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1 Introduction

This set of notes lays and out and analyzes the canonical New Keynesian (NK) model. The NK

model takes a real business cycle model as its backbone and adds to that sticky prices, a form

of nominal rigidity that allows purely nominal shocks to have real effects, and which alters the

response of the economy to real shocks in a way that gives rise to a non-trivial role for active

stabilization policy.

To get price-stickiness in the model, we have to have firms as price-setters, which means we

need to move away from the perfectly competitive benchmark. To do so we introduce monopolistic

competition in the way similar to before. We split production into two sectors, where the final goods

sector is perfectly competitive and aggregates intermediates into a final good for consumption. This

generates a downward-sloping demand for intermediates. There are a continuum of intermediate

goods producers who can set their own prices, but take all other prices as given. All the action

in the model is at the level of the intermediate producers. We assume that they are not freely

able to adjust their prices each period. In particular, the Calvo (1983) assumption posits that each

period firms face a fixed probability of being allowed to change their price. This seems a little

ridiculous in terms of its realism, but this assumption facilitates aggregation, and this is why it is

so popular. With any price rigidity, any firm’s price becomes a state variable. With a continuum of

intermediate goods firms, we’d have a continuum of state variables. The Calvo (1983) assumption

allows us to aggregate out this heterogeneity. Even though it seems somewhat bizarre on its surface,

it has some normative implications that seem pretty reasonable (in particular, price stability ends

up being an important normative goal).

The basic New Keynesian model that I’ll lay out below (and which is laid out in Woodford (2003)

and Gali (2007) textbook treatments) has no investment or capital. This simplifies the analysis

quite a bit and permits us to get better intuition. It is not a completely innocuous omission, and

we’ll later look at how the inclusion of capital in the model affects things.
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2 Households

There is a representative household that consumes, supplies labor, accumulates bonds, holds shares

in firms, and accumulates money. It gets utility from holding real balances. Its problem is:

max
Ct,Nt,Bt+1,Mt

E0

∞∑
t=0

βt

(
C1−σ
t

1− σ
− ψN

1+η
t

1 + η
+ θ ln

(
Mt

Pt

))
Here I have gone ahead and assumed that utility from real balances is logarithmic. As long as

real balances are additively separable from consumption and labor, money in the utility function

doesn’t do much interesting here.1 The nominal flow budget constraint is:

PtCt +Bt+1 +Mt −Mt−1 ≤WtNt + Πt − PtTt + (1 + it−1)Bt

Here money is the numeraire, and Pt is the price of goods in terms of money. Bt is the stock of

nominal bonds a household enters the period with, and they pay out (known as of t− 1) nominal

interest rate it−1. The household also enters the period with a stock of money, Mt−1. Note that

I’m not being super consistent with timing notation here: Mt−1 and Bt are both known at t − 1.

The reason I write it this way is because the aggregate supply of money in period t, Mt, is not

going to be predetermined but rather set by a central bank. Wt is the nominal wage (denominated

in units of money, not goods). Πt denotes (nominal) profits remitted by firms, and Tt is a lump

sum tax paid to a government (the government will have the role of setting the money supply and

remitting any seignorage revenue back to the household lump sum).

A Lagrangian for the household is:

L = E0

∞∑
t=0

βt
[
C1−σ
t

1− σ − ψ
N1+η
t

1 + η
+ θ ln

(
Mt

Pt

)
+ λt (WtNt + Πt − PtTt + (1 + it−1)Bt − PtCt −Bt+1 −Mt +Mt−1)

]

The FOC are:

∂L
∂Ct

= 0⇔ C−σt = λtPt

∂L
∂Nt

= 0⇔ ψNη
t = λtWt

∂L
∂Bt+1

= 0⇔ λt = βEtλt+1(1 + it)

∂L
∂Mt

= 0⇔ θ
1

Mt
= λt − βEtλt+1

We can eliminate the multiplier and re-write these conditions as:

1If we were to assume that central bank policy focuses on an interest rate rather than a monetary aggregate, as we
will do below, then we could ignore money altogether so long as utility from money is separable. This is sometimes
referred to as a “cashless” economy.
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ψNη
t = C−σt wt (1)

C−σt = βEtC
−σ
t+1(1 + it)

Pt
Pt+1

(2)

θ

(
Mt

Pt

)−1
=

it
1 + it

C−σt (3)

3 Production

For the production side of things we split into two. There is a representative competitive final goods

firm which aggregates intermediate inputs according to a CES technology. To the extent to which

the intermediates are imperfect substitutes in the CES aggregator, this generates a downward-

sloping demand for each intermediate variety, which gives these intermediate producers pricing

power. There are a continuum (large number) of intermediates, so these producers behave as

monopolistically competitive (they treat all prices but their own as given). These firms produce

output using labor and are subject to an aggregate productivity shock. They are not freely able to

adjust prices each period, in a way that we will discuss in more depth below.

3.1 Final Good Producer

The final output good is a CES aggregate of a continuum of intermediates:

Yt =

(∫ 1

0
Yt(j)

ε−1
ε dj

) ε
ε−1

(4)

Here ε > 1. The profit maximization problem of the final good firm is:

max
Yt(j)

Pt

(∫ 1

0
Yt(j)

ε−1
ε dj

) ε
ε−1

−
∫ 1

0
Pt(j)Yt(j)dj

The FOC for a typical variety of intermediate j is:

Pt
ε

ε− 1

(∫ 1

0
Yt(j)

ε−1
ε dj

) ε
ε−1
−1

ε− 1

ε
Yt(j)

ε−1
ε
−1 = Pt(j)

This can be written:

(∫ 1

0
Yt(j)

ε−1
ε dj

) 1
ε−1

Yt(j)
− 1
ε =

Pt(j)

Pt

Or:

(∫ 1

0
Yt(j)

ε−1
ε dj

)− ε
ε−1

Yt(j) =

(
Pt(j)

Pt

)−ε
Making note of the definition of the aggregate final good, we have::
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Yt(j) =

(
Pt(j)

Pt

)−ε
Yt (5)

This says that the relative demand for the jth intermediate is a function of its relative price,

with ε the price elasticity of demand, and is proportional to aggregate output, Yt.

To derive a price index, define nominal output as the sum of prices times quantities:

PtYt =

∫ 1

0
Pt(j)Yt(j)dj

Plugging in the demand for each variety, we have:

PtYt =

∫ 1

0
Pt(j)

1−εP εt Ytdj

Pulling out of the integral things which don’t depend on j:

PtYt = P εt Yt

∫ 1

0
Pt(j)

1−εdj

Simplifying, we get an expression for the aggregate price level:

Pt =

(∫ 1

0
Pt(j)

1−εdj

) 1
1−ε

(6)

3.2 Intermediate Producers

A typical intermediate producer produces output according to a constant returns to scale technology

in labor, with a common productivity shock, At:

Yt(j) = AtNt(j) (7)

Intermediate producers face a common wage. They are not freely able to adjust price so as to

maximize profit each period, but will always act to minimize cost. The cost minimization problem

is to minimize total cost subject to the constraint of producing enough to meet demand:

min
Nt(j)

WtNt(j)

s.t.

AtNt(j) ≥
(
Pt(j)

Pt

)−ε
Yt

The multiplier on the constraint here will have the interpretation as marginal cost – how much

will costs change if you are forced to produce an extra unit of output. A Lagrangian is:
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L = −WtNt(j) + ϕt(j)

(
AtNt(j)−

(
Pt(j)

Pt

)−ε
Yt

)
The FOC is:

∂L
∂Nt(j)

= 0⇔Wt = ϕt(j)At

Or:

ϕt =
Wt

At
(8)

Here I have dropped the j reference: marginal cost (ϕt) is equal to the wage divided by pro-

ductivity, both of which are common to all intermediate goods firms.

Real flow profit for intermediate producer j is:

Πt(j) =
Pt(j)

Pt
Yt(j)−

Wt

Pt
Nt(j)

From (8), we know Wt = ϕtAt. Plugging this into the expression for profits, we get:

Πt(j) =
Pt(j)

Pt
Yt(j)−mctYt(j)

Where I have defined mct ≡ ϕt
Pt

as real marginal cost.

Firms are not freely able to adjust price each period. In particular, each period there is a fixed

probability of 1− φ that a firm can adjust its price. This means that the probability a firm will be

stuck with a price one period is φ, for two periods is φ2, and so on. Consider the pricing problem

of a firm given the opportunity to adjust its price in a given period. Since there is a chance that

the firm will get stuck with its price for multiple periods, the pricing problem becomes dynamic.

Firms will discount profits s periods into the future by M̃t+sφ
s, where M̃t+s = βs u

′(Ct+s)
u′(Ct)

is the

stochastic discount factor. Note that discounting is by both the usual stochastic discount factor as

well as by the probability that a price chosen in period t will still be in use in period t + s. The

dynamic problem of an updating firm can be written:

max
Pt(j)

Et

∞∑
s=0

(βφ)s
u′(Ct+s)

u′(Ct)

(
Pt(j)

Pt+s

(
Pt(j)

Pt+s

)−ε
Yt+s −mct+s

(
Pt(j)

Pt+s

)−ε
Yt+s

)
Here I have imposed that output will equal demand. Multiplying out, we get:

max
Pt(j)

Et

∞∑
s=0

(βφ)s
u′(Ct+s)

u′(Ct)

(
Pt(j)

1−εP ε−1t+s Yt+s −mct+sPt(j)−εP εt+sYt+s
)

The first order condition can be written:
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(1− ε)Pt(j)−εEt
∞∑
s=0

(βφ)s u′(Ct+s)P
ε−1
t+s Yt+s + εPt(j)

−ε−1Et

∞∑
s=0

(βφ)s u′(Ct+s)mct+sP
ε
t+sYt+s = 0

Simplifying:

Pt(j) =
ε

ε− 1

Et

∞∑
s=0

(βφ)s u′(Ct+s)mct+sP
ε
t+sYt+s

Et

∞∑
s=0

(βφ)s u′(Ct+s)P
ε−1
t+s Yt+s

First, note that since nothing on the right hand side depends on j, all updating firms will update

to the same reset price, call it P#
t . We can write the expression more compactly as:

P#
t =

ε

ε− 1

X1,t

X2,t
(9)

Here:

X1,t = u′(Ct)mctP
ε
t Yt + φβEtX1,t+1 (10)

X2,t = u′(Ct)P
ε−1
t Yt + φβEtX2,t+1 (11)

If φ = 0, then the right hand side would reduce to mctPt = ϕt. In this case, the optimal price

would be a fixed markup, ε
ε−1 , over nominal marginal cost, ϕt.

4 Equilibrium and Aggregation

To close the model we need to specify an exogenous process for At, some kind of monetary policy

rule to determine Mt, and a fiscal rule to determine Tt. Let the aggregate productivity term follow

a mean zero AR(1) in the log:

lnAt = ρa lnAt−1 + εa,t (12)

Let’s suppose that the money supply follows an AR(1) in the growth rate, where ∆ lnMt =

lnMt − lnMt−1:

∆ lnMt = (1− ρm)π + ρm∆ lnMt−1 + εm,t (13)

I have written this process where the mean growth rate of money is equal to π, which will be

the steady state level of inflation (this is because real balances will be stationary, so Mt and Pt

must grow at the same rate in the steady state). εm,t is a monetary shock.
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Since the government prints money, it effectively earns some revenue. Right now we’re ab-

stracting from the government doing any spending, and for simplicity I’m going to assume that

the government does not operate in bond markets (this is innocuous since it raises revenue only

through a lump sum tax). The government’s budget constraint in nominal terms is then:

0 ≤ PtTt +Mt −Mt−1

In other words, the change in the stock of money, Mt −Mt−1, is (nominal) revenue for the

government. Since it does no spending, at equality lump sum taxes must satisfy:

Tt = −Mt −Mt−1
Pt

So if money growth is positive, e.g. Mt > Mt−1, then lump sum taxes will be negative – the

government will be rebating its seignorage revenue to the household lump sum.

In equilibrium, bond-holding is always zero in all periods: Bt = 0. Using this, plus the relation-

ship between the lump sum tax and money growth derived above, the household budget constraint

can be written in real terms:

Ct = wtNt +
Πt

Pt

Real dividends received by the household are just the sum of real profits from intermediate

goods firms (the final good firm is competitive and earns no profit):

Πt

Pt
=

∫ 1

0

(
Pt(j)

Pt
Yt(j)−

Wt

Pt
Nt(j)

)
dj

This can be written:

Πt

Pt
=

∫ 1

0

Pt(j)

Pt
Yt(j)− wt

∫ 1

0
Nt(j)dj

Now, market-clearing requires that the sum of labor used by firms equals the total labor supplied

by households, so
∫ 1
0 Nt(j)dj = Nt. Hence:

Πt

Pt
=

∫ 1

0

Pt(j)

Pt
Yt(j)dj − wtNt

Throwing this into the household budget constraint, the wtNt terms drop out, leaving:

Ct =

∫ 1

0

Pt(j)

Pt
Yt(j)dj

Plug in the demand function for Yt(j):

Ct =

∫ 1

0
Pt(j)

1−εP ε−1t Ytdj
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Bring stuff out of the integral:

Ct = P ε−1t Yt

∫ 1

0
Pt(j)

1−εdj

Now, since P 1−ε
t =

∫ 1
0 Pt(j)

1−εdj, the terms involving P s drop out, leaving:

Ct = Yt (14)

Now, what is Yt? From the demand for intermediate variety j, we have:

Yt(j) =

(
Pt(j)

Pt

)−ε
Yt

Using the production function for each intermediate, this is:

AtNt(j) =

(
Pt(j)

Pt

)−ε
Yt

Integrate over j: ∫ 1

0
AtNt(j)dj =

∫ 1

0

(
Pt(j)

Pt

)−ε
Ytdj

Take stuff out of the integral, with the exception of the price level on the right hand side:

At

∫ 1

0
Nt(j)dj = Yt

∫ 1

0

(
Pt(j)

Pt

)−ε
dj

Now define a new variable, vpt , as:

vpt =

∫ 1

0

(
Pt(j)

Pt

)−ε
dj (15)

This is a measure of price dispersion. If there were no pricing frictions, all firms would charge

the same price, and vpt = 1. If prices are different, one can show that this expression is bound from

below by unity. Using the definition of aggregate labor input, we can therefore write:

Yt =
AtNt

vpt
(16)

This is the aggregate production function. Since vpt ≥ 1, price dispersion results in an output

loss – you produce less output than you would given At and aggregate labor input if prices are

disperse. This ends up being the gist of why price stability is a good goal.

The full set of equilibrium conditions can then be written:

C−σt = βEtC
−σ
t+1(1 + it)

Pt
Pt+1

(17)

ψNη
t = C−σt wt (18)
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Mt

Pt
= θ

1 + it
it

Cσt (19)

mct =
wt
At

(20)

Ct = Yt (21)

Yt =
AtNt

vpt
(22)

vpt =

∫ 1

0

(
Pt(j)

Pt

)−εp
dj (23)

P
1−εp
t =

∫ 1

0
Pt(j)

1−εpdj (24)

P#
t =

εp
εp − 1

X1,t

X2,t
(25)

X1,t = C−σt mctP
εp
t Yt + φpβEtX1,t+1 (26)

X2,t = C−σt P
εp−1
t Yt + φpβEtX2,t+1 (27)

lnAt = ρa lnAt−1 + εa,t (28)

∆ lnMt = (1− ρm)π + ρm∆ lnMt−1 + εm,t (29)

∆ lnMt = lnMt − lnMt−1 (30)

This is 14 equations in 14 aggregate variables (Ct, it, Pt, Nt, wt,Mt,mct, At, Yt, v
p
t , P

#
t , X1,t, X2,t,∆ lnMt).

There are two stochastic shocks – the usual productivity shock as well as the monetary shock.

4.1 Re-writing the equilibrium conditions

There are a couple of issues with how I’ve written these conditions. First, I haven’t gotten rid of

the heterogeneity – I still have j indexes showing up. Second, I have the price level showing up,

which, as I mentioned above, may not be stationary. Third, I have the nominal money supply

showing up, which is not stationary the way I’ve written the process in terms of money growth.

Hence, I want to re-write these conditions (i) only in terms of inflation, eliminating the price level;

and (ii) getting rid of the heterogeneity, which the Calvo (1983) assumption allows me to do; and

(iii) in terms of real money balances, mt ≡ Mt
Pt

, instead of nominal money balances.

Define inflation as πt = Pt
Pt−1
− 1. The Euler equation can be re-written:

C−σt = βEtC
−σ
t+1(1 + it)(1 + πt+1)

−1 (31)

The demand for money equation is already written in terms of real balances:

mt = θ
1 + it
it

Cσt (32)
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Now, we need to get rid of the heterogeneity in the expression for the price level and price

dispersion. The expression for the price level is:

P 1−ε
t =

∫ 1

0
Pt(j)

1−εdj

Now, a fraction (1− φ) of these firms will update their price to the same reset price, P#
t . The

other fraction φ will charge the price they charged in the previous period. Since it doesn’t matter

how we “order” these firms along the unit interval, this means we can break up the integral on the

right hand side as:

P 1−ε
t =

∫ 1−φ

0
P#,1−ε
t dj +

∫ 1

1−φ
Pt−1(j)

1−εdj

This can be written:

P 1−ε
t = (1− φ)P#,1−ε

t +

∫ 1

1−φ
Pt−1(j)

1−εdj

Now, here’s the beauty of the Calvo assumption. Because the firms who get to update are

randomly chosen, and because there are a large number (continuum) of firms, the integral (sum)

of individual prices over some subset of the unit interval will simply be proportional to the integral

over the entire unit interval, where the proportion is equal to the subset of the unit interval over

which the integral is taken. This means:∫ 1

1−φ
Pt−1(j)

1−εdj = φ

∫ 1

0
Pt−1(j)

1−εdj = φP 1−ε
t−1

This means that the aggregate price level (raised to 1− ε) is a convex combination of the reset

price and lagged price level (raised to the same power). So:

P 1−ε
t = (1− φ)P#,1−ε

t + φP 1−ε
t−1

In other words, we’ve gotten rid of the heterogeneity. The Calvo assumption allows us to

integrate out the heterogeneity and not worry about keeping track of what each firm is doing from

the perspective of looking at the behavior of aggregates. Now, we still have the issue here that we

are written in terms of the price level, not inflation. To get it in terms of inflation, divide both

sides by P 1−ε
t−1 , and define π#t =

P#
t

Pt−1
− 1 as reset price inflation:

(1 + πt)
1−ε = (1− φ)(1 + π#t )1−ε + φ (33)

We can also use the Calvo assumption to break up the price dispersion term, by again noting

that (1 − φ) of firms will update to the same price, and φ firms will be stuck with last period’s

price. Hence:
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vpt =

∫ 1−φ

0

(
P#
t

Pt

)−ε
dj +

∫ 1

1−φ

(
Pt−1(j)

Pt

)−ε
dj

This can be written in terms of inflation by multiplying and dividing by powers of Pt−1 where

necessary:

vpt =

∫ 1−φ

0

(
P#
t

Pt−1

)−ε(
Pt−1
Pt

)−ε
dj +

∫ 1

1−φ

(
Pt−1(j)

Pt−1

)−ε(Pt−1
Pt

)−ε
dj

We can take stuff out of the integral:

vpt = (1− φ)(1 + π#t )−ε(1 + πt)
ε + (1 + πt)

ε

∫ 1

1−φ

(
Pt−1(j)

Pt−1

)−ε
dj

By the same Calvo logic, the term inside the integral is just going to be proportional to vpt−1.

This means we can write the price dispersion term as:

vpt = (1− φ)(1 + π#t )−ε(1 + πt)
ε + (1 + πt)

εφvpt−1 (34)

In other words, we just have to keep track of vpt , not the individual prices.

Now, we need to adjust the reset price expression. First, define two new auxiliary variables as

follows:

x1,t ≡
X1,t

P εt

x2,t ≡
X2,t

P ε−1t

Dividing both sides of the reset price expressions by the appropriate power of Pt, we have:

x1,t = C−σt mctYt + φβEt
X1,t+1

P εt

x2,t = C−σt Yt + φβEt
X2,t+1

P ε−1t

Multiplying and dividing the t+ 1 terms by the appropriate power of Pt+1, we have:

x1,t = C−σt mctYt + φβEt
X1,t+1

P εt+1

(
Pt+1

Pt

)ε
x2,t = C−σt Yt + φβEt

X2,t+1

P ε−1t+1

(
Pt+1

Pt

)ε−1
Or, in terms of inflation:
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x1,t = C−σt mctYt + φβEt(1 + πt+1)
εx1,t+1 (35)

x2,t = C−σt Yt + φβEt(1 + πt+1)
ε−1x2,t+1 (36)

Now, in terms of the reset price expression, since we divided X1,t by P εt and divided X2,t by

P ε−1t . This means that
X1,t

X2,t
= Pt

x1,t
x2,t

. The reset price expression can now be written:

P#
t =

ε

ε− 1
Pt
x1,t
x2,t

Now, simply divide both sides by Pt−1 to have everything in terms of inflation rates:

1 + π#t =
ε

ε− 1
(1 + πt)

x1,t
x2,t

(37)

Now, we need to re-write the processes involving money in terms of real balances. We can

define:

∆ lnmt ≡ lnmt − lnmt−1

This is of course equal to:

∆ lnmt = lnmt − lnmt−1 = lnMt − lnPt − lnMt−1 + lnPt−1 = lnMt − lnMt−1 − πt

Hence:

∆ lnMt = ∆ lnmt + πt

This means we can write the process for money growth in terms of real balance growth as:

∆ lnmt = (1− ρm)π − πt + ρm∆ lnmt−1 + ρmπt−1 + εm,t (38)

This means the re-written full set of equilibrium conditions is:

C−σt = βEtC
−σ
t+1(1 + it)(1 + πt+1)

−1 (39)

ψNη
t = C−σt wt (40)

mt = θ
1 + it
it

Cσt (41)

mct =
wt
At

(42)

Ct = Yt (43)

Yt =
AtNt

vpt
(44)
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vpt = (1− φ)(1 + π#t )−ε(1 + πt)
ε + (1 + πt)

εφvpt−1 (45)

(1 + πt)
1−ε = (1− φ)(1 + π#t )1−ε + φ (46)

1 + π#t =
ε

ε− 1
(1 + πt)

x1,t
x2,t

(47)

x1,t = C−σt mctYt + φβEt(1 + πt+1)
εx1,t+1 (48)

x2,t = C−σt Yt + φβEt(1 + πt+1)
ε−1x2,t+1 (49)

lnAt = ρa lnAt−1 + εa,t (50)

∆ lnmt = (1− ρm)π − πt + ρm∆ lnmt−1 + ρmπt−1 + εm,t (51)

∆ lnmt = lnmt − lnmt−1 (52)

This is the same set of equations as above, but I have replaced Pt with πt, Mt with mt, P
#
t

with π#t , and X1,t and X2,t with x1,t and x2,t.

5 The Steady State

Let’s solve for the non-stochastic steady state of the model. I’m going to use variables without a

subscript to denote non-stochastic steady state values.

Steady state A = 1. Since output and consumption are always equal, it must also be that

Y = C. Steady state inflation is equal to the exogenous target, π. From the re-written AR(1) in

growth rates for real balances, in steady state we have:

∆ lnm = (1− ρm)π − (1− ρm)π + ρm∆ lnm

(1− ρm)∆ lnm = 0

∆ lnm = 0

This means that real money balances are stationary in the steady state.

From the Euler equation, we have:

1 + i =
1

β
(1 + π)

In approximate terms, this would say i ≈ ρ + π, where β = 1
1+ρ , so ρ has the interpretation

as the discount rate (whereas β is a discount factor). From the price evolution equation, we can

derive the steady state expression for reset price inflation:

1 + π# =

(
(1 + π)1−ε − φ

1− φ

) 1
1−ε

If π = 0, then π# = π because the right hand side is just 1. If π > 0, then π# > π, and if
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π < 0, then π# < π. Given this, we can solve for steady state price dispersion:

(1− (1 + π)εφ) vp = (1− φ)

(
1 + π

1 + π#

)ε
If π = 0, then we have vp = 1. If π 6= 0, then vp > 1. In the figure below, I plot in the left

panel steady state reset price price inflation, π#, as a function of steady state inflation, π∗. For

comparison I plot steady state inflation against itself as well (dashed line). We can see that steady

state reset price inflation is less than steady state inflation for negative steady state inflation and

greater than steady state inflation for positive steady state inflation. In the right panel I plot steady

state price dispersion as a function of trend inflation. This bottoms out at one, but is greater than

one for steady state inflation not equal to zero (though price dispersion increases faster as steady

state inflation moves away from zero on the positive end than on the negative end). I computed

this graph using ε = 10 and φ = 0.75.
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Given all this, we can solve for the steady state ratio of x1/x2 as:

x1
x2

=
1 + π#

1 + π

ε− 1

ε

Now, we also know that:

x1
x2

= mc
1− φβ(1 + π)ε−1

1− φβ(1 + π)ε

This means we can solve for steady state marginal cost as:

mc =
1− φβ(1 + π)ε

1− φβ(1 + π)ε−1
1 + π#

1 + π

ε− 1

ε
(53)

Real marginal cost is equal to the inverse price markup. If π = 0, this is just equal to ε−1
ε . In

other words, if steady state inflation is zero, then the steady state markup will be what it would be

if prices were flexible. If π 6= 0, then mc < ε−1
ε , which means that the steady state markup will be

higher than it would if inflation were zero. The figure below plots the steady state real marginal

cost and steady state price markup as a function of steady state inflation. Here I used a value of
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β = 0.99 along with the values of ε and φ used above.
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Once we know steady state marginal cost, then we know the steady state real wage: w = mc.

The lower is marginal cost, the bigger is the wedge between the wage and the marginal product

of labor (i.e. the more distorted the economy is). Take this to the static labor supply condition,

imposing the equality between Y = C:

ψNη = Y −σmc

Here I have imposed that A = 1. Now, from the production function, we know that Y = N/vp.

Plugging this in and simplifying, we can solve for N :

ψNη = N−σ (vp)σmc

N =

(
1

ψ
(vp)σmc

) 1
η+σ

Given this, we now have Y we can solve for steady state m:

m = θ
1 + i

i
Y σ

6 The Flexible Price Equilibrium

A useful concept that will come in handy, particularly when thinking about welfare, is a hypothetical

equilibrium allocation in which prices are flexible, which corresponds to the case when φ = 0.

Because there is no endogenous state variable in this model when prices are flexible, we can actually

solve for the flexible price equilibrium by hand. I use superscript f to denote the hypothetical

flexible price allocation.

When φ = 0, we have π# = π regardless of what π is. Then going to the price dispersion

expression, when φ = 0 we have:

vf,pt =

(
1 + π#

1 + π

)−ε
= 1

15



In other words, if prices are flexible, all firms charge the same prices, and price dispersion is

at its lower bound of 1. By combining the reset price inflation term with the auxiliary variables

x1,t and x2,t, we get that mcft = ε−1
ε , and is therefore constant. Since marginal cost is the inverse

price markup, this just says that if prices are flexible, firms will set price equal to a fixed markup

over marginal cost (which we’ve already seen before in a flexible price case with monopolistic

competition). This means that wft = ε−1
ε At. Plugging this into the static labor FOC (along with

the market-clearing condition that Yt = Ct), we see:

ψ
(
Nf
t

)η
=
(
Y f
t

)−σ ε− 1

ε
At

Using the fact that Y f
t = AtN

f
t , we have:

ψ
(
Nf
t

)η
= A−σt

(
Nf
t

)−σ ε− 1

ε
At

Nf
t =

(
1

ψ

ε− 1

ε
A1−σ
t

) 1
σ+η

This means that flexible price output is:

Y f
t =

(
1

ψ

ε− 1

ε

) 1
σ+η

A
1+η
σ+η

t (54)

There is something interesting here which is worth mentioning. If σ = 1, then Nf
t is a constant

and not a function of At. In other words, if prices were flexible and σ = 1 (log utility over

consumption), labor hours would not react to fluctuations in At. What is driving this is that, if

σ = 1, then preferences are consistent with King, Plosser, Rebelo (1988) preferences, in which the

income and substitution effects of changes in At exactly offset. When there is capital in the model,

this offset only occurs in the long run, so that labor hours are constant in the long run, but not in

the short run as capital adjusts to steady state. Without capital, the cancellation of income and

substitution effects holds at all times.

Note also that flexible price output does not depend on anything nominal. This is because,

with flexible prices, nominal shocks have no real effects.

7 Quantitative Analysis

I solve the model quantitatively in Dynare using a first order approximation about the steady state.

I use the following parameter values (more on this later): φ = 0.75, σ = 1, η = 1, ψ = 1, ε = 10,

θ = 1, ρa = 0.95, ρm = 0.0, and π = 0. I assume that the standard deviation of both shocks are

0.01.

Impulse responses to the productivity shock are shown below.
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There are a couple of interesting things to point out here. Output responds very little on impact,

and significantly less than the increase in At. Indeed, we actually see a fairly large decline in Nt

when At goes up. Inflation falls. The response of the price level (which I compute by cumulating

the response of inflation) is roughly the mirror image of the output response. The nominal interest

rate does not move at all ay any horizon, though the real interest rate increases. Real marginal

cost falls, which suggests that the real wage rises by less than At (effectively, firms charge bigger

markups).
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Above I plot the impulse response of the flexible price level of output and a new variable I
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call the “output gap,” defined as lnXt = lnYt − lnY f
t . Because output responds significantly less

than the flexible price level of output to the productivity shock, we see a large negative output gap

opening up following the positive productivity shock.

What’s going on here? If φ = 0, we see that output would respond significantly more to the

productivity shock than in the baseline case I used where φ = 0.75. What is going on here? When

prices are sticky, output becomes (partially) “demand-determined,” and with exogenous money

supply the way I have it here, price rigidity prevents demand from rising sufficiently when “supply”

increases, so output rises by “too little” relative to what would happen with flexible prices. An

easy way to see this is to look at the money demand relationship. In logs, we have:

lnmt = ln θ + ln(1 + it)− ln it + σ lnYt

To the extent to which the nominal interest rate doesn’t move (which it in fact doesn’t here)2,

the movement in output must be proportional to the movement in real balances. Since I’ve assumed

that Mt is set exogenously, the only way mt can move is through changes in Pt. Hence, as we can

see in the IRFs, the output movement ends up just being the mirror image of the movement in

Pt. And since prices are sticky, Pt can’t move enough relative to what it would do under price

flexibility. Hence, mt fails to increase sufficiently, and Yt can’t rise as much as it would if prices

were flexible.

There is another way to see how price rigidity effectively limits the demand increase, resulting

in a response of output that is too small relative to what would happen in the absence of price

rigidity. If prices were flexible, in the period of the shock, Pt would immediately fall (so mt could

rise), but would then start to rise. This means that expected inflation would actually rise. Given

a fixed nominal interest rate (via the logic above), this means that the real interest rate would fall

if prices were flexible.3 With price stickiness, in contrast, inflation falls, and stays persistently low

(basically, waves of firms come each period and cut their prices, so inflation stays low for a while).

This means that expected inflation falls, not rises as it would if prices were flexible. This means

that the real interest rate rises when At increases, which works to choke off demand.

Next, consider a shock to the money supply. Since I have assumed that ρm = 0, nominal money

follows a random walk, so the shock results in a one time permanent level shift in Mt. Here, we

2To see why this happens, go back to the FOC from the household’s problem, you can write: λt = θ 1
Mt

+βEtλt+1.

Solving this forward, you’d get: λt = Et
∑∞
j=0 β

t θ
Mt+j

. If Mt doesn’t respond to a shock, then λt can’t either. But

from the first order condition for bonds, λt = βEtλt+1(1 + it). If λt and λt+1 don’t react to the productivity shock
(which they won’t if Mt is fixed), then it cannot react to the shock. Note that this result would not hold generally
for specifications of utility from real balances which are not logarithmic or which are non-separable from the other
arguments of utility. To see this, suppose that utility over real balances were still separable but instead showed up

as θ

(
Mt
Pt

)1−ζ
−1

1−ζ . Then the FOC for the choice of Mt would be: λt = θM−ζt P ζ−1
t + βETλt+1. If ζ = 1 (log utility),

then the Pt term drops out, and you get the result that λt can only move if Mt moves or is expected to move, which
means that it cannot change if you get a productivity shock and the money supply is held constant. But if ζ 6= 1,
then Pt shows up; since Pt change, then λt and Etλt+1 will both change, which will mean that it will potentially
change.

3In a log-linear version, it is straightforward to show that the hypothetical real interest rate if prices were flexible
(sometimes called the “natural rate of interest”) would just be proportional to expected productivity growth, which
is negative after a productivity shock given that I have assumed the process for productivity is a stationary AR(1).
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observe that Yt, Nt, and πt all rise. There is a temporary rise in mt. mct rises, which means that

wt rises (since At is fixed): this is necessary to get workers to work more. The real interest rate

falls, though again the nominal interest rate doesn’t move.4 Evidently, having sticky prices allows

the nominal monetary shock to have real effects.
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What is going on here? There are again a couple of ways to see this. Focusing on the money

demand relationship, we again have the result that, for a fixed nominal interest rate, real balances

and real GDP move together. When Mt increases, if prices were flexible Pt would increase by the

same amount, so real balances wouldn’t change, and hence Yt wouldn’t change. But with sticky

prices, Pt can’t increase sufficiently, so mt rises, and therefore so too does output. Another way

to see what is going on is by focusing on the real interest rate. If prices were flexible, the one

time increase in Mt would be met by a one time permanent increase in Pt, so EtPt+1 = Pt, and

therefore expected inflation would not react. With expected inflation fixed, and the nominal rate

fixed, there would be no effect on the real interest rate. But with price stickiness, because not all

firms can immediately adjust their prices, the aggregate price level adjusts slowly, and in particular

EtPt+1 > Pt, so expected inflation rises. Higher expected inflation with a fixed nominal rate means

4We can see why the nominal interest rate doesn’t move again via the first order conditions. We again must have:
λt = Et

∑∞
j=0 β

t θ
Mt+j

. Since Mt follows a random walk, λt and λt+1 will both fall when Mt goes up, but by the

same amount. Since λt = βEtλt+1(1 + it), this again implies that it will not react. If ρm > 0, λt and λt+1 would
react differently because EtMt+j 6= Mt, and the nominal interest rate would move. The same caveat would apply as
in the above footnote if utility over real balances were not logarithmic.
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a lower real interest rate, which stimulates expenditure and results in the output increase.

Below I show the impulse response of the flexible price level of output and the output gap to

the monetary policy shock. Since the flexible price level of output does not react, the response of

the gap is identical to the response of output.
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8 Log-Linearization

It is very common to see the basic New Keynesian model presented in log-linear form. The equations

turn out to be pretty intuitive. It ends up being a decent amount of work, but there are some

important payoffs to going through the hard work of linearizing the equations by hand. It turns

out that life is much easier if we do the linearization about a steady state with π = 0 (i.e. a “zero

inflation steady state”).

Start with the Euler equation, going ahead and imposing the accounting identity that Ct = Yt.

We have:

−σ lnYt = lnβ − σEt lnYt+1 + it − Etπt+1

−σỸt = −σEtỸt+1 + ĩt − Etπ̃t+1

Where Ỹt = Yt−Y
Y , ĩt = it − i, and π̃t = πt − π. In other words, the variables already in rate

form (interest rate and inflation) are expressed as absolute deviations, and variables not already in

rate form as percent (log) deviations. We can re-write this as:

Ỹt = EtỸt+1 −
1

σ

(̃
it − Etπ̃t+1

)
(55)

This is sometimes called the “New Keynesian IS Curve.” This is a bit of a misnomer: in old

Keynesian models, the IS curve stands for “Investment = Saving,” and there is no investment in

this model. Nevertheless, the idea is to show that there exists an inverse relationship between

demand for current spending and the real interest rate. This expression is “New” in the sense
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that it is forward-looking: current demand depends not just on the real interest rate but also on

expected future income.

Next, log-linearize the static labor demand specification. This expression is already log-linear,

and works out to be:

ηÑt = −σỸt + w̃t (56)

From the marginal cost relationship, we can eliminate the wage:

w̃t = m̃ct + Ãt (57)

Plugging this in:

ηÑt = −σỸt + m̃ct + Ãt

Log-linearize the production function:

Ỹt = Ãt + Ñt − ṽpt

Now, what is ṽpt ? Let’s take logs and go from there:

ln vpt = ln
(

(1− φ)(1 + π#t )−ε(1 + πt)
ε + (1 + πt)

εφvpt−1

)
Now, from our discussion above, we know that vp = 1 when π = 0. Totally differentiating:

ṽpt =
1

1

(
−ε(1− φ)(1 + π#)−ε−1(1 + π)ε(π#t − π#) + ε(1− φ)(1 + π#)−ε(1 + π)ε−1(πt − π) . . .

. . . ε(1 + π)ε−1φvp(πt − π) + (1 + π)εφ(vpt−1 − v
p)
)

Using now known facts about the steady state, this reduces to:

ṽpt = −ε(1− φ)π̃#t + ε(1− φ)π̃t + εφπ̃t + φṽpt−1

This can be written:

ṽpt = −ε(1− φ)π̃#t + επ̃t + φṽpt−1

Now, log-linearize the equation for the evolution of inflation:

(1− ε)πt = ln
(

(1− φ)(1 + π#t )1−ε + φ
)

(1− ε) (πt − π) = (1 + π)ε−1
(

(1− ε)(1− φ)(1 + π#)−ε(π#t − π#)
)
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In the last line above, the (1 + π)ε−1 shows up because the term inside parentheses is equal to

(1 + π)1−ε evaluated in the steady state, and when taking the derivative of the log this term gets

inverted evaluated at that point. Using facts about the zero inflation steady state, we have:

(1− ε)π̃t = (1− ε)(1− φ)π̃#t

Or:

π̃t = (1− φ)π̃#t (58)

In other words, actual inflation is just proportional to reset price inflation, where the constant

is equal to the fraction of firms that are updating their prices. This is pretty intuitive. Now, use

this in the expression for price dispersion:

ṽpt = ε
(
π̃t − (1− φ)π̃#t

)
+ φṽpt−1

But from above, the first term drops out, so we are left with:

ṽpt = φṽpt−1 (59)

If we are approximating about the zero inflation steady state in which vp = 1, then we’re

starting from a position in which ṽpt−1 = 0, so this means that ṽpt = 0 at all times. In other words,

about a zero inflation steady state, price dispersion is a second order phenomenon, and we can just

ignore it in a first order approximation about a zero inflation steady state.

Given this, the log-linearized production function is just:

Ỹt = Ãt + Ñt (60)

Now, plug this in to eliminate Ñt from the log-linearized static labor supply condition from

above:

η
(
Ỹt − Ãt

)
= −σỸt + m̃ct + Ãt

Simplifying a little bit, we get:

(σ + η)Ỹt − (1 + η)Ãt = m̃ct

From above, we had solved for an expression for the flexible price level of output as:

Y f
t =

(
1

ψ

ε− 1

ε

) 1
σ+η

A
1+η
σ+η

t

This is already log-linear, so we have:
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Ỹ f
t =

1 + η

σ + η
Ãt (61)

This means we can write:

Ãt =
σ + η

1 + η
Ỹ f
t

Plugging this in above, we get:

m̃ct = (σ + η)
(
Ỹt − Ỹ f

t

)
(62)

In other words, real marginal cost is proportional to the output gap, X̃t = Ỹt− Ỹ f
t . Recall that

real marginal cost is the inverse price markup. So if the gap is zero (output is equal to what it

would be with flexible prices), then markups are equal to the desired fixed steady state markup of
ε
ε−1 . If the output gap is positive, then real marginal cost is above its steady state, so markups are

lower than desired (equivalently, the economy is less distorted). The converse is true when the gap

is negative.

Now, let’s log-linearize the reset price expression. This is multiplicative, and so is already in

log-linear form. We have:

π̃#t = π̃t + x̃1,t − x̃2,t (63)

Now we need to log-linearize the auxiliary variables. Imposing the identity that Yt = Ct, we

have:

lnx1,t = ln
(
Y 1−σ
t mct + φβEt(1 + πt+1)

εx1,t+1

)
Totally differentiating:

x1,t − x1
x1

=
1

x1

(
(1− σ)Y −σmc(Yt − Y ) + Y 1−σ(mct −mc) + εφβ(1 + π)ε−1x1(πt+1 − π) + φβ(1 + π)ε(x1,t+1 − x1)

)
Distributing the 1

x1
and multiplying, dividing where necessary to get in to percent deviation

terms, and making use of the continued assumption of linearization about a zero inflation steady

state, we have:

x̃1,t =
(1− σ)Y 1−σmc

x1
Ỹt +

Y 1−σmc

x1
m̃ct + εφβEtπ̃t+1 + φβEtx̃1,t+1

Now, with zero steady state inflation, we know that x1 = Y 1−σmc
1−φβ . This simplifies the first two

terms:
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x̃1,t = (1− σ)(1− φβ)Ỹt + (1− φβ)m̃ct + εφβEtπ̃t+1 + φβEtx̃1,t+1 (64)

Now, log-linearize x2,t:

lnx2,t = ln
(
Y 1−σ
t + φβEt(1 + πt+1)

ε−1x2,t+1

)
Totally differentiating:

x2,t − x2
x2

=
1

x2

(
(1− σ)Y −σ(Yt − Y ) + (ε− 1)φβ(1 + π)ε−2x2(πt+1 − π) + φβ(1 + π)ε−1(x2,t+1 − x2)

)
Distributing the x2, multiplying and dividing by appropriate terms, and making use of the fact

that π =, we have:

x̃2,t =
(1− σ)Y 1−σ

x2
Ỹt + (ε− 1)φβEtπ̃t+1 + φβEtx̃2,t+1

Since x2 = Y 1−σ

1−φβ , this can be written:

x̃2,t = (1− σ)(1− φβ)Ỹt + (ε− 1)φβEtπ̃t+1 + φβEtx̃2,t+1 (65)

Now, subtracting x̃2,t from x̃1,t, we have:

x̃1,t − x̃2,t = (1− φβ)m̃ct + φβEtπ̃t+1 + φβEt (x̃1,t+1 − x̃2,t+1)

From above, we also know that:

x̃1,t − x̃2,t = π̃#t − π̃t

But π̃#t = 1
1−φ π̃t, so we must also have:

x̃1,t − x̃2,t =
φ

1− φ
π̃t

Make this substitution above:

φ

1− φ
π̃t = (1− φβ)m̃ct + φβEtπ̃t+1 + φβEt

(
φ

1− φ
Etπ̃t+1

)
Multiplying through:

π̃t =
(1− φ)(1− φβ)

φ
m̃ct + (1− φ)βEtπ̃t+1 + φβEtπ̃t+1

Or:
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π̃t =
(1− φ)(1− φβ)

φ
m̃ct + βEtπ̃t+1 (66)

This expression is sometimes called the New Keynesian Phillips Curve. It is “new” in the sense

of being forward-looking. It is a Phillips Curve in the sense of showing a relationship between some

real measure, m̃ct, and inflation, π̃t. It is also common to see the Phillips Curve expressed in terms

of the output gap, using the relationship between real marginal cost and the gap that we derived

above:

π̃t =
(1− φ)(1− φβ)

φ
(σ + η)

(
Ỹt − Ỹ f

t

)
+ βEtπ̃t+1 (67)

Using the terminal condition that inflation will return to steady state eventually, we can solve

the NKPC forward to get:

π̃t =
(1− φ)(1− φβ)

φ

∞∑
j=0

βjm̃ct+j (68)

In other words, current inflation is proportional to the present discounted value of expected real

marginal cost. This expression is actually pretty intuitive. Real marginal cost is the inverse price

markup. In the model without price rigidity, firms desire constant markups. If expected future

marginal cost is high, then firms will have low markups. Firms given the option of updating prices

today will try to increase price today (since they may be stuck with that price in the future) to

hit their desired price markup (and vice-versa), putting upward pressure on current inflation (and

vice versa). The “slope” of the Phillips Curve is decreasing in φ: when φ is large, the coefficient

on marginal cost (or the gap) is small, suggesting that real movements put little upward pressure

on inflation. When φ is small, the Phillips Curve is steep. In the limiting case, as prices become

perfectly flexible (φ→∞), the Phillips Curve becomes vertical, which means m̃ct = 0 and Ỹt = Ỹ f
t

(e.g. we would be at the flexible price allocation).

The expressions for At and money growth are already log-linear, so we have:

Ãt = ρaÃt−1 + εa,t (69)

∆m̃t = −π̃t + ρmπ̃t−1 + ρm∆m̃t−1 + εm,t (70)

∆m̃t = m̃t − m̃t−1 (71)

Lastly, we need to log-linearize the money demand expression:

lnmt = ln θ + it − ln it + σ lnYt

Totally differentiating:
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m̃t = ĩt −
1

i
ĩt + σỸt

Recall that ĩt = it − i, where i = 1
β − 1 since steady state inflation is zero. Hence we can write

this as:

m̃t = ĩt −
β

1− β
ĩt + σỸt

Or:

m̃t =

(
1− β

1− β

)
ĩt + σỸt (72)

This is intuitive. Demand for real balances is decreasing in the real interest rate and increasing

Yt.

This means we can re-write the complete (though reduced, because I’ve eliminated a lot of the

extraneous variables) log-linearzied system of equations as:

Ỹt = EtỸt+1 −
1

σ

(̃
it − Etπ̃t+1

)
(73)

π̃t =
(1− φ)(1− φβ)

φ
(σ + η)

(
Ỹt − Ỹ f

t

)
+ βEtπ̃t+1 (74)

Ỹ f
t =

1 + η

σ + η
Ãt (75)

Ãt = ρaÃt−1 + εa,t (76)

∆m̃t = −π̃t + ρmπ̃t−1 + ρm∆m̃t−1 + εm,t (77)

∆m̃t = m̃t − m̃t−1 (78)

m̃t =

(
1− β

1− β

)
ĩt + σỸt (79)

This is seven equations in seven variables
(
Ỹt, ĩt, π̃t, Ỹ

f
t , Ãt,∆m̃t, m̃t

)
. We have an “aggregate

demand” expression given by the linearized Euler equation, an “aggregate supply” relationship

given by the Phillips Curve, a productivity shock, a money supply relationship, a money demand

relationship, and two auxiliary expressions defining growth in real balances and the flexible price

level of output. Note that you won’t get exactly the same output as Dynare will give you from this

linearization. It will be very close. The reason is that I approximated ln(1 + it) = it, whereas when

Dynare does the approximation it won’t use that extra term in doing the log-linearization.

9 A Taylor Rule Formulation

In the model as laid out so far, whether in log-linearized form or not, I have characterized monetary

policy with an exogenous rule for money growth. This doesn’t seem to square particularly well with

26



actual central bank practice, where central bankers tend to think of policy in terms of interest rates,

not monetary aggregates per se.

For reasons that will soon become clearer, an exogenous interest rate rule will lead to an

indeterminacy in the model. An interest rate specification of policy needs to feature nominal

interest rates reacting, and reacting sufficiently, to endogenous variables like inflation and output.

The most popular interest rate rule is somewhat generically called a Taylor rule, after John Taylor.

It takes a form similar to the following:

it = (1− ρi)i+ ρiit−1 + (1− ρi) (φπ(πt − π) + φx (lnXt − lnX)) + εi,t (80)

i is the steady state interest, π is an exogenous steady state inflation target, lnXt is the output

gap, lnX is the steady state output gap, and εi,t is a monetary policy shock, analogous to the εm,t

in the money growth specification. ρi is a smoothing parameter, and φπ and φx are non-negative

coefficients. Assume that φπ > 1 (we’ll talk about why later). The policy rule is one of partial

adjustment – it says that the current nominal rate is a convex combination of the lagged nominal

rate and the current target rate, where the current target rate is a linear function of the deviations

of inflation and the output gap from target (where I have implicitly assumed that the targets

are the long run steady state levels). Note that there is no mention of money in this policy rule

specification. I can effectively replace the money growth process above with this rule. Given the

chosen nominal interest rate, the central bank will implicitly print the requisite amount of money

to meet money demand at that interest rate. Given the specification for money we have used –

where money enters the utility function in an additively separable fashion – we could actually not

talk about money at all, and consider the economy to be “cashless.”

The full set of equilibrium conditions can be written:

C−σt = βEtC
−σ
t+1(1 + it)(1 + πt+1)

−1 (81)

ψNη
t = C−σt wt (82)

mt = θ
1 + it
it

Cσt (83)

mct =
wt
At

(84)

Ct = Yt (85)

Yt =
AtNt

vpt
(86)

vpt = (1− φ)(1 + π#t )−ε(1 + πt)
ε + (1 + πt)

εφvpt−1 (87)

(1 + πt)
1−ε = (1− φ)(1 + π#t )1−ε + φ (88)

1 + π#t =
ε

ε− 1
(1 + πt)

x1,t
x2,t

(89)
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x1,t = C−σt mctYt + φβEt(1 + πt+1)
εx1,t+1 (90)

x2,t = C−σt Yt + φβEt(1 + πt+1)
ε−1x2,t+1 (91)

lnAt = ρa lnAt−1 + εa,t (92)

it = (1− ρi)i+ ρiit−1 + (1− ρi) (φπ(πt − π) + φx (lnXt − lnX)) + εi,t (93)

Here I have gotten rid of the money growth specification, and since I’ve done that I no longer

need to keep ∆ lnmt as a variable, so this is actually one fewer equation and one fewer unknown

than I previously had. As I said above, I really don’t even need to keep track of mt anymore either,

but I’ll keep it in because that turns out to be instructive.

One point that I should mention up front. One might be tempted to think that the steady

state log output gap is zero, meaning that Y = Y f . This will only be the case if π = 0, otherwise

Y < Y f . From above, we know that:

Y f =

(
1

ψ

ε− 1

ε

) 1
σ+η

(94)

For the sticky price economy, we have:

N =

(
1

ψ
(vp)σmc

) 1
η+σ

(95)

We know that:

Y =
N

vp

Steady state output is then:

Y =

(
1

ψ

) 1
σ+η

(vp)
− η
η+σ mc

1
η+σ (96)

We also know:

mc =
1− φβ(1 + π)ε

1− φβ(1 + π)ε−1
1 + π#

1 + π

ε− 1

ε

Now, if π = 0, then mc = ε−1
ε and vp = 1, so this reduces to the same expression as Y f , so

we’ll have Y = Y f . But if π > 0, you can show that mc < ε−1
ε and we know that vp > 1. Since

the exponent on mc is positive, and the exponent on vp negative, this means that π > 0 will mean

Y < Y f , which means the steady state output gap will be negative, lnX = lnY − lnY f < 0.

I solve the model in Dynare using the coefficients ρi = 0.8, φπ = 1.5, and φx = 0. Below are

the impulse responses to a technology shock under the Taylor rule formulation:
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If you compare these to what we had earlier, you’ll notice that they are substantively different.

In particular, the impact increase in output under the Taylor rule is much larger than under the

exogenous money growth rule; hence we also see a smaller drop in hours on impact, a smaller

increase in the real interest rate, and a smaller drop in inflation. We also see the nominal interest

rate moving. Also, the response of the price level here seems to be more or less permanent, whereas

in the money growth rule case it seemed to be mean-reverting.

To get a better sense of these differences, below I plot the impulse response of the nominal supply

to the technology shock. Note that the nominal money supply didn’t respond in the previous case.
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Here we see that the nominal money supply rises rather significantly. In other words, under the

Taylor rule the money supply is effectively endogenous, and the central bank reacts to the increased

productivity by accommodating it and increasing the money supply. This increase in the money

supply helps real balances increases – now we don’t have to simply rely on prices falling to get real

balances to go up, so output can expand by more than it would if the money supply were fixed.

This endogenous response of the money supply is what allows output to rise by more than it did

under the exogenous money rule process earlier. Accordingly, we see a smaller drop in the output

gap in response to the technology shock.
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Next, consider a positive shock to the Taylor rule, which raises the nominal interest rate. This

coincides with a decline in the money supply, an increase in the real interest rate, and a decline

in economic activity. The channels at play for why this nominal shock has real effects are the

same as above when we thought about the nominal shock in terms of the money supply. There

are two ways to think about. First, the decrease in the money supply is matched by a less than

proportional decrease in the price level because of price stickiness; this means that real balances

decline, which via the basic logic above necessitates a decline in output. It also has effect of raising

the real interest rate. The nominal rate rises, and because of price stickiness expected inflation

does not rise enough, so the real rate rises, which leads to a reduction in demand.
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Below are the impulse responses of the flexible price level of output as well as the output gap.
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In log-linear terms, the Taylor rule is just:

ĩt = ρĩit−1 + (1− ρi)
(
φππ̃t + φxX̃t

)
+ εi,t (97)

We can the write the linearized model as:

Ỹt = EtỸt+1 −
1

σ

(̃
it − Etπ̃t+1

)
(98)
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π̃t =
(1− φ)(1− φβ)

φ
(σ + η)

(
Ỹt − Ỹ f

t

)
+ βEtπ̃t+1 (99)

Ỹ f
t =

1 + η

σ + η
Ãt (100)

Ãt = ρaÃt−1 + εa,t (101)

ĩt = ρĩit−1 + (1− ρi)
(
φππ̃t + φxX̃t

)
+ εi,t (102)

Sometimes you will see different ways of writing the model out, and it is useful to review them

here. First, note that we can eliminate Ãt and just write the model in terms of Ỹ f
t . Let ω = 1+η

σ+η :

Ỹ f
t = ωÃt

Ỹ f
t = ω

(
ρaÃt−1 + εa,t

)
Ỹ f
t = ω

(
ρa

1

ω
Ỹ f
t−1 + εa,t

)
Ỹ f
t = ρaỸ

f
t−1 + ωεa,t (103)

In other words, we can think about the flexible price level of output is effectively being exoge-

nous, obeying the same AR(1) process as Ãt, but with the shock scaled by the factor ω.

Now, let’s write the Euler/IS equation in terms of the output gap, X̃t, instead of output. We

can do this by subtracting Ỹ f
t and EtỸ

f
t+1 from both sides:

Ỹt − Ỹ f
t − EtỸ

f
t+1 = −Ỹ f

t + EtỸt+1 − EtỸ f
t+1 −

1

σ

(̃
it − Etπ̃t+1

)
X̃t = EtX̃t+1 + EtỸ

f
t+1 − Ỹ

f
t −

1

σ

(̃
it − Etπ̃t+1

)
Now, from the Fisher relationship, we know that r̃t = ĩt − Etπ̃t+1. Now, let’s consider a

hypothetical allocation in which prices are flexible (e.g. φ = 0). Then we know by construction

that X̃t = 0. This means we can solve for a hypothetical flexible price real interest rate (sometimes

called the “Wicksellian natural rate of interest” as:

0 = EtỸ
f
t+1 − Ỹ

f
t −

1

σ
r̃ft

r̃ft = σ
(
EtỸ

f
t+1 − Ỹ

f
t

)
(104)

In words, the “natural rate” of interest is proportional to the expected growth rate of the flexible

price level of output. We can use this to write the Euler equation as:
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X̃t = EtX̃t+1 −
1

σ

(̃
it − Etπ̃t+1 − r̃ft

)
(105)

In other words, the current output gap equals the expected future output gap minus 1
σ times

the “real interest rate gap” – the gap between the actual real interest rate and the flexible price

real interest rate. Holding EtX̃t+1 fixed, if the real interest rate gap is positive (actual real rate

“too high”) then the gap will be negative, and vice-versa.

Since EtỸ
f
t = ρaỸ

f
t , this further reduces to:

r̃ft = σ(ρa − 1)Ỹ f
t (106)

Now, plug in the AR(1) process for Ỹ f
t that we just derived:

r̃ft = σ(ρa − 1)
(
ρaỸ

f
t−1 + ωεa,t

)
r̃ft = σ(ρa − 1)

(
ρa

1

σ(ρa − 1)
r̃ft−1 + ωεa,t

)

r̃ft = ρar̃
f
t−1 + σ(ρa − 1)ωεa,t (107)

With this, we can reduce the entire log-linearized system to:

X̃t = EtX̃t+1 −
1

σ

(̃
it − Etπ̃t+1 − r̃ft

)
(108)

π̃t =
(1− φ)(1− φβ)

φ
(σ + η)X̃t + βEtπ̃t+1 (109)

ĩt = ρĩit−1 + (1− ρi)
(
φππ̃t + φxX̃t

)
+ εi,t (110)

r̃ft = ρar̃
f
t−1 + σ(ρa − 1)ωεa,t (111)

This is sometimes called the “three equation New Keynesian model.” This may look odd,

since there are actually four equations, but only three of these equations describe endogenous

variables: the first equation is the Euler/IS/demand relationship, the second is the Phillips Curve,

and the third is a policy rule. These three equations are what make up the “three equation model.”

The fourth equation is an exogenous process for r̃ft (which, again, we derived from a process for

productivity).

10 Slight Detour: The Method of Undetermined Coefficients

Consider the small scale model above. It features two forward-looking jump variables (π̃t and X̃t)

and two state variables (one endogenous, the interest rate, ĩt, and one exogenous, the natural rate

of interest, r̃ft ). We could solve for the policy functions mapping the states into the jump variables
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using the methodology we laid out in class. Dynare will do this for us.

Another solution methodology, which is more intuitive, is to use the method of undetermined

coefficients. This involves postulating (really, guessing) that the policy functions are linear, impos-

ing that, and then solving a system of equations for the policy rule coefficients. In a small scale

model without many state variables, this is often pretty straightforward and will allow us to get

analytical policy functions, which is nice. Let’s try that out here.

Consider the “three equation” model with the exogenous process for r̃ft . To make life easy, let’s

assume that ρi = 0. This means that ĩt is no longer a state; indeed, it becomes redundant and can

be substituted out entirely. Doing so, the remaining system can be written as follows:

X̃t = EtX̃t+1 −
1

σ

(
φππ̃t + φxX̃t − Etπ̃t+1 − r̃ft

)
(112)

π̃t = κX̃t + βEtπ̃t+1 (113)

r̃ft = ρar̃
f
t−1 + σ(ρa − 1)ωεa,t (114)

To keep notation tight, I have defined κ = (1−φ)(1−φβ)
φ (σ+η) as the slope on the Phillips Curve.

The only state variable is r̃ft . Let’s guess that the policy functions are linear:

X̃t = λ1r̃
f
t

π̃t = λ2r̃
f
t

Plug these in to the Euler/IS and Phillips Curves:

λ1r̃
f
t = λ1ρar̃

f
t −

1

σ

(
φπλ2r̃

f
t + φxλ1r̃

f
t − λ2ρar̃

f
t − r̃

f
t

)
σλ1r̃

f
t − σλ1ρar̃

f
t + φπλ2r̃

f
t + φxλ1r̃

f
t − λ2ρar̃

f
t − r̃

f
t = 0

(σλ1 − σλ1ρa + φπλ2 + φxλ1 − λ2ρa − 1) r̃ft = 0

⇒ σλ1 − σλ1ρa + φπλ2 + φxλ1 − λ2ρa − 1 = 0

λ2r̃
f
t = κλ1r̃

f
t + βλ2ρar̃

f
t

λ2r̃
f
t − κλ1r̃

f
t − βλ2ρar̃

f
t =

(λ2 − κλ1 − βλ2ρa) r̃ft = 0

⇒ λ2 − κλ1 − βλ2ρa = 0

Here I have made use of the fact that Etr̃
f
t+1 = ρar̃

f
t . The above amounts to two equations in

two unknowns (λ1 and λ2). We can solve for these coefficients. From the second expression, we

have:
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λ1 =
1− βρa

κ
λ2

Simplify the first expression somewhat:

(σ(1− ρa) + φx)λ1 + (φπ − ρa)λ2 − 1 = 0

Plug in for λ1: (
(σ(1− ρa) + φx) (1− βρa)

1

κ
+ φπ − ρa

)
λ2 = 1

So:

λ2 =

(
(σ(1− ρa) + φx) (1− βρa)

1

κ
+ φπ − ρa

)−1
This can be re-written:

λ2 =
κ

(σ(1− ρa) + φx) (1− βρa) + κ(φπ − ρa)
(115)

Then we have:

λ1 =
1− βρa

(σ(1− ρa) + φx) (1− βρa) + κ(φπ − ρa)
(116)

So the policy functions are:

X̃t =
1− βρa

(σ(1− ρa) + φx) (1− βρa) + κ(φπ − ρa)
r̃ft (117)

π̃t =
κ

(σ(1− ρa) + φx) (1− βρa) + κ(φπ − ρa)
r̃ft (118)

You can verify that you get the same thing by sticking the linearized equations into Dynare and

letting it do the work for you.

11 Another Detour: Calibrating the Calvo Parameter φ

How does one come up with a reasonable value for φ? This is a really important parameter in the

model – the bigger it is (the stickier are prices), the bigger will be the effects of nominal shocks

and the more distorted will be the response of variables to real shocks.

It turns out that there exists a close mapping between φ and the expected duration of a price

change. Consider a firm that gets to update its price in a period. In expectation, how long will

it be stuck with that price? The probability of getting to adjust its price one period from now

is 1 − φ. The probability of adjusting in two periods is φ(1 − φ): φ is the probability it doesn’t

adjust after one period, and 1− φ is the probability it can adjust in two periods. The probability

of adjusting in three periods is φ2(1− φ): φ2 is the probability it gets to the third period with its
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initial price, and 1− φ is the probability it can adjust in that period. And so on. So the expected

duration of a price chosen today is:

Expected Duration = (1− φ)
∞∑
j=1

φj−1j

The summation part on the inside can be written:

S = 1 + 2φ+ 3φ2 + 4φ3 + . . .

Sφ = φ+ 2φ2 + 3φ3 + . . .

(1− φ)S = 1 + φ+ φ2 + φ3 + . . .

(1− φ)S =
1

1− φ

S =
1

(1− φ)2

The second to last line above uses the fact that 1 + φ + φ2 + · · · = 1
1−φ as long as φ < 1.

Combining this with the 1− φ outside the summation term above, we have:

Expected Duration =
1

1− φ

Bils and Klenow (2004, JPE ) analyze micro data on pricing and computing the average length of

time between prices changes. Though there is substantial heterogeneity across types of goods (e.g.

the price of newspapers rarely changes, while gasoline changes daily), for most goods, prices change

on average once every six months, which would suggest that φ ≈ 1/2 at a quarterly frequency (av-

erage duration of two quarters). For these models to produce realistic responses to monetary policy

shocks you need φ much higher (more like the 0.75 value I’ve been using). So an important area of

research essentially involves ways to “flatten” the Phillips Curve without assuming counterfactually

large levels of price rigidity.

12 Alternative Price Stickiness Model: Rotemberg (1982) Pricing

We have thus far modeled price stickiness via the Calvo (1983) assumption, wherein each period

firms face a constant hazard of being able to adjust their price. This means that in equilibrium

firms are heterogeneous, but the model is rigged in such a way that aggregation works out nicely.

An alternative pricing assumption is based on Rotemberg (1982). In the Rotemberg model, firms

face a quadratic cost of price adjustment. In equilibrium they all end up behaving identically. To a

first order approximation about a zero inflation steady state, the Rotemberg and Calvo models can

be parameterized to be identical. They are not identically to order higher than one, and they have

different implications for micro data (e.g. in the Calvo model only a fraction of firms will adjust

their price in a given period, but in the Rotemberg model all firms will be changing their prices
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each period).

In the Rotemberg model, there are many intermediate goods firms. Firms face the same demand

curve from the final good firm as earlier. They produce output according to Yt = AtNt(j), just

as in the Calvo model. Cost-minimization implies that real marginal cost is mct = wt
At

, where

wt ≡Wt/Pt is the real wage, common to all firms.

Nominal flow profit for producer j is given by:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ε
Yt −WtNt(j)−

ψ

2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt (119)

The parameter ψ ≥ 0 measures the cost of price adjustment, and it is measured in units of the

final good. We can write the profit function in real dollars as:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ε Yt
Pt
− wtNt(j)−

ψ

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (120)

Since wt = Atmct, we can write this as:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ε Yt
Pt
−mctAtNt(j)−

ψ

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (121)

But this is just:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ε Yt
Pt
−mctAtYt(j)−

ψ

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (122)

Plugging in the demand function for variety j, we get:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ε Yt
Pt
−mctAtPt(j)−εP εt Yt −

ψ

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (123)

Each period, firms choose price to maximize the expected present discounted value of flow profit,

where discounting is by the household’s stochastic discount factor. The optimality condition for

price-setting can be written:

(ε− 1)

(
Pt(j)

Pt

)−ε Yt
Pt

=

εmct

(
Pt(j)

Pt

)−ε−1 Yt
Pt
− ψ

(
Pt(j)

Pt−1(j)
− 1

)
Yt

Pt−1(j)
+

βψEt

[
uC(Ct+1, Nt+1)

uC(Ct, Nt)

(
Pt+1(j)

Pt(j)
− 1

)(
Pt+1(j)

Pt(j)

)(
Yt+1

Pt(j)

)]
(124)

In equilibrium all firms behave identically. This means that they all charge the same price and

produce the same output. The optimality condition for prices can be written in terms of inflation

rates as:
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(ε− 1) = εmct − ψ(1 + πt)πt + βEt
uC(Ct+1, Nt+1)

uC(Ct, Nt)
ψ(1 + πt+1)πt+1

Yt+1

Yt
(125)

If we assume that uC = C−1t , and in equilibrium know that Yt = Ct, then these terms cancel,

leaving:

(ε− 1) = εmct − ψ(1 + πt)πt + βEtψ(1 + πt+1)πt+1 (126)

Now, let’s log-linearize this:

ln(ε− 1) = ln (εmct − ψ(1 + πt)πt + βEtψ(1 + πt+1)πt+1)

0 =
1

ε− 1
[εdmct − ψ(1 + π)dπt − ψπdπt + βψ(1 + π)dπt+1 + βψπdπt+1]

Now, if we are linearizing about the point π = 0, then this simplifies greatly to:

0 =
ε

ε− 1
dmct −

ψ

ε− 1
π̃t + β

ψ

ε− 1
Etπ̃t+1

Now, what is steady state mc? It is ε−1
ε . So we can write this as:

0 = m̃ct −
ψ

ε− 1
π̃t + β

ψ

ε− 1
Etπ̃t+1

Or, re-arranging terms:

π̃t =
ε− 1

ψ
m̃ct + βEtπ̃t+1 (127)

If ψ = (ε − 1) φ
(1−φ)(1−φβ) , then this Phillips Curve is identical to what we had in the Calvo

model.

The aggregate resource constraint comes out to:

Yt = Ct +
ψ

2
π2t Yt (128)

When you linearize this, you get:

lnYt = ln

[
Ct +

ψ

2
π2t Yt

]
Ỹt =

dCt
Y

+
ψ

2
π2Ỹt + 2ψππ̃t

If we are linearizing about the point π = 0, then the latter terms drop out, and C = Y , leaving:

Ỹt = C̃t (129)

The rest of the equilibrium conditions of the model (Euler equation, labor supply condition,
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money demand condition, and policy rule) are all the same.

39


