Problem Set 6

ECON 30020: Intermediate Macroeconomics
Professor Sims
University of Notre Dame, Spring 2018

Instructions: You may work on this problem set in groups of up to four people. Should you choose to do so, please make sure to legibly write each group member's name on the first page of your solutions. This problem set is due in class on Thursday March 8.

1. Ricardian Equivalence: Critically evaluate the following statement. "Ricardian Equivalence means that changes in G_{t} have the same effect on the equilibrium of an endowment economy as do changes in G_{t+1}."
2. A Static One Period Model of the Macroeconomy: Consider a static, one period model of the macroeconomy. There is a representative household. The household can choose how much to consume and how much to work. There is no saving since the model is static. The household problem is:

$$
\begin{aligned}
& \max _{C_{t}, N_{t}} \quad U=\ln \left[C_{t}-\frac{\theta_{t}}{2} N_{t}^{2}\right] \\
& \text { s.t. } \\
& C_{t}= w_{t} N_{t}+D_{t}
\end{aligned}
$$

Here N_{t} is labor, C_{t} consumption, D_{t} a dividend received from ownership of the firm, and w_{t} is the real wage. θ_{t} is an exogenous parameter governing the disutility from work. A firm produces output according to the production technology:

$$
Y_{t}=A_{t} N_{t}
$$

The firm's dividend is:

$$
D_{t}=Y_{t}-w_{t} N_{t}
$$

The firm's objective is to pick N_{t} to maximize D_{t} :

$$
\max _{N_{t}} \quad D_{t}=A_{t} N_{t}-w_{t} N_{t}
$$

(a) Use calculus to derive a first order condition characterizing optimal behavior by the household.
(b) Use calculus to derive a first order condition characterizing optimal behavior by the firm.
(c) Given your previous answers, what will be true about D_{t} in equilibrium?
(d) Given previous answers, derive the aggregate resource constraint.
(e) Use previous answers to derive an expression for equilibrium Y_{t} as a function of exogenous variables, A_{t} and θ_{t}. Verify that Y_{t} is increasing in A_{t} and decreasing in θ_{t}.
(f) Re-do previous parts, but with the more general utility specification:

$$
U=\ln \left[C_{t}-\frac{\theta_{t}}{1+\chi} N_{t}^{1+\chi}\right], \quad \chi \geq 0
$$

The original problem is a special case of this with $\chi=1$. For the more general case, re-derive an expression for Y_{t} as a function of A_{t} and θ_{t}. Assuming that $A_{t}=\theta_{t}$ for simplicity, is the sensitivity of Y_{t} to A_{t} higher, lower, or unaffected by the value of χ (i.e. is the partial derivative of Y_{t} with respect to A_{t} bigger or smaller as χ is bigger)? Try to use demand and supply curves for labor to provide some intuition for your answer.
3. A Firm's Investment Problem: Suppose that a firm produces output according to the following production function:

$$
Y_{t}=A_{t} K_{t}^{\alpha}, \quad 0<\alpha<1
$$

The production function looks the same in period $t+1$:

$$
Y_{t+1}=A_{t+1} K_{t+1}^{\alpha}
$$

A_{t} and A_{t+1} are exogenous and known by the firm. Capital accumulates according to a standard law of motion, except that there is full depreciation (so $\delta=1$). This means that tomorrow's capital is today's investment:

$$
K_{t+1}=I_{t}
$$

The period t capital stock, K_{t}, is taken as given by the firm. The firm does not use labor. The firm must borrow to finance investment from a financial intermediary at interest rate $r_{t}+f_{t}$, where f_{t} is an exogenous credit spread variable. Period t and $t+1$ dividends are therefore:

$$
\begin{gathered}
D_{t}=Y_{t} \\
D_{t+1}=Y_{t+1}-\left(1+r_{t}+f_{t}\right) I_{t}
\end{gathered}
$$

The firm's objective is pick I_{t} to maximize its value (present discounted value of dividends) subject to the capital accumulation equation and production function:

$$
\begin{gathered}
\max _{I_{t}} \quad V_{t}=D_{t}+\frac{D_{t+1}}{1+r_{t}} \\
\text { s.t. } \\
K_{t+1}=I_{t} \\
D_{t}=Y_{t} \\
D_{t+1}=Y_{t+1}-\left(1+r_{t}+f_{t}\right) I_{t}
\end{gathered}
$$

Use calculus to derive an optimal demand function for investment. Show that investment is decreasing in both r_{t} and f_{t}, and increasing in A_{t+1} (but not a function of A_{t}).

