Graphically Characterizing the Equilibrium of the Neoclassical Model

ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims
University of Notre Dame

Spring 2018

Readings

- GLS Ch. 15
- GLS Ch. 16
- For now, ignore parts related to money supply and nominal variables

Neoclassical Model

- The optimizing model of the economy with which we have been working is sometimes called the "neoclassical model" or "real business cycle" model
- The model features optimizing agents and frictionless markets
- It emphasizes supply shocks (changes in A_{t} or θ_{t}) as the principal drivers of fluctuations in endogenous variables
- As written, it abstracts from money and nominal variables. In this model, the "classical dichotomy" holds, so this is okay
- We take the model to be a relevant description of the real world in the "medium run" - frequencies of time between a couple of years and a decade

Equilibrium Conditions

- In equilibrium, the following conditions must hold:

$$
\begin{aligned}
C_{t} & =C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right) \\
N_{t} & =N^{s}\left(w_{t}, \theta_{t}\right) \\
N_{t} & =N^{d}\left(w_{t}, A_{t}, K_{t}\right) \\
I_{t} & =I^{d}\left(r_{t}, A_{t+1}, f_{t}, K_{t}\right) \\
Y_{t} & =A_{t} F\left(K_{t}, N_{t}\right) \\
Y_{t} & =C_{t}+I_{t}+G_{t}
\end{aligned}
$$

- First four are optimal decision rules of household and firm; fifth is a technological constraint (production function), and sixth is resource constraint / market-clearing condition
- Exogenous variables: $A_{t}, A_{t+1}, G_{t}, G_{t+1}, K_{t}, \theta_{t}, f_{t}$. Endogenous: $C_{t}, N_{t}, I_{t}, Y_{t}, w_{t}$, and r_{t}
- Treat Y_{t+1} as "pseudo-exogenous": not affected by I_{t}, which impacts K_{t+1}. Medium run assumption: treat capital stock as roughly constant

Graphical Analysis

- Want to graphically summarize these equations
- IS curve: set of $\left(r_{t}, Y_{t}\right)$ pairs where household and firm behave optimally with respect to consumption and investment demand and income equals expenditure
- Summarizes consumption function, investment demand function, and resource constraint
- Y^{s} curve: set of $\left(r_{t}, Y_{t}\right)$ pairs where household and firm behave optimally, labor market clears, and production function holds
- Summarizes labor supply, demand, and production function
- General equilibrium: on both $I S$ and Y^{s} curves simultaneously

IS Curve

- Same as before, just another expenditure category
- Start by writing total desired expenditure as:

$$
Y_{t}^{d}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)+I^{d}\left(r_{t}, A_{t+1}, f_{t}, K_{t}\right)+G_{t}
$$

- Impose that $Y_{t}^{d}=Y_{t}$
- Graph the set of $\left(r_{t}, Y_{t}\right)$ pairs where this holds

Expenditure vs. Income

Income Equals Expenditure

The IS Curve

IS Curve Shifts

- The IS curve will shift if any exogenous variable relevant for desired consumption or investment change, as well as changes in government spending
- Shifts:
- $\uparrow A_{t+1}$: IS shifts right
- $\uparrow f_{t}$: IS shifts left
- $\uparrow G_{t}: I S$ shifts right (via earlier arguments)
- $\uparrow G_{t+1}$: IS shifts left
- $\downarrow K_{t}$: IS shifts right

The Y^{s} Curve

- Begin by plotting labor demand and labor supply. Find the N_{t} where these intersect
- Given this N_{t}, determine Y_{t} from the production function
- r_{t} irrelevant for labor demand, supply, and the production function under our assumptions: Y^{s} curve is still vertical as in endowment economy
- Could generate an upward-sloping Y^{s} curve, and some role for IS shocks, if we considered effect of r_{t} on labor supply

Labor Market

Production Function

The Y^{s} Curve

Shifts of the Y^{s} Curve

- The Y^{s} curve will shift if any exogenous variable relevant for the positions of the labor demand, labor supply, or production functions changes
- Shifts:
- $\uparrow A_{t}: Y^{s}$ shifts right
- $\uparrow \theta_{t}: Y^{s}$ shifts left
- $\downarrow K_{t}: Y^{s}$ shifts left

Bringing it All Together

- In equilibrium, economy must be on both the $I S$ and Y^{s} curves
- Intersection jointly determines Y_{t}, r_{t}, N_{t}, and w_{t}
- Figure out split between C_{t} and I_{t}, given Y_{t} and r_{t}, by looking at consumption and investment demand functions

General Equilibrium

$$
\begin{aligned}
Y_{t}^{d}=C^{d}\left(Y_{t}-G_{t}, Y_{t+1}-G_{t+1}, r_{t}\right)
\end{aligned} \quad+I^{d}\left(r_{t}, A_{t+1}, f_{t}, K_{t}\right)+G_{t}-5 .
$$

Working Through Effects of Changes in Exogenous Variables

- A_{t}, θ_{t}, and K_{t} affect the position of the Y^{s} curve
- $A_{t+1}, f_{t}, G_{t}, G_{t+1}$, and K_{t} affect the $I S$ curve
- Figure out how Y^{s} and $I S$ curve shift, determine new r_{t}. Use this to figure out how other endogenous variables react
- A complication arises: changes in I_{t} affect K_{t+1}, which affects Y_{t+1}, and hence C_{t}
- We ignore these effects - size of capital stock is large relative to investment, and in medium run can treat capital stock as approximately fixed (unlike long run where we study capital accumulation)
- Y_{t+1} will therefore only be affected by changes in exogenous variables dated $t+1: A_{t+1}$ and G_{t+1}. "Pseudo-exogenous" in sense we will treat it as unaffected by time t exogenous shocks

Supply Shock: $\uparrow A_{t}$,
Pre-Shock Equilibrium

Supply Shock: $\uparrow A_{t}$ Y^{s} Shift

Supply Shock: $\uparrow A_{t}$ r_{t} adjustment

Supply Shock: $\uparrow A_{t}$ New Equilibrium

\author{

}

Demand Shock: $\uparrow f_{t}$ Initial Equilibrium

Demand Shock: $\uparrow f_{t}$
IS Shift

Demand Shock: $\uparrow f_{t}$ r_{t} Adjustment

Demand Shock: $\uparrow f_{t}$
New Equilibrium

Supply versus Demand

- With a vertical Y^{s} curve, output is completely supply-determined
- "Demand shocks" (shocks which shift the IS curve) affect composition of output and r_{t}, but not the level of output
- Neoclassical model thus emphasizes supply shocks (productivity and labor preference) as chief source of fluctuations
- Can get demand shocks to impact output if Y^{s} is upward-sloping (because interest rate affects labor supply), but doesn't change fact that model still needs to be predominantly driven by supply-shocks to make predictions which are more or less consistent with data

Qualitative Effects of Changes in Exogenous Variables

	Exogenous Shock						
Variable	$\uparrow A_{t}$	$\uparrow \theta_{t}$	$\uparrow f_{t}$	$\uparrow A_{t+1}$	$\uparrow G_{t}$	$\uparrow G_{t+1}$	
Y_{t}	+	-	0	0	0	0	
C_{t}	+	-	+	$?$	-	-	
I_{t}	+	-	-	$?$	-	+	
N_{t}	+	-	0	0	0	0	
w_{t}	+	+	0	0	0	0	
r_{t}	-	+	-	+	+	-	

- Do not consider changes in K_{t} - shifts both Y^{s} and $I S$ curves, and can only consider reductions in K_{t} (e.g. natural disasters, wars)

