
Problem Set 3

Graduate Macro II, Spring 2017
The University of Notre Dame

Professor Sims

Instructions: You may consult with other members of the class, but please make sure to turn in your
own work. Where applicable, please print out figures and codes. This problem set is due in class Thurs-
day, February 23.

(1) ABCs (and Ds) of DSGE Models and VARs: Consider a standard stochastic growth model.
A planner solves the following dynamic problem:

max
Ct,Kt+1

E0

∞∑
t=0

βt
C1−σ
t

1− σ
, σ > 0

s.t.

Kt+1 = AtK
α
t − Ct + (1− δ)Kt

K0 is given and it is assumed that At follows a stationary, mean zero AR(1) in the log:

lnAt = ρ lnAt−1 + et, 0 < ρ < 1, et ∼ N(0, σ2e)

(a) Find the first order conditions necessary for an optimal solution to the planner’s problem.

(b) Find analytic expressions for the non-stochastic steady state values of C∗ and K∗.

(c) Log-linearize the first order conditions of the system about the non-stochastic steady state. Form a
first order systme of difference equations, EtXt+1 = MXt, where M is a function of the parameters of
the model. Assume parameter values of: α = 1/3, σ = 1, δ = 0.025, β = 0.99, ρ = 0.95, and σ2e = 0.012.
Use the method outlined in class to find the linearized policy function mapping the states into the jump
variable in Matlab. The policy function should take the form:

C̃t = Φ

[
K̃t

Ãt

]
There are multiple different ways to write the state space of the model. One way uses coefficient matrixes
A, B, C, and D, and writes the system as follows:1

[
K̃t

Ãt

]
= A

[
K̃t−1
Ãt−1

]
+ Bet

C̃t = C

[
K̃t−1
Ãt−1

]
+ Det

1In what follows, note that et is 1 × 1, so the dimension of B is 2 × 1. One could alternative define a shock vector to be
2 × 1, with a 0 in the (1,1) element since the capital stock is not affected by the productivity shock. In this case B would
be 2 × 2.
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It may be more convenient to define X2,t =

[
K̃t

Ãt

]
(the state vector). Under this notation, the state

space model can be written:

X2,t = AX2,t−1 + Bet (1)

C̃t = CX2,t−1 + Det (2)

(d) Find expression for A, B, C, and D in terms of M and your numeric policy function, Φ.

(e) Solve for et in terms of C̃t and X2,t−1 from (2). Plug this into (1), eliminating et.

(f) Using this modification from (e), solve the modified equation (1) “backwards.” You should be able to
express X2,t as a linear function of X2,0 (i.e. the state at the beginning of time) and the observed values

of C̃t−j , for j = 0, ..., t (i.e. the current and lagged values of consumption going back to the “beginning
of time,” which is period 0).

(g) For the expression derived in (f), provide a condition for the coefficient matrix on the initial state
vector to go to zero as the sample size gets big (i.e. as t→∞). Numerically verify that this condition is
satisfied for this calibration of the model.

(h) Use your result from (g) to show that you can write C̃1,t as a AR(∞) of the form:

C̃t =
∞∑
j=1

ρjC̃t−j + Det

Provide analytic expressions for the coefficients, ρj . These analytic expressions will be functions of A, B,
C, D, and j. You can then evaluate these numerically using the calibrated values of the deep parameters,
which will yield quantitative measures of the ρj . HINT: you won’t have an infinite number of different
coefficients to compute, there should be a pattern that emerges.

(i) Simulate data from the model, drawing the et shocks from a standard normal distribution with the
variance as calibrated above. Start the simulation in the steady state (initial value of K̃0 = 0), and simu-
late for T = 1000 periods. Estimate an AR(p) on the simulated consumption data for different values of
p: p = 1, p = 2, p = 4, p = 8, and p = 12. Note that the true AR representation has an infinite number
of coefficients, but you are estimating a finite number of lags. Comment on how closely your estimated
AR coefficients correspond to the true AR coefficients computed above in (h), and how the closeness of
these estimates depends on the lag order, p.

(j) Briefly outline (you do not have to actually do this) an algorithm for recovering estimates of A, B, C,
and D after the estimation of the AR(p) on consumption. How many lags p would you have to include
to be able to get unique estimates of A, B, C, and D?

(2) A Simple Real Business Cycle Model: Consider a simple RBC model, the solution of which can
be characterized as the solution to a planner’s problem:

max
Ct,Kt+1

E0

∞∑
t=0

βt

(
lnCt − ψ

N1+φ
t

1 + φ

)
, σ > 0, ψ > 0, φ ≥ 0

s.t.
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Kt+1 = AtK
α
t N

1−α
t − Ct + (1− δ)Kt

There is no trend population or productivity growth. K0 is given and it is assumed that At follows a
stationary, mean zero AR(1) in the log:

lnAt = ρ lnAt−1 + et, 0 < ρ < 1, et ∼ N(0, σ2)

(a) Set up a Lagrangian and find the first order conditions of the model.

(b) Define Yt = AtK
α
t N

1−α
t . Solve for the non-stochastic steady state values of Y , C, N , and K as a

function of parameter values.

(c) Create a Dynare code to solve the policy functions of the model. Use a first order approximation. Use
numeric values of the coefficients of β = 0.99, δ = 0.025, ψ = 2, φ = 1, α = 0.33, ρ = 0.95, and σ2e = 0.012.

(d) Compute impulse responses functions of all the variables of the model to a one standard deviation
productivity shock (e.g. of A, Y , C, N , and K). Show these impulse response functions over a 40 period
horizon.

(e) Re-do the impulse responses for different values of φ: 0.25 and 3. Comment on how the impulse
responses are different relative to the baseline case in (d).

(f) Re-do the impulse responses for different values of ρ: 0.5 and 0.99 (hold φ at its original value of 1).
comment on how the impulse responses are different relative to the baseline case in (d).

3


