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1 Introduction

This set of notes describes some “preliminaries” before we get too far into the course. Macroeco-

nomics is both dynamic and stochastic. Dynamic means that we have to keep track of variables

across time, and stochastic means that we need to study expectations. Hence, I will first start by

saying a few things about notation and expectations operators. Then we’ll say something about

the stochastic processes that we assume in macro – I’ll talk about Markov processes and ARMA

processes. Then we’ll discuss a couple of tools that I’ll discuss in the context of ARMA models,

but which are more broadly applicable and will be used when we study economic models – impulse

response functions and variance decompositions. I’ll also give a brief discussion of “filtering” which

is important in that we typically need to transform real-world data (because of trends) before an-

alyzing them in the context of an economic model. I’ll conclude with a discussion of the Lucas

Critique, which forms the basis for much of modern macroeconomics.

2 Notation and Expectations

A variable is a realization of something that can change (either deterministically or stochastically).

Endogenous variables are variables whose values are determined “inside” of a model (through

decision rules derived from optimization problems and imposition of an equilibrium concept). Ex-

ogenous variables are variables whose values are determined “outside” of a model – these are taken

as given. We take exogenous variables, feed them into the model, and the realizations of the en-

dogenous variables are the outcome of the model. Parameters are values that govern relationships

in a model (e.g. how much curvature there is in a utility function, how heavily agents discount

future utility flows, etc.). We think of parameters as exogenous and fixed, though one could con-

ceive of models in which parameters change stochastically (at which point the parameters become

exogenous variables). I will try to use Latin letters (e.g. X, Y ) to denote variables, and Greek

letters (e.g. α, β) to denote parameters. I will try, but I will probably fail at some point.
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We also encounter the terms “state” and “control” in describing variables in a macroeconomic

model. Exogenous variables are always state variables, but endogenous variables can be either

controls or states. Loosely, “control” variables are variables whose values are chosen in a model

and are free to “jump” in response to new information. State variables are variables whose values

agents need to know to make decisions. These are variables that are either exogenous (a productivity

term, government spending) or endogenous (capital stocks, stocks of assets, etc.). State variables

are predetermined with respect to control variables: you need to know the states to choose the

controls. As I said, some states are endogenous in the sense that current actions can affect future

values of the state, but the current value of the states is known.

Macroeconomic models and data are dynamic – we observe realizations of variables at points in

time. Most of macro (with the exception of some growth models and asset pricing models) models

time as discreet. Let Xt denote some variable (either endogenous or exogenous, control or state).

This notation refers to the realization of the variable at date t. Xt−1 refers to the realized value

one period before t, Xt+k the realized value k periods subsequent to t, and so on. Think of these

time indexes as representing integers. People flip back and forth on timing notations, and I do

the same (sorry). Sometimes, we think of period 0 as being the “present” and move time forward;

then Xt for t = 0, 1, 2, ... represents realizations of the variable in the present (period 0) and going

forward. Other times, we think of period t as being the present; here we have Xt+k as representing

realizations of X either moving forward (k > 0), backward (k < 0), or in the present (k = 0).

Macroeconomic models are stochastic, in the sense that there is randomness in the realization

of variables. The stochastic nature of macro models comes in from exogenous variables, which

we typically model as having a random component. Because these models are stochastic, and

because agents are forward-looking, we need to worry about expectations. E(Xt) refers to the

unconditional expectation of Xt. By unconditional I mean knowing nothing about the current

state of the system. EtXt+k refers to expectation of future realizations of X conditional on all

information known at time t. By convention we have that EtXt = Xt: since Xt is known in period

t, there is no uncertainty over its realization. Also, EtXt−k = Xt−k.

For two arbitrary random variables, Y and Z, the Law of Iterated Expectaions says that E(Y ) =

E(E(Y | Z)). In words, this says that the unconditional expectation of a conditional exepctation is

the unconditional expectation. This has the following implication for time series: Et(Et+1(Xt+2)) =

EtXt+2. In other words, your best guess conditional on today’s information (where “today” is taken

to be period t) of your best guess conditional on tomorrow’s information (“tomorrow” being period

t+ 1) of a variable two periods out from now is just your best guess based on today’s information.

Rational expectations moves beyond simple expected value and imposes some more structure.

This dates back to Muth and Lucas. Rational expectations says that expectations of future real-

izations of relevant variables are (i) correct on average and (ii) the forecast errors are unpredictable

given available information. In other words, agents have model consistent expectations in the sense

that they (i) know the model generating endogenous variables and (ii) use this knowledge to make

forecasts. This does not imply that agents do not make forecast errors. Let EtXt+k be the forecast

of Xt k periods from now conditional on available information at time t. The forecast error is
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ut+k = Xt+k − EtXt+k: just the realized value minus the expected value. In general, ut+k will

not be zero, but it ought to be zero on average; i.e. the unconditional expectation of it should

be zero: E(ut+k) = 0. The logic behind this is pretty simple: if you were making forecast errors

on average, you aren’t forming expectations optimally. Furthermore, the covariance of the forecast

error with anything known at the time the forecast is made should be zero: cov(ut+k, Zt) = 0 where

Zt represents anything known at t. So rational expectations says that your forecasts are right on

average and are unpredictable. Another way to think about this is that expectations are “optimal”

in some sense – if you were wrong on average or predictably wrong (and being wrong mattered), you

couldn’t be forming expectations optimally. Rational expectations is widely used in empirical work,

in that it implies restrictions that can be used in econometrics. Note that rational expectation does

not necessarily rule out informational frictions: we could restrict the information that agents have

available to them. This may give rise to them appearing to violate rational expectations (their

forecast errors are predictable), but only if one conditions on more information than the agents

have at the time they make the forecast.

3 Stochastic Processes

As noted above, most macro models are driven by shocks to exogenous processes. We need to

specify properties of the stochastic processes that these exogenous states follow.

The two most common ways to model a stochastic process are as a Markov process (discreet

outcomes) or as an autoregressive moving average (ARMA) process. The so-called “Markov Prop-

erty” says that the current state of a system is a sufficient statistic to forecast future values of the

state; e.g. once you know St (the current state), knowing St−k for k > 0 doesn’t tell you anything

about the expected evolution of the state going forward.

Let S̄ be a N × 1 vector of possible realizations of some exogenous state, call it st. Let P be a

N ×N probability (or transition) matrix. Its elements are the the probabilities of transition from

state i to state j between periods t and t+ 1. Hence:

Pi,j = prob (st+1 = sj | st = si)

Here i and j are particular discreet realizations in S̄. In other words, the rows (the i index)

refer to the current state, and the columns (the j index) tell you the probability of going to each

possible other state in t + 1, given that you are sitting in state i. All rows must sum to one (i.e.

the system will transition to some possible realization with probability 1 in the next period). Kind

of naturally, the larger are the elements on the diagonal, the more persistent is the process.

ARMA processes are continuous process which are built off of white noise processes. A white

noise process, which I denote here by εt, has the properties that it is mean zero (i.e. E(εt) = 0);

has a known and time-invariant variance (e.g. var(εt) = σ2), and the realizations of the white noise

process are uncorrelated at all leads and lags (e.g. cov(εt, εt+j) = 0 ∀ j).
An ARMA(p,q) process can be written:
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st = a+ ρ1st−1 + ρ2st−2 + · · ·+ ρpst−p + εt + θ1εt−1 + θ2εt−2 + . . . θqεt−q

Here, the p refers to the autoregressive lag order (the number of lagged dependent variables) and

q the moving average lag order (the number of lagged white noise terms). ARMA processes are

not unique – under certain conditions, you can go back and forth between an MA process and an

AR process. This means that you can often approximate the MA terms with a pure AR process

with sufficiently many lags. So, much of the time you can approximate any ARMA process with a

sufficiently long-lived AR(p) process.

An AR(p) process does not formally have the Markov property discussed above – knowing st

is not sufficient to forecast st+1, you’d also need to know st−1, st−2 and so on. But it turns out

you can redefine the state in such a way as to write an AR(p) as a VAR(1) (where the V stands

for vector). In particular, suppose I have a process (here I ignore any constant):

st = ρ1st−1 + ρ2st−2 + ρ3st−3 + . . . ρpst−p + εt

Then define a vector:

st =



st

st−1

st−2
...

st−p+1


Then we can write:

st

st−1

st−2
...

st−p+1


=



ρ1 ρ2 ρ3 . . . ρp

1 0 0 . . . 0

0 1 0 . . . 0
...

...
... . . .

...

0 0 0 . . . 0





st−1

st−2

st−3
...

st−p


+



εt

0

0
...

0


Or just:

st = Λst−1 + εt

Where Λ is the matrix of coefficients described above. With the state so redefined, this process

again has the Markov property. As we will see, having an AR(1) structure makes computation of

impulse responses and variance decompositions particularly straightforward.
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4 Impulse Response Functions and Variance Decompositions

An impulse response function is defined as the change in the current and expected values of a

variable (or a vector of variables) conditional on the realization of a shock at a point in time.

We think of a shock as an innovation (or surprise movement) in an exogenous variable, where the

innovation is modeled as white noise. This definition does not depend on any particular process for

the exogenous or endogenous variables. Suppose that Xt is a univariate process of some sort built

off white noise shocks. The impulse response function is defined as:

IRF(h) = EtXt+h − Et−1Xt+h | εt = e, h ≥ 0

Here, e is some particular realization of εt. It is common to calculate impulse response functions

to one standard deviation shocks, in which case e = σ, where σ is the standard deviation of εt. But

you can calculate an impulse response function for any sized (or signed) shock you want. If the

underlying process is linear, it won’t matter – there will be no dependence of the impulse response

function on the size of the shock (other than for scaling the response up or down), and the sign will

only affect the sign of the response. For a non-linear process this need not be the case. The impulse

response function is defined for different forecast horizons, h. h = 0 is said to the be “impact”

horizon.

As an example, suppose we have an AR(1) process:

Xt = 0.9Xt−1 + εt

Suppose that εt ∼ N(0, 1). Then the impulse response function can be computed by using this

process to calculate expected values. At time t− 1, the expected value of εt is 0. Hence:

Et−1Xt = 0.9Xt−1

Et−1Xt+1 = 0.92Xt−1

Et−1Xt+2 = 0.93Xt−1
...

Et−1Xt+h = 0.9h+1Xt−1

Now compute expected values conditional on the realization of a shock at time t of 1 (equal to

the standard deviation):
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EtXt = 0.9Xt−1 + 1

EtXt+1 = 0.92Xt−1 + 0.9

EtXt+2 = 0.93Xt−1 + 0.81
...

EtXt+h = 0.9h+1Xt−1 + 0.9h

Taking the difference between these two yields:

EtXt − Et−1Xt = 1

EtXt+1 − Et−1Xt+1 = 0.9

EtXt+2 − Et−1Xt+2 = 0.81
...

EtXt+h − Et−1Xt+h = 0.9h

Above I have shown an impulse response function for an exogenous variable. We can also do

this for an endogenous variable, Yt. Suppose that Yt depends on Xt in some way; a particularly

simple assumption is that this dependence is linear, e.g. Yt = βXt. We would proceed with the

construction of the IRF of Yt in the same way – compute the forecasts conditional on the realization

of a shock at time t, and compare them to the forecasts without that realization. For this example,

the impulse response of Yt would simply be proportional to the impulse response of Xt, with the

constant of proportionality equal to β.

It is common to plot impulse responses as a way to analyze them. For this process, we’d have:
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A useful insight is that an impulse response function is essentially just a plot of the coefficients

of the moving average representation of a time series. Take our AR(1) example from above. To
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recover the moving average representation, iteratively substitute as follows:

Xt = 0.9Xt−1 + εt

Xt = 0.9 (0.9Xt−2 + εt−1) + εt = 0.81Xt−2 + 0.9εt−1 + εt

Xt = 0.81 (0.9Xt−3 + εt−2) + 0.9εt−1 + εt = 0.93Xt−3 + 0.81εt−2 + 0.9εt−1 + εt

If you keep doing this, since 0.9k → 0 for k sufficiently big, you get:

Xt = εt + 0.9εt−1 + 0.81εt−2 + 0.93εt−3 + . . .

Or in summation notation:

Xt =

∞∑
j=0

0.9jεt−j

Comparing this to what we had above, we see that the impulse response function is just the

moving average representation “moved forward.” To see this, do what we did above by taking

expectations going forward:

Et−1Xt = 0.9εt−1 + 0.81εt−2 + 0.93εt−3 + . . .

Et−1Xt+1 = 0.81εt−1 + 0.93εt−2 + . . .

Et−1Xt+2 = 0.93εt−1 + 0.94εt−2 + . . .

Above, the εt term doesn’t show up, since Et−1εt = 0. Now do this conditional on the realization

of a value of εt of 1 in period t (same as we did above):

EtXt = 1 + 0.9εt−1 + 0.81εt−2 + 0.93εt−3 + . . .

EtXt+1 = 0.9 + 0.81εt−1 + 0.93εt−2 + . . .

EtXt+2 = 0.81 + 0.93εt−1 + 0.94εt−2 + . . .

Then take the difference to construct the impulse response function:

EtXt − Et−1Xt = 1

EtXt+1 − Et−1Xt+1 = 0.9

EtXt+2 − Et−2Xt+2 = 0.81
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This is exactly the same thing we found above. In other words, the impulse response at horizon

h is just the MA coefficient at lag h. Ultimately, what we’re often interested in in macro is

exactly this moving average representation, which tells us how primitive shocks (the εs) affect

variables at different horizons. Estimating and working with moving average terms is difficult

(requires distributional assumptions and maximum likelihood, since the εs are directly observed).

Estimating and working with AR(p) processes is relatively straightforward – most of the time,

OLS will be a consistent way to estimate these processes. So this tells us that we can recover a

moving average representation of a time series by estimating an AR model and constructing impulse

response functions – the coefficients of the impulse response function at different forecast horizons

(i.e. different h) are just the MA coefficients at the same lag.

Of course, in what I did above I (implicitly) assumed that I could recover the moving average

representation from the AR process. Sometimes this isn’t possible, in which case we would say we

have a non-invertible AR process. In multivariate frameworks there are some interesting economic

mechanisms that can give rise to this in an economic model. Don’t worry about this unless told

otherwise. Also, in what I did above, I assumed a simple AR(1) process, where mechanically

constructing impulse responses was pretty easy. You could have much more complicated processes

and the same general definition of an impulse response function is the same. An AR(p) process

may look nasty to compute an impulse response function by hand, but if you remember above, you

can write an AR(p) process as a VAR(1), which makes it quite straightforward to compute the

impulse response function. You may also encounter non-linear models, which complicates things

(but doesn’t change the definition of an impulse response function). To compute impulse response

functions in a non-linear model, we’ll use what is called “generalized impulse response functions.”

Here what you do is in essence simulate data from the non-linear model out to forecast horizons

h. You do this a bunch of times. Then you simulate data from the same model, but this time

condition on the realization of a particular shock in the first period, and then simulate data from

the non-linear model out to forecast horizon h. Then you average both of these simulations across

the number of times you did. This gives you the EtXt+k and the Et−1Xt+k, and then compute the

difference. This conceptually gives you the difference in the expected values of future values of the

model conditional on a realization of a shock in period t. We’ll revisit this issue later.

We can also construct impulse responses for multivariate processes. Suppose we have a 2 × 1

vector of variables, Xt, that obeys a vector AR(1), with two uncorrelated white noise processes

(e.g. “shocks”) buffeting it:

Xt = AXt−1 + B

[
ε1,t

ε2,t

]
The matrix B is 2×2. If the off-diagonal elements of both it and A are zeros, then this is just two

independent AR(1) processes. But non-zero off-diagonal elements allow for some more interesting

feedback, both from shocks and from lags of variables. Conceptually, the impulse response function

is the same as before – the displacement of forecasts of the now vector of variables conditional on

the realization of a shock at time t. But since there are now two shocks, there will be two different
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impulse response functions – one conditional on each shock. The impulse response function will

also be a vector – showing how both elements of Xt react over time. Since I’ve written this as a

vector AR(1) process, the impulse response functions look basically the same as in the scalar case.

Conditioning on one unit shocks to ε1,t and ε2,t (and setting the other equal to zero), we have:

IRF1(h) = Ah−1B(:, 1)

IRF2(h) = Ah−1B(:, 2)

To compute these, we just condition on the different columns of the “impact matrix.” As an

example, suppose that the matrixes are:

A =

(
0.7 0.2

0.5 0.3

)

B =

(
1 0.3

−0.2 1

)
Below are the impulse responses of variables “1 and 2” (corresponding to the rows of Xt) to

shocks “1 and 2” (corresponding to the rows of the shock vector).
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A related concept to impulse response functions is a variance decomposition. A variance de-

composition tells you what fraction of the forecast error variance of a variable (say Xt) is due to

different shocks, potentially at different horizons. Naturally, a variance decomposition is not a

particularly interesting construct for a univariate model with one shock (one white noise process

buffeting it) – that one shock explains all of the forecast error variance at all horizons. I will use

the terminology that an unconditional variance decomposition tells you how much of the variance
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a particular shock explains in an unconditional sense, while a conditional variance decomposition

tells you how much of the forecast error variance of a variable is explained by a shock at a particular

forecast horizon.

For simplicity, suppose that we have a univariate process that we can write in MA form. Let’s

write it:

Xt = εt + θ1εt−1 + θ2εt−2 + θ3εt−3

The variance of Xt is just (using properties of variance, and the fact that the variance of the

white noise process is constant over time):

var(Xt) =
(
1 + θ21 + θ22 + θ23

)
σ2

Now, suppose that Xt were hit by two different white noise processes, ε1,t and ε2,t. These are

independent, each with variance σ2i for i = 1, 2. Let’s write the process:

Xt = ε1,t + θ1ε1,t−1 + θ2ε1,t−2 + θ3ε1,t−3 + ε2,t + α1ε2,t−1 + α2ε2,t−2 + α3ε2,t−3

The total variance of Xt is then:

var(Xt) =
(
1 + θ21 + θ22 + θ23

)
σ21 +

(
1 + α2

1 + α2
2 + α2

3

)
σ22

What I call the unconditional variance decomposition then just the share of the total variance

due to each shock. We have:

var(Xt | ε1,t) =

(
1 + θ21 + θ22 + θ23

)
σ21(

1 + θ21 + θ22 + θ23
)
σ21 +

(
1 + α2

1 + α2
2 + α2

3

)
σ22

var(Xt | ε2,t) =

(
1 + α2

1 + α2
2 + α2

3

)
σ22(

1 + θ21 + θ22 + θ23
)
σ21 +

(
1 + α2

1 + α2
2 + α2

3

)
σ22

Naturally, the shares must sum up to 1. This exercise gives you an idea of how important each

shock is in accounting for volatility in Xt: this will depend on the “magnitudes” of the shocks (the

variances) as well as the coefficients. Since the variance decomposition is just a function of the MA

coefficients, it doesn’t contain any different information than the impulse response functions – it

just is a different way to view the model.

Computing the variance (and hence the variance share) is easy here since I used a simple MA

process. For a more complicated model (potentially non-linear), I could compute the unconditional

variance decomposition via simulation. I could simulate the model for many periods and calculate

the variance of Xt. Then I would simulate the model “turning off” shock 1 (setting the variance

to zero), and calculate the variance of Xt. Then I would do the same for shock 2. Then I would

take the shares.

To compute variance decompositions at different forecast horizons, we need to compute forecast
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errors. Define the forecast error at horizon h as Xt+h − Et−1Xt+h. In other words, this is the

difference between the realized value and the expected value before observing shocks in period t.

Take the MA process driven by the two shocks above. The forecast error at horizon h = 0 can be

constructed as:

Et−1Xt = θ1ε1,t−1 + θ2ε1,t−2 + θ3ε1,t−3 + α1ε2,t−1 + α2ε2,t−2 + α3ε2,t−3

Xt = ε1,t + θ1ε1,t−1 + θ2ε1,t−2 + θ3ε1,t−3 + ε2,t + α1ε2,t−1 + α2ε2,t−2 + α3ε2,t−3

The difference is just:

Xt − Et−1Xt = ε1,t + ε2,t

Now compute the forecast error horizon at h = 1. To do this, we have:

Et−1Xt+1 = θ2ε1,t−1 + θ3ε1,t−2 + α2ε2,t−1 + α3ε2,t−2

Xt+1 = ε1,t+1 + θ1ε1,t + θ2ε1,t−1 + θ3ε1,t−2 + ε2,t+1 + α1ε2,t + α2ε2,t−1 + α3ε2,t−2

The difference is:

Xt+1 − Et−1Xt+1 = ε1,t+1 + θ1ε1,t + ε2,t+1 + α1ε2,t

Similarly, if you do this for horizon h = 2, you get:

Xt+2 − Et−1Xt+2 = ε1,t+2 + θ1ε1,t+1 + θ2ε1,t + ε2,t+1 + α1ε2,t+1 + α2ε2,t

For any horizon h ≥ 3, the forecast error is just the process, since the t− 1 forecast 3 or more

periods out will just be zero:

Xt+h−Et−1Xt+h = ε1,t+h+θ1ε1,t+h−1+θ2ε1,t+h−2+θ3ε1,t+h−3+ε2,t+h+α1ε2,t+h−1+α2ε2,t+h−2+α3ε2,t+h−3

Now take the variance of the forecast error at each horizon:

h = 0 : var(Xt − Et−1Xt) = σ21 + σ22

h = 1 : var(Xt+1 − Et−1Xt+1) = (1 + θ21)σ21 + (1 + α2
1)σ

2
2

h = 2 : var(Xt+2 − Et−1Xt+2) = (1 + θ21 + θ22)σ21 + (1 + α2
1 + α2

2)σ
2
2

h ≥ 3 : var(Xt+h − Et−1Xt+h) =
(
1 + θ21 + θ22 + θ23

)
σ21 +

(
1 + α2

1 + α2
2 + α2

3

)
σ22

The variance decomposition is again just the shares, but now at difference forecast horizons:
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var(Xt − Et−1Xt | ε1) =
σ21

σ21 + σ22

var(Xt − Et−1Xt | ε2) =
σ22

σ21 + σ22

var(Xt+1 − Et−1Xt+1 | ε1) =
(1 + θ21)σ21

(1 + θ21)σ21 + (1 + α2
1)σ

2
2

var(Xt+1 − Et−1Xt+1 | ε2) =
(1 + α2

1)σ
2
2

(1 + θ21)σ21 + (1 + α2
1)σ

2
2

var(Xt+2 − Et−1Xt+2 | ε1) =
(1 + θ21 + θ22)σ21

(1 + θ21 + θ22)σ21 + (1 + α2
1 + α2

2)σ
2
2

var(Xt+2 − Et−1Xt+2 | ε2) =
(1 + α2

1 + α2
2)σ

2
2

(1 + θ21 + θ22)σ21 + (1 + α2
1 + α2

2)σ
2
2

h ≥ 3 : var(Xt+h − Et−1Xt+h | ε1) =

(
1 + θ21 + θ22 + θ23

)
σ21(

1 + θ21 + θ22 + θ23
)
σ21 +

(
1 + α2

1 + α2
2 + α2

3

)
σ22

h ≥ 3 : var(Xt+h − Et−1Xt+h | ε2) =

(
1 + α2

1 + α2
2 + α2

3

)
σ22(

1 + θ21 + θ22 + θ23
)
σ21 +

(
1 + α2

1 + α2
2 + α2

3

)
σ22

For this particular process, we see that the conditional variance decomposition at forecast

horizons greater than or equal to 3 is exactly the same as what I defined as the unconditional

forecast error variance decomposition above. This occurs because I wrote down an MA process

with a limited number of terms. For a more general process, the unconditional and conditional

variance decompositions will be the same only in the limit, as h→∞.

In practice, how might one compute variance decompositions for more complicated processes?

As we see in these formulas, the variance decomposition just depends on the moving average terms

on the variance of the shocks. Since the impulse response functions are just the moving average

terms, we can get the variance decomposition by first computing the impulse response functions to

one standard deviation shocks (it’s important to do one standard deviation shocks to get this to

work). The total forecast error variance at horizon h will then just be the sum of squared impulse

responses to all shocks up to that horizon. With one standard deviation shocks, in the simple MA

process I gave above, the impulse response at horizon h = 0 is just σ1 to shock 1 and σ2 to shock

2. At h = 1, the impulse responses are θ1σ1 and α1σ2. Now square the impulse responses and

sum them – you get (1 + θ21)σ21 and (1 + α2
1)σ

2
2. The total variance is just the sum of these (the

denominator above). To compute the variance decomposition, just take the ratio of the sum of

squared impulse responses to one of the shocks (either 1 or 2), and divide by the total variance. Do
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this for each horizon. At each horizon, the total forecast error variance is just the sum of squared

impulse responses up to that horizon summed across both shocks. To get the contribution of one

shock or another at that horizon, take the ratio of the sum of squared impulse responses to one of

the shocks to the total forecast variance, and you have exactly the expressions above.

5 Logs

When working with macroeconomic data, most of the time you’ll want to work with the natural logs

of the series. This will also be true in a lot of economic models, where we’ll take approximations

to logs of the variables (i.e. what we call log-linearizing).

Why do we like logs? Logs put give things percentage interpretations and log differences can be

interpreted as percentage differences. Suppose that a series is growing at a constant rate, x. This

means:

Xt+1 = (1 + x)Xt

Take logs:

lnXt+1 = ln(1 + g) lnXt

Now here’s a very useful fact: the log of one plus a number is approximately the number. To see

this, let’s take a first order Taylor Series approximation of ln(1 + x). Recall, the generic definition

of a first order Taylor approximation is:

f(x) ≈ f(x∗) + f ′(x∗)(x− x∗)

Here x is a variable and x∗ is a particular realization of that variable. Let’s apply this to

ln(1 + x) by taking an approximation about the point x∗ = 0:

ln(1 + x) ≈ ln(1 + 0) +
1

1 + 0
(x− 0) = x

In other words, the log of one plus a small number is approximately the small number. This

approximation is very good for x small (growth rates are small). Applying it above, it means that:

lnXt+1 − lnXt ≈ x

This means that we can interpret the log difference across time as the growth rate. This is very

useful. If a series grows at an approximate constant rate, then the time series plot will be linear in

the log (but would be exponential in the level).

Putting things in logs also makes interpretation of moments and other things “scale-free.” In

particular, if you first take the log of a series and then calculate a standard deviation, the standard

deviation has units which can be interpreted as a percentages. This is useful if we want to compare
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the volatility of two series with very different means. For example, consumption is a much bigger

fraction of total income than is investment. In percentage/log terms, investment is quite a bit

more volatile than consumption. But in the levels, consumption looks pretty volatile relative to

investment, because it’s jumping around a much bigger mean.

6 Filtering

Many macroeconomic data have trends – consumption, output, etc. are rising across time. As you

will see, in studying business cycles (the focus of this course) we often want to look at “second

moments” – standard deviations, correlations, autocorrelations, etc. Second moments like this may

be ill-defined if the variables under consideration are non-stationary (which means they don’t have

well-defined and/or time-invariant first or second moments).

I will not discuss it in depth here, but to “detrend” a series is to do a transformation that breaks

a series into two components, a non-stationary trend component and a stationary cycle component.

Detrending may result in the cycle component being stationary, but it may not depending on the

series in question and the detrending method used. Suppose that one wants to isolate the stationary

component of a time series as the cycle component. How one should detrend a series depends on

the source of the non-stationarity. Loosely, there are two models of non-stationary: deterministic

and stochastic trends. Suppose that a variable follows a process like this:

Xt = Xτ
t + X̂t

Here, Xτ
t is the deterministic trend component; by deterministic I mean that it grows determin-

istically with time; a simple example would be something like bt, where t is a time index and b is

a coefficient. X̂t is a stochastic component. If the stochastic component is mean-reverting, we say

that the series has a deterministic trend (essentially meaning that a series will tend to return to its

trend line after a stochastic shock). If the stochastic component is not mean-reverting, we say that

the series has a stochastic trend (meaning that the series meanders without necessarily returning

to a trend line – if shocks are permanent, so the stochastic component is not mean-reverting, there

will be no tendency for the series to revert to trend). To render a deterministic trending series sta-

tionary you estimate a deterministic trend (regress the variable on deterministic time indexes) and

remove the trend (take the residual). To render a stochastic trend series stationary you typically

first difference the series (i.e. if the underlying series is in logs, which it almost always should be,

the first difference is the approximate growth rate, so put the series in growth rates).

A related concept to detrending is filtering. Filtering will not necessarily render a non-stationary

series stationary, and filtering can always be applied to a series even if it isn’t (or isn’t suspected

to be) non-stationary. The basic idea is to suppose a series has two components: a “smooth”

component and a “cycle” component:

Xt = Xs
t +Xc

t
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The basic idea is to use some criterion to come up with a “smooth” component, and then

attribute the rest to the “cycle” component. One obvious candidate would be something like a

moving average – at each point of observations, take a moving average of Xt in a rolling window

(the rolling window could take many forms, but suppose it’s two sided, so you’re taking the average

from Xt−k to Xt+k for some k). This will produce a “smoothed” version of Xt, and subtracting

this off from actual Xt would yield the “cycle” component.

The Hodrick-Prescott filter (HP filter) is very common in empirical macro and does just this;

it also has as a special case a linear time trend. Formally, let λ be an exogenous constant chosen

by the researcher in advance. The HP filter chooses a sequence of trend, XS
t , to solve the following

minimization problem:

min
Xs

t

T∑
t=1

(Xt −Xs
t )2 + λ

T−2∑
t=2

(
(Xs

t+1 −Xs
t )− (Xs

t −Xs
t−1)

)2
(1)

The basic idea of this is to minimize the squared deviations about the smoothed component,

subject to a penalty for the smoothed component moving too much. The magnitude of the penalty

is governed by the parameter λ. If λ = 0, then the solution is simple Xs
t = Xt. As λ gets bigger,

you will not allow Xs
t to move as much as the actual series, and so will start picking up more

interesting “cycle” dynamics. In the limiting case where λ→∞, you can show that the HP filters

reduces to removing a linear time trend from a series – in this case, the smoothed series must be

a line, so if the series is trending up the smoothed series will be a straight line. It is common in

empirical work in macro to use a value of λ = 1600 for quarterly frequency data.

What we’ll often be doing is comparing moments (standard deviations, correlations, etc) from

the data to moments generated from a model. An important point is to always treat the actual

data and data generated from a model the same way. Hence, if you HP filtered actual data and

use those to compute moments, you should apply an HP filter to model generated data before

calculating moments there.

7 Lucas Critique

The Lucas Critique (from Lucas, 1976) is an important philosophical point that forms the basis of

much of modern macroeconomics. From Keynes until the mid-1970s, macroeconomics looked quite

different than it does now. On the theoretical side, people used variants of a textbook IS-LM model.

That model did not take agent optimization, dynamics, or expectations formation very seriously.

On the empirical side, people used “large scale” macroeconometric models. These were essentially

systems of simultaneous equations featuring aggregate variables – many of the larger models would

feature hundreds of variables. The design of these macroeconometric models was based on fit and

forecasting, with little attention paid to any underlying theory or actual economics.

The essential gist of Lucas’ Critique is that it is fraught with hazard to try to predict the effects
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of a policy change based on correlations (or regression coefficients) based on historical data. We

say that a parameter is “structural” if it is invariant to the rest of the economic environment,

and in particular the policy environment. A parameter is “reduced form” if it is not invariant to

the environment, or more generally if that parameter cannot be mapped back into some economic

primitive. I’ll consider two examples to make this point.

7.1 Simple Consumption Saving Model

Consider a very simple two period consumption saving model with a fixed real interest rate and no

uncertainty. The household takes income flows to be exogenous. It solves the following problem:

max
Ct,Ct+1

C1−σ
t − 1

1− σ
+ β

C1−σ
t+1 − 1

1− σ

s.t.

Ct +
Ct+1

1 + r
= Yt +

Yt+1

1 + r

The first order condition, or Euler equation, is:

C−σt = β(1 + r)C−σt+1

There are two structural parameters here – β and σ, which govern how heavily you discount

future utility flows and how much curvature there is in the utility function. Let’s assume that

σ = 1 (which means the utility function collapses to lnCt via L’Hopital’s rule). We can then derive

a consumption function that looks like:

Ct =
1

1 + β

(
Yt +

Yt+1

1 + r

)
Here the “marginal propensity to consume” (or MPC) is the partial derivative of Ct with respect

to Yt, which is 1
1+β . This is just a transformation of a structural parameter, and so we could consider

the MPC itself to actually be structural.

Now, suppose an econometrician estimates a regression of consumption on income:

Ct = α+ γYt + ut

This regression is misspecified in the sense that it omits Yt+1 – this is in the error term. If

current income is uncorrelated with future income, Yt would be uncorrelated with the error term,

and we would get γ = 1
1+β (at least in a large enough sample). But what if current income is

correlated with future income (i.e. income is persistent)? Then there is an omitted variable; Yt will

be positively correlated with the error term, which will mean that you will get an upward-biased

estimate of γ.

Suppose that in the past changes in income have been very persistent – meaning that when

Yt changes, Yt+1 changes by almost the same amount. The consumption function derived from
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the theory would suggest that consumption would then react roughly one-for-one with changes in

income. Suppose that an econometrician goes and estimates this equation and comes back with a

very large estimate of γ (let’s say near 1). He then goes to a policy advisor and says “The MPC is

near 1. If we give people more income (say, through a tax cut), then they will spend virtually all

of it, and there will be large stimulative effects on overall economic activity!” So the policymaker

says “Okay, let’s cut people’s taxes for one period by one dollar.” The theory tells us that raising

people’s income for one period (a tax cut would effectively do that) will cause them to increase their

consumption by only 1
1+β : if β is near 1, then loosely people would increase their consumption by

1/2 of the tax cut. This is smaller than the results estimated from the regression, which suggest that

the MPC is much higher and close to 1. In this example, using the correlation between income and

consumption estimated in past data (when income changes were very persistent) is not informative

about what will happen if you consider a temporary change in income.

7.2 Phillips Curve Model

Consider another example, which was really the thing that Lucas was criticizing. As we will see

later in the course, it is possible to derive a “Phillips curve” which shows some relationship between

economic activity, inflation, and expected inflation:

πt = θ(ut − uN ) + βEtπt+1

Above, θ is a coefficient, β is a discount factor (same as in the previous example), πt is infla-

tion, Etπt+1 is expected inflation, ut is the unemployment rate, and uN is the “natural rate” of

unemployment (which I here assume to be time-invariant). θ and β are structural parameters.

Particularly before rational expectations (also attributed to Lucas), people didn’t know how

to treat expectations seriously; and indeed, many models were static and so had no role for ex-

pectations of what was going to happen in the future. Suppose an econometrician estimated the

following regression:

πt = ξ(ut − uN ) + εt

As in the above example, this regression is misspecified relative to the theory – the error term

includes expected future inflation. But suppose that in historical data expected inflation was pretty

stable. This would mean there wouldn’t be much bias in the coefficient estimate, and we would

expect that an estimate ξ would be close to the true θ. Suppose that the true θ < 0: there is

a negative relationship between inflation and unemployment. One would be tempted to conclude

that raising inflation would lead to a reduction in unemployment. So the econometrician goes to

the policymaker and says “Let’s raise inflation and this will result in lower unemployment!” But

will it?

It will, but only to the extent to which higher inflation doesn’t get incorporated into higher

inflation expectations. If people are paying attention, they will expected more inflation – Etπt+1
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will rise, which means ut won’t fall by as much as the simple regression would have predicted.

Again, using past correlations to predict the effects of a policy change may very well be misleading.

7.3 So should we do econometrics?

The conclusion of the Lucas critique is that we need to take economic theory seriously – correlations

(or regression coefficients) estimated in the data may not be policy-invariant, and therefore may

not be useful in thinking about “counterfactuals” where we think of what would happen under

alternative policy regimes.

Some people (incorrectly) interpret the Lucas Critique as saying we shouldn’t do econometrics

at all in macro. This is too strong. The Lucas Critique tells us that we need to take theory

seriously when doing econometrics; and when we do econometrics without theory (e.g. reduced

form econometrics), be honest and open about the potential misgivings. In both of the examples

I gave you above, we actually have regression specifications implied by the theory – it’s just that

in the regressions I considered running, there was an omitted variable. “Theory” doesn’t tell us

values of structural parameters like β or θ – that’s what econometrics is for. But theory might tell

us what kind of econometric models to run, what kind of restrictions we can impose, etc. Then

once we have good estimates of the structural parameters, we can use the model to to consider the

effects of different policies.

It is actually here where the implications of rational expectations can be useful. Consider the

two period consumption model (this time, make it stochastic so that the point is clearer). The

theory tells us to run a regression like:

Ct = α1Yt + α2EtYt+1 + εt

The problem here is that we don’t necessarily observe EtYt+1. Rational expectations tells us how

to get around this, however. In particular, rational expectations tells us that EtYt+1 = Yt+1 +ut+1,

where ut+1 is (i) mean zero and (ii) uncorrelated with anything known at date t or earlier. So

rational expectations tells us that we can run the following regression:

Ct = α1Yt + α2Yt+1 + vt

Now vt is a composite error term, equal to εt+α2ut+1. Yt+1 is correlated with ut+1, so OLS won’t

work here. But rational expectations tells us that we can instrument for Yt+1 with anything known

at date t or earlier – rational expectations tells us that the forecast error, ut+1, is uncorrelated with

anything dated t or earlier, making anything dated t or earlier valid instruments. We could do a

similar exercise for the Phillips Curve equation, including realized future inflation on the right hand

side and instrumenting for it with something known at time t or earlier. In other words, taking

rational expectations seriously often gives us a “theory of the error term” in regression models and

therefore guides us on how to deal with that error term.

18


