTS

VARIABLE MEAN STD. DEV. VARIANCE

Y -0.0574 0.0283 0.0008

C -0.0574 0.0283 0.0008

int 0.0151 0.0000 0.0000

infl 0.0050 0.0057 0.0000

inflr 0.0245 0.0269 0.0007

N -0.0524 0.0160 0.0003

w -0.1097 0.0319 0.0010

mc -0.1097 0.0297 0.0009

A 0.0000 0.0320 0.0010

vp 0.0050 0.0030 0.0000

x1 1.4241 0.0790 0.0062

x2 1.5106 0.0598 0.0036

m 4.1517 0.0283 0.0008

dm -0.0000 0.0084 0.0001

r 0.0101 0.0039 0.0000

Yf -0.0527 0.0320 0.0010

gap -0.0047 0.0138 0.0002

V -50.7913 3.2273 10.4153

Unlike the standard deviation of the monetary policy shock, the level of trend inflation does

affect the steady state – we can see that steady state welfare is lower with higher trend inflation (-

50.4537 vs. -50.268). We also see that expected welfare is lower, at -50.7913 (compared to -50.5002).
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We could calculate consumption equivalent welfare differences based both on steady state welfare

or expected welfare. Based on steady states, we would get λss = −0.0019; based on the means, we

would get λss = −0.0029. Hence, we observe that the welfare loss based on means is higher than

the welfare loss based on the steady state. This is because trend inflation does two things: first,

it distorts the steady state by effectively increasing the steady state markup and increasing steady

state price dispersion. But it also interacts with the shocks to have a bigger effect on means: with

positive trend inflation, price dispersion is first order, which makes stochastic shocks more costly.

Now, let’s compare the welfare of the money growth rule (baseline case with no trend inflation

and the monetary shock turned off) to a Taylor rule with coefficients ρi = 0.8, φπ = 1.5, and

φx = 0.5 (again, with no monetary shock). Below are the steady states and means:

STEADY-STATE RESULTS:

Y -0.0526802

C -0.0526802

int 0.0101019

infl 8.93975e-07

inflr 3.57599e-06

N -0.0526802

w -0.10536

mc -0.10536

A 0

vp -2.31901e-09

x1 1.2514

x2 1.35676

m 4.5524

r 0.010101

Yf -0.0526793

gap -8.75914e-07

V -50.268

APROXIMATED THEORETICAL MOMENTS

VARIABLE MEAN STD. DEV. VARIANCE

Y -0.0528 0.0307 0.0009

C -0.0528 0.0307 0.0009

int 0.0102 0.0027 0.0000

infl 0.0001 0.0017 0.0000

inflr 0.0006 0.0069 0.0000

N -0.0527 0.0019 0.0000

w -0.1055 0.0295 0.0009
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mc -0.1055 0.0039 0.0000

A -0.0000 0.0320 0.0010

vp 0.0002 0.0000 0.0000

x1 1.2561 0.0363 0.0013

x2 1.3610 0.0312 0.0010

m 4.5783 0.2922 0.0854

r 0.0101 0.0014 0.0000

Yf -0.0527 0.0320 0.0010

gap -0.0002 0.0019 0.0000

V -50.2862 3.1894 10.1721

Here, we observe that expected welfare in the Taylor rule economy is -50.2862 (versus -50.3696

in the economy with a money growth rule and no shock to the money growth rate). Calculating

the consumption equivalent difference yields -0.0008365, which means that agents would be willing

to give up roughly 0.08 percent of consumption each period in the Taylor rule economy to avoid

being subjected to the money growth rate economy.

We could alternatively see what welfare is in an economy with inflation targeting. That is, I

replace the Taylor rule in my code with a condition that inflation always equals its steady state

value. This doesn’t affect steady states but affects means. The mean value of welfare is -50.2680.

This is slightly preferred to the Taylor rule, which is again slightly preferred to the money growth

rule, though again the welfare differences tend to be quite small.
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