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1 Introduction

The basic RBC model – which is just a stochastic neoclassical growth model with variable labor –

is the building block of almost all modern DSGE models. It fits the data well on some dimensions,

but less well on others. In this set of notes we consider several extensions and modifications of the

basic framework. I call this set of notes “RBC Extensions” because all the extensions I assume

here are “real” – I do not yet deal with nominal rigidities, which one loosely think of as “New

Keynesian.” We will see those later.

2 Common Extensions

This section works through a number of extensions designed to make the RBC model (i) more

realistic and (ii) a better fit with the data.

2.1 Indivisible Labor

One failure of the RBC model is that it fails to generate sufficient volatility in hours of work. It

also models hours in a rather unrealistic way that is at odds with reality – all fluctuations in hours

come from the intensive margin (e.g. average hours worked) as opposed to the extensive margin

(the binary choice of whether to work or not). In the real world most people have a more or less

fixed number of hours worked; it is fluctuations in bodies that drive most of the fluctuation in total

hours worked.

In reality, households face two decisions: (1) work or not and (2) conditional on working, how

much to work. This is difficult to model because it introduces discontinuity into the decisions

household make. Hansen (1985) and Rogerson (1988) came up with a convenient technical fix.

Suppose that within period preferences of any household are:

u(Ct, 1−Nt) = lnCt + θ
(1−Nt)

1−ξ − 1

1− ξ
(1)
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These preferences nest the basic specification that we’ve used already if ξ = 1 (which means

we’d have ln(1 − Nt). The Frisch labor supply elasticity here would be given by (ξγ)−1, where

γ = N∗

1−N∗ (so if ξ = 1 we’d be in the standard case we started with). But playing with the value of

ξ would allow you to control the Frisch elasticity and have it not simply depend on N∗ as it does

in the log case.

Suppose that the structure of the world is as follows. There are a large number of identical

households. Households either work or they do not. If they work, they work N̄ hours, with

0 < N̄ < 1. The amount of work, N̄ , can be interpreted as a technological constraint and is

exogenous to the model. Each period, there is a probability of working, τt, with 0 < τt < 1. This

probability is indexed by t because it is a choice variable – essentially the household can choose its

probability of working, but not how much it does work if it does work. There is a lottery such that

the household has a τt chance of being selected to work; the rule of the game is there is perfect

insurance in that every household gets paid whether they work or not. Hence, in expectation

households will work Nt = τtN̄ and they will have identical consumption (because of the implicit

assumption of perfect insurance combined with separability across consumption and leisure).

We can write out the households expected flow utility function as:

u(Ct, 1−Nt) = lnCt + τtθ
(1− N̄)1−ξ − 1

1− ξ
+ (1− τt)θ

(1)1−ξ − 1

1− ξ
(2)

We observe that preferences are linear in τt. Collecting terms we get:

u(Ct, 1−Nt) = lnCt + τtθ

(
(1− N̄)1−ξ − 1

1− ξ
− (1)1−ξ − 1

1− ξ

)
+ θ

(1)1−ξ − 1

1− ξ
(3)

Now, from above we know that τt = Nt
N̄

. Make this substitution:

u(Ct, 1−Nt) = lnCt +
Nt

N̄
θ

(
(1− N̄)1−ξ − 1

1− ξ
− (1)1−ξ − 1

1− ξ

)
+ θ

(1)1−ξ − 1

1− ξ
(4)

As long as ξ > 0, then 11−ξ−1
1−ξ > (1−N̄)1−ξ−1

1−ξ . Hence, re-write this again as:

u(Ct, 1−Nt) = lnCt −
Nt

N̄
θ

(
(1)1−ξ − 1

1− ξ
− (1− n̄)1−ξ − 1

1− ξ

)
+ θ

(1)1−ξ − 1

1− ξ

Let’s define two constants as:

B =
θ

N̄

(
(1)1−ξ − 1

1− ξ
− (1− N̄)1−ξ − 1

1− ξ

)
D = θ

(1)1−ξ − 1

1− ξ

We can actually just drop D altogether from the analysis – adding a constant to the utility

function won’t change the household’s optimal choices. Then we can write the within period utility

function as:
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u(Ct, 1−Nt) = lnCt −BNt (5)

In other words, utility effectively becomes linear in labor under this indivisible labor with

lotteries framework. This holds for any value of ξ. But indeed, it is as if ξ = 0. In other words,

the aggregate labor supply elasticity is infinite even if the micro labor supply is very small (i.e. ξ

very large). This is potentially very helpful – one can generate more hours volatility with a higher

Frisch elasticity, and is (potentially) not subject to the criticisms that the labor supply elasticity

is inconsistent with micro evidence.

These preferences are isomorphic to the ones where there is disutility from labor if the parameter

χ = 0:

u(Ct)− v(Nt) = lnCt − θ
N1+χ
t

1 + χ

The full model can then be written as follows. I assume that households own the capital

stock and lease it to firms. Households also have access to one period bonds. I abstract from the

presence of these bonds in the firm first order condition because the quantity of bonds ends up

being indeterminate anyway. As such, the firm problem becomes static.

Households:

max
Ct,Nt,Bt+1,Kt+1

E0

∞∑
t=0

βt (lnCt −BNt)

s.t.

Ct +Kt+1 − (1− δ)Kt +Bt+1 −Bt ≤ wtNt +RtKt + rtBt

Firms:

max
Nt,Kt

AtK
α
t N

1−α
t − wtNt −RtKt

In a competitive equilibrium the first order conditions hold and all budget constraints hold.

This gives rise to the following characterization of equilibrium:
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1

Ct
= βEt

(
1

Ct+1
(Rt+1 + (1− δ))

)
(6)

1

Ct
= βEt

(
1

Ct+1
(1 + rt+1)

)
(7)

B =
1

Ct
wt (8)

wt = (1− α)AtK
α
t N
−α
t (9)

Rt = αAtK
α−1
t N1−α

t (10)

Kt+1 = It + (1− δ)Kt (11)

Yt = Ct + It (12)

Yt = AtA
α
t N

1−α
t (13)

lnAt = ρ lnAt−1 + εt (14)

We would like to come up with a calibration of this model that is consistent with our previous

calibrations. We don’t actually need to calibrate anything that goes into B, just the value of B.

But how do we do that?

From (6), combined with (10), we can solve for the steady state capital to labor ratio

(
K∗

N∗

)
=

(
α

1
β − (1− δ)

) 1
1−α

(15)

Now combine (8) with (9) to solve for C∗ in terms of the steady state capital to labor ratio:

C∗ =
1

B
(1− α)

(
K∗

N∗

)α
(16)

Now go to the aggregate accounting identity, which can be written as:

C∗ = N∗
((

K∗

N∗

)α
− δ

(
K∗

N∗

))
(17)

Since (16) and (17) must both hold, we can set them equal to one another and solve for B,

taking N∗ = 1
3 as a given target in the calibration. We get:

B =
(1− α)

(
K∗

N∗

)α
N∗
((

K∗

N∗

)α − δ (K∗

N∗

)) (18)

If we use our now “standard” calibrations of α = 0.33, β = 0.99, and δ = 0.025, then we see

that K∗

N∗ = 28.35. This implies that B = 2.63.

I solve both this model and the standard RBC model (with log preferences over leisure and θ

calibrated to guarantee N∗ = 1/3). All other parameters are the same across both models. Below

are impulse response to a technology shock in each model:
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Log−Log
Indivisible Labor

We see significantly more amplification in the indivisible labor case than in the log-log case, as

shown by the differences between the dashed and solid lines. Output and hours both increase by

significantly more on impact. As a result of this, consumption and investment both go up by more

initially. Because the indivisible labor case is isomorphic to the Frisch labor supply being infinite,

the labor supply curve is perfectly horizontal here. This is why we get a bigger increase in labor

hours (and a smaller increase in wages) after the productivity shock.

Quantitatively, indivisible labor improves the fit of the model along several dimensions. First,

it provides greater amplification – I get output volatility of 2.2 percent with indivisible labor, as

opposed to 1.7 percent in the standard case. This means that I can match the output volatility

in US data with smaller TFP shocks. In addition, indivisible labor increases the relative volatility

of hours substantially. In the benchmark RBC case, the relative volatility of hours is 0.43. In the

indivisible labor case it is 0.69. This is a large improvement, though it is still quite far from the

data. Furthermore, indivisible labor makes wages somewhat less volatile (volatility of 0.008 instead

of 0.010) and somewhat less procyclical (correlation with output of 0.92 instead of 0.99).

2.2 Non-Separability in Preferences

In our basic specification we have assumed two kinds of separability in preferences – separability

between leisure and consumption (intratemporal separability) and separability of both leisure and

consumption across time (intertemporal separability). We consider both of these in turn.
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2.2.1 Intratemporal Non-Separability: King, Plosser, and Rebelo (1988) and Green-

wood, Hercowitz, and Hoffman (1988)

The generic definition of balanced growth path is a situation in which all variables growth at a

constant rate over time (though this rate need not be the same across variables). A special case

of a balanced growth path is a steady state, in which the growth rate of all variables is equal to

zero. In our benchmark specification above there is no explicit trend growth, though we could fairly

easily modify the model in such a way that we get (essentially) the same first order conditions in

the redefined variables which are detrended.

In any balanced growth path, feasibility requires that hours not grow. The intuition for this is

straightforward – if hours were declining, we would eventually hit zero and have no output. If hours

were growing, we would eventually hit 1, which is the upper bound on hours. It is straightforward

to show, under the assumptions about technology and production we have made, consumption

and the real wage must grow at the same rate along the balanced growth path, irrespective of

the kinds of preferences. Consider a generic, possibly non-separable within-period utility function:

u(Ct, 1 − Nt). The only assumptions are that it is increasing and concave in its arguments. The

generic static labor supply condition is as follows;

−uN (Ct, 1−Nt) = uC(Ct, 1−Nt)wt

This is really just an MRS = price ratio condition between consumption and leisure. To satisfy

the conditions laid out above (namely that consumption and the wage grow at the same rate and

hours not grow), it must be the case that this first order condition reduce to something like:

f(Nt) =
wt
Ct

In other words, the left hand side must be a function only of Nt, and the right hand side must

feature the wage over consumption. With wages and consumption growing at the same right, the

right hand side will be constant along a balanced growth path. Then with the left hand side only

a function of Nt (and, of course, parameters), there will be a unique solution for N∗ that is not

growing.

Consider a standard iso-elastic preference specification:

u(Ct, 1−Nt) =
C1−σ
t − 1

1− σ
+ θ

(1−Nt)
1−ξ − 1

1− ξ
The intratemporal first order condition for labor supply would then be:

θ(1−Nt)
−ξ = C−σt wt

The only way that we end up with wt
Ct

on the right hand side is if σ = 1: in other words,

for these preferences to be consistent with balanced growth, it must be the case that utility over

consumption is log. This is potentially problematic, because it imposes that the coefficient of
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relative risk aversion is 1, which is much lower than what is needed to explain things like the equity

premium.

King, Plosser, and Rebelo (1988) show that preferences must take the following form to be

consistent with balanced growth:

u(Ct, Nt) =
(Ctv(1−Nt))

1−σ − 1

1− σ
if σ 6= 1

u(Ct, Nt) = lnCt + ln v(1−Nt) if σ = 1

The second step follows from application of L’Hopital’s rule. We require that v(1−Nt) be an

increasing and concave function of its argument, leisure (one minus labor). So as to make this all

consistent with our original specification, suppose that v(·) takes the following form:1

v(1−Nt) = exp

(
θ

(1−Nt)
1−ξ − 1

1− ξ

)
With this specification, if σ = 1, then we get:

u(Ct, 1−Nt) = lnCt + θ
(1−Nt)

1−ξ − 1

1− ξ

Then, if ξ = 1, by L’Hopital’s rule we would get: u(Ct, 1−Nt) = lnCt + θ ln(1−Nt). If ξ = 0,

we would get u(Ct, 1 − Nt) = lnCt + θ(1 − Nt), which is essentially the indivisible labor model.

Thus, we can nest all of these specifications in terms of this general functional form.

For the general case in which σ 6= 1 and ξ 6= 1, we can verify that these preferences will be

consistent with constant labor hours in steady state. Let’s find the marginal utilities:

uC(Ct, 1−Nt) =

(
Ct exp

(
θ

(1−Nt)
1−ξ − 1

1− ξ

))−σ
exp

(
θ

(1−Nt)
1−ξ − 1

1− ξ

)
uN (Ct, 1−Nt) = −

(
Ct exp

(
θ

(1−Nt)
1−ξ − 1

1− ξ

))−σ
Ct exp

(
θ

(1−Nt)
1−ξ − 1

1− ξ

)
(1−Nt)

−ξ

Then for the generic first order condition, we get:

−uN (Ct, 1−Nt)

uC(Ct, 1−Nt)
=
θ(1−Nt)

−ξ

Ct
= wt ⇒ θ(1−Nt)

−ξ =
wt
Ct

In other words, the static first order condition for labor supply ends up looking exactly like

it does in the case of log consumption with these preferences. Hours will be stationary. θ and ξ

will have exactly the same interpretations as in the basic model (θ will determine N∗ and ξ will

determine the Frisch elasticity).

1Note that you’ll often see KPR preferences written with v(1 − Nt) = (1 − Nt)θ or some variation thereof, so

that u(Ct, Nt) =
(Ct(1−Nt)θ)

1−σ−1

1−σ . When σ → 1, this collapses to lnCt + θ ln(1 − Nt); this effectively imposes
the “log-log” preference specification. By writing the v(·) function with the exp operator, I permit a more general
specification of the utility from leisure.
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What does σ govern? It is still going to have the interpretation as the elasticity of intertemporal

substitution. The first order conditions for the household side of the model for consumption and

bonds can be written:

λt = C−σt

(
exp

(
θ

(1−Nt)
1−ξ − 1

1− ξ

))1−σ

(19)

λt = βEt(λt+1(1 + rt)) (20)

λt = βEtλt+1(Rt+1 + (1− δ)) (21)

Log-linearize:

lnλt = lnβ + lnλt+1 + ln(1 + rt)

λt − λ∗

λ∗
=
λt+1 − λ∗

λ∗
+
rt − r∗

1 + r∗

λ̃t = Etλ̃t+1 + βr̃t

The last line follows from the fact that we define r̃t as the actual deviation from steady state,

not percentage deviation. Now log-linearize the expression for λ:

lnλt = −σ lnCt + (1− σ)θ

(
(1−Nt)

1−ξ − 1

1− ξ

)
λt − λ∗

λ∗
= −σCt − c

∗

c∗
+ (1− σ)θ(1−N∗)−ξ(Nt −N∗)

λ̃t = −σC̃t + (1− σ)θ(1−N∗)−ξN∗Ñt

Now combine these two expressions:

−σC̃t + (1− σ)θ(1−N∗)−ξN∗Ñt = Et

(
−σC̃t+1 + (1− σ)θ(1−N∗)−ξN∗Ñt+1

)
+ βr̃t

Simplify:

Et

(
C̃t+1 − C̃t

)
=
β

σ
r̃t +

(
(1− σ)

σ
θ(1−N∗)−ξN∗

)(
Et

(
Ñt+1 − Ñt

))
(22)

If we approximate β ≈ 1, then this says that the elasticity of intertemporal substitutions is 1
σ ,

just like in the case with separable utility. There is just an additional term now that depends on

expected employment growth, though if σ = 1 this term drops out and we are in the normal case.

What this specification of preferences thus does is allow us to consider different parameter-

izations of σ different from one while still having preferences that are consistent with balanced

growth. Loosely speaking, σ governs the household’s desire to smooth consumption. If σ is very
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large, the household will want consumption (in expectation) to be very smooth, whereas if σ is

quite small then the household will be quite willing to allow consumption to not be smooth (again

in expectation).

Below are impulse responses to a standard technology shock for different values of σ. I fix all

other parameter values at their “baseline” values. I consider the following values of σ: 1, 2, and 4.
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σ = 1

σ = 2

σ = 4

As we might expect, the initial jump in consumption is increasing in σ (note again that large

σ means you want consumption to be smooth in expectation, not necessarily in response to a

shock). This means that the jump in labor is decreasing in σ. Why is that? Think back the

labor supply and demand curves. When TFP increases, labor demand shifts right, the amount by

which is independent of σ. When consumption increases, labor supply shifts left. The bigger is the

consumption increase, the bigger is this inward shift in labor supply, and therefore the smaller is

the hours response in equilibrium and the larger is the wage response. That’s exactly what we see

in terms of the impulse responses: when σ is bigger, the hours jump is smaller, the output jump is

smaller, and the wage jump is larger.

This all suggests that one way to make the model better fit the data is to make σ smaller

– we see here that higher values of σ make the amplification problem in the model worse – we

get less of a jump in labor because consumption jumps more, which means output goes up by

less when productivity goes up. In particular, we get more employment volatility and hence more

amplification for σ < 1. The problem with this is that most micro evidence does not support such

a claim – there estimates of σ are typically far greater than one. In particular, Hall (1988) says “...

supporting the strong conclusion that the elasticity (of intertemporal substitution, the inverse of σ)

9



is unlikely to be much above 0.1, and may well be zero.” This would mean that σ ≥ 10! A number

of papers in the asset pricing literature rely upon very large values of σ in order to generate the

excess returns on equity over debt that we see in the data. If we take values of σ much greater than

1, the RBC model begins to fit the data even worse than in the log case (in terms of amplification

and relative volatility of hours). It is worth mentioning, however, that most of these estimates that

find very large values of σ are based on time series data. Gruber (2006) finds a much smaller value

of σ (more like 0.5) using micro data from looking at tax variation.

Greenwood, Hercowitz, and Hoffman (1988) propose another popular utility specification that

features non-separability between consumption and leisure/labor. Unlike KPR preferences, GHH

preferences are not consistent with balanced growth. What GHH preferences do is eliminate the

wealth effect on labor supply – as we will see in a moment, this means that the FOC for labor gives

labor as a function only of the wage (no consumption showing up). This means that there is no

wealth effect – so, for example, when labor demand shifts out because of a technology shock, there

is no inward shift of labor supply because of ct increasing. This will result in more amplification.

I will write utility in terms of disutility from labor instead of utility from leisure. The GHH

preference specification can be written:

U(Nt, Nt) =
1

1− σ

(
Ct − θ

N1+χ
t

1 + χ

)1−σ

The marginal utilities are:

UC(Ct, Nt) =

(
Ct − θ

N1+χ
t

1 + χ

)−σ

uN (Ct, Nt) = −θNχ
t

(
Ct − θ

N1+χ
t

1 + χ

)−σ
The generic first order condition for labor supply is:

−uN (Ct, Nt) = uC(Ct, Nt)wt

With these marginal utilities, this works out to:

θNχ
t = wt

Here we see, as promised, that the consumption term drops out altogether on the right hand

side – labor is only a function of the wage. We can write the Euler equations for bonds and capital

by defining auxiliary variables λt = uc:

λt = βEtλt+1(Rt+1 + (1− δ))

λt = βEtλt+1(1 + rt)
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I solve the model using values σ = 1 (which corresponds to utility taking the form ln
(
Ct − θN

1+χ
t

1+χ

)
)

and χ = 1, using standard values I’ve been using. Below, I compare the impulse responses under

standard preferences (utility takes the form here lnCt− θN
1+χ
t

1+χ ); in each case I solve for θ such that

steady state labor hours are 0.33.
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Standard
GHH

We see here that we get much larger amplification with GHH preferences – output and hours

rise by substantially more (and appear to be more persistent). Naturally, the wage rises by less

(this occurs because there is no inward shift of labor supply following the productivity shock).

Interestingly, we see that consumption jumps up by more and actually investment increases by less.

In terms of volatilities, under the standard setup I get output and labor volatilities (HP Filtered)

of 0.015 and 0.005, for a relative volatility of about 1/3. For the GHH specification, I get output

volatility of 0.0176 and labor volatility of 0.009, for about a relative volatility of 0.5. I could make

these numbers look even better by lowering χ.

2.2.2 Intertemporal Non-Separability: Habit Formation

Another important kind of non-separability is non-separability across time. This usually goes by the

name “habit formation”, with the idea that people get utility not from the level of consumption,

but from the level of consumption relative to past consumption. The idea is that one becomes

accustomed to a certain level of consumption (i.e. a “habit”) and utility becomes relative to that.

Habit formation has been included in macro models for a variety of reasons. In particular, habit

formation can help resolve some empirical failings of the PIH. For example, habit formation can

help resolve the “excess smoothness” puzzle because, the bigger is habit formation, the smaller
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consumption will jump in response to news about permanent income. Another area where habit

formation has gained ground is in asset pricing, in particular with regard to the equity premium

puzzle. A large degree of habit formation, in essence, makes consumers behave “as if” they are

extremely risk averse, and can thereby help explain a large equity premium without necessarily

resorting to extremely large coefficients of relative risk aversion (see the previous subsection).

Assume intratemporal separability so that utility from consumption is logarithmic. Let the

within period utility function be given by:

u(Ct, 1−Nt) = ln(Ct − φCt−1) + θ ln(1−Nt)

φ is the habit persistence parameter; if φ = 0 we are in the “normal” case, and as φ → 1

agents get utility not from the level of consumption, but from the change in consumption. For

computational purposes we need to restrict φ < 1 – if it is exactly 1 then marginal utility in the

steady state would be ∞.

Let’s setup the household’s problem using a Lagrangian. Assume that households own the

capital stock:

L = E0

∞∑
t=0

βt (ln(Ct − φCt−1) + θ ln(1−Nt) + . . .

. . . λt (wtNt +RtKt + Πt + (1 + rt−1)Bt − Ct −Kt+1 + (1− δ)Kt −Bt+1))

The first order conditions are:

∂L
∂Ct

= 0⇔ λt =
1

Ct − φCt−1
− βφEt

1

Ct+1 − φCt
(23)

∂L
∂Nt

= 0⇔ θ

1−Nt
= λtwt (24)

∂L
∂Kt+1

= 0⇔ λt = βEt(λt+1(Rt+1 + (1− δ)) (25)

∂L
∂Bt+1

= 0⇔ λt = βEt(λt+1(1 + rt)) (26)

The only first order condition that is different is the one that defines λt; if φ = 0 we are back in

the usual case. It is easiest to solve this model by not substituting out for the Lagrange multiplier

– just treat it as another endogenous variable. Below are impulse responses – using our otherwise

standard calibration of a RBC model – for comparing a value of φ = 0 (the standard case) with

φ = 0.9 (the habit formation case).
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Standard
Habit

We observe that the main difference is that consumption jumps up by less on impact the bigger

is φ. The intuition for this is high consumption today lowers utility tomorrow, other things being

equal, the bigger is φ. Hence people will behave “cautiously” in essence by not adjusting con-

sumption by much. The other impulse responses are reasonably similar across parameterizations,

though hours don’t jump up by much, the real wage jumps up by a lot, and output doesn’t jump

up by much (i.e. this is not going to improve the fit of the model along those dimensions). The

main dimension along which the inclusion of habit formation does help the model match the data

is not in terms of unconditional moments, but rather in terms of conditional impulse response func-

tions. Most estimated impulse responses to identified shocks (say, monetary policy shocks) show

“hump-shaped” responses of consumption. This is difficult to generate without habit formation.

Note that you can combine this kind of habit formation with different preferences specifications

– e.g. I could embed this into the non-separable KPR or GHH preferences; I would just replace Ct

with (Ct − φCt−1) everywhere in both cases.

Another form of habit formation is sometimes what is called “external habit formation” or

“Catching Up with the Joneses” (Abel, 1990). Here the idea is that utility from consumption de-

pends not on consumption relative to own lagged consumption, but rather on consumption relative

to lagged aggregate consumption – the idea being that you care about your consumption relative to

that of your neighbor. Now, of course, in a representative agent framework own and aggregate end

up being the same. The difference is that external habit formation simplifies the problem, because

the consumer does not take into account the effect of current consumption decisions on the habit

stock (essentially the second term in the expression for λ above drops out).
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2.3 Capital and Investment Adjustment Costs

The standard RBC model has the implication that the price of capital goods relative to consumption

is 1 (e.g. Hayashi’s q is always 1), which in turn says that the value of a firm is just the physical

capital stock. The standard RBC model also typically doesn’t generate “hump-shaped” impulse

responses to shocks, which seems to be a feature of the data. In this subsection we introduce convex

costs to adjusting the capital stock. The idea is that there is some cost to adjusting the capital

stock (or the level of investment) relative to what is normal. This will have the effect of breaking

the q = 1 result in the basic model and will also impart some interesting dynamics in the model.

I’ll begin with what I’ll call “capital adjustment costs” because they follow the form set by

Hayashi (1982). In particular, assume that the capital accumulation equation can be written:

Kt+1 = It −
φ

2

(
It
Kt
− δ
)2

Kt + (1− δ)Kt

When φ = 0, this is the standard accumulation equation. If φ > 0, then doing investment

different than steady state (in steady state It
Kt

= δ) results in a cost which essentially makes your

capital depreciate faster. Note that this cost is (i) denominated in units of current physical capital

and (ii) is symmetric (so doing too little investment relative to steady state also costs you some

capital, which may seem a bit funny).

Household preferences are standard. Instead of combining the flow budget constraint with the

accumulation, let’s treat them as separate (this turns out to be easier). The household problem is:

max
Ct,It,Nt,Kt+1,Bt+1

E0

∞∑
t=0

βt

(
lnCt − θ

N1+χ
t

1 + χ

)
s.t.

Ct + It +Bt+1 ≤ wtNt +RtKt + Πt + (1 + rt−1)Bt

Kt+1 = It −
φ

2

(
It
Kt
− δ
)2

Kt + (1− δ)Kt

Set up a Lagrangian with two constraints:

L = E0

∞∑
t=0

βt

{
lnCt − θ

N1+χ
t

1 + χ
+ λt (wtNt +RtKt + Πt + (1 + rt−1)Bt − Ct − It −Bt+1) + . . .

· · ·+ µt

(
It −

φ

2

(
It
Kt
− δ
)2

Kt + (1− δ)Kt −Kt+1

)}

The first order conditions are:

∂L
∂Ct

= 0⇔ 1

Ct
= λt

14



∂L
∂Nt

= 0⇔ θNχ
t = λtwt

∂L
∂It

= 0⇔ λt = µt

(
1− φ

(
It
Kt
− δ
))

∂L
∂Kt+1

= 0⇔ µt = βEt

[
Rt+1λt+1 − µt+1

φ

2

(
It+1

Kt+1
− δ
)2

+ µt+1φ

(
It+1

Kt+1
− δ
)
It+1

Kt+1
+ µt+1(1− δ)

]
∂L

∂Bt+1
= 0⇔ λt = βEtλt+1(1 + rt)

Let’s define qt ≡ µt
λt

. µt is the marginal utility of having come extra installed capital (Kt+1),

and λt is the marginal utility of having some extra consumption. The ratio is then how much

consumption you would give up to have some extra future capital – i.e. it is the relative price of

capital in terms of consumption. If φ = 0, we see that λt = µt, so qt = 1 always. If φ > 0, qt can

be different from 1. Using this formulation, we can write these FOC as:

qt =

(
1− φ

(
It
Kt
− δ
))−1

qt = βEt
Ct
Ct+1

[
Rt+1 + qt+1

(
(1− δ) + φ

(
It+1

Kt+1
− δ
)
It+1

Kt+1
− φ

2

(
It+1

Kt+1
− δ
))]

The first expression establishes that investment to capital, It
Kt

, is an increasing function of qt: for

this to be bigger than δ, qt must exceed one. The second is functionally a difference equation in qt:

current qt is a discounted value of the future marginal product of capital, future adjustment costs,

and future qt+1, where the discounting is by the household’s stochastic discount factor, βEt
Ct
Ct+1

.

I solve the model using my standard parameter values (here χ = 1) for three different values of

φ: 0, 2, and 4. The impulse responses are below
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φ = 0

φ = 2

φ = 4

As predicted, if φ = 0 then qt = 1 always and the responses are the same as in the basic RBC

model. As φ gets bigger, qt rises more in response to the productivity shock. Quite naturally,

we observe that investment goes up by less, and capital accumulates more slowly, the bigger is φ.

Because it is costly to adjust the capital stock quickly, investment doesn’t jump as much, which

means consumption jumps more; this mechanically results in a smaller increase in employment

than we would get because labor supply shifts in more. We also see that the real interest rate rises

by less (significantly so). φ 6= 0 breaks the tight connection between the real interest rate and the

marginal product of capital; this is a good thing from the perspective of the model, since we’d

really rather rt not rise when hit with a productivity shock, since in the data the real interest rate

is essentially acyclical.

An alternative adjustment cost specification is based on Christiano, Eichenbaum, and Evans

(2005). I refer to this is an “investment adjustment cost” (as opposed to a capital adjustment

cost). I call it an investment adjustment cost because (i) the adjustment cost is measured in units

of investment, not units of capital as above, and (ii) the adjustment cost doesn’t depend on the

size of investment relative to the capital stock, but rather on the growth rate of investment. Let

the capital accumulation equation be:

Kt+1 =

[
1− φ

2

(
It
It−1

− 1

)2
]
It + (1− δ)Kt

In steady state It
It−1

= 1, so this reverts to the standard accumulation equation. As we can see,

the cost depends on the growth rate of investment and is measured in units of investment rather

than units of capital.
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The household problem is otherwise the same as before. As we did earlier, form a Lagrangian

with two constraints:

L = E0

∞∑
t=0

βt

{
lnCt − θ

N1+χ
t

1 + χ
+ λt (wtNt +RtKt + Πt + (1 + rt−1)Bt − Ct − It −Bt+1) + . . .

· · ·+ µt

([
1− φ

2

(
It
It−1

− 1

)2
]
It + (1− δ)Kt −Kt+1

)}

The first order conditions are:

∂L
∂Ct

= 0⇔ 1

Ct
= λt

∂L
∂Nt

= 0⇔ θNχ
t = λtwt

∂L
∂It

= 0⇔ λt = µt

(
1− φ

2

(
It
It−1

− 1

)2

− φ
(

It
It−1

− 1

)
It
It−1

)
+ βEtµt+1φ

(
It+1

It
− 1

)(
It+1

It

)2

∂L
∂Kt+1

= 0⇔ µt = βEt (λt+1Rt+1 + (1− δ)µt+1)

∂L
∂Bt+1

= 0⇔ λt = βEtλt+1(1 + rt)

We can again define qt = µt
λt

. Doing so, we can write:

qt = βEt
Ct
Ct+1

(Rt+1 + (1− δ)qt+1)

1 = qt

(
1− φ

2

(
It
It−1

− 1

)2

− φ
(

It
It−1

− 1

)
It
It−1

)
+ βEt

Ct
Ct+1

qt+1φ

(
It+1

It
− 1

)(
It+1

It

)2

Above I have made use of the fact that λt = 1
Ct

. Relative to the capital adjustment cost case

earlier, the FOC for Kt+1 is much simpler and defines qt is the present discounted value of the

rental rate on capital; the FOC for It is substantially more complicated. But you Can see that if

It is large relative to steady state, then qt will be greater than 1.

I solve the model quantitatively for this specification of adjustment costs for different values of

the adjustment cost parameter φ. The impulse responses are below:
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φ = 0

φ = 2

φ = 4

In terms of the dynamics of qt and Kt, this specification of adjustment costs plays a fairly

similar role to the capital adjustment cost specification – qt rises more and Kt accumulates more

slowly the bigger is φ. But the other dynamics are quite different. First, note that for positive

values of φ both the investment and output impulse responses are “hump-shaped.” This means

that the growth rates of investment and output are autocorrelated, which is actually a feature of

the data that the basic RBC model is incapable of matching. You can see why you get this in

terms of investment growth rates just from the specification of the adjustment cost. Since there is

a convex cost in the investment growth rate, you want to slowly adjust investment growth – – this

gives you the hump-shaped investment response, which partially carries over into output. Because

investment jumps up so little, consumption responds more to the productivity shock with bigger

adjustment costs, which mechanically feeds into a smaller response of employment.

What is perhaps most marked in these responses is the response of the real interest rate. With

these adjustment costs, the real interest rate actually declines after the productivity shock rather

than increasing. As with the “capital adjustment cost” this investment adjustment cost breaks the

connection between the real interest rate and the marginal product of capital – here Rt increases

but rt decreases. With these adjustment costs the breaking of this connection is much stronger

than in the capital adjustment cost specification. This is useful because a major failure of the basic

RBC model is the strong procylicality of the real interest rate predicted by the model, whereas in

the data real interest rates are either acyclical or mildly countercyclical.

In DSGE models featuring many of these additions, it is now most common to include the

investment adjustment cost specification in place of the Hayashi style capital adjustment cost spec-

ification, precisely because it can generate hump-shaped impulse responses (positive autocorrelation
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of growth rates) and works to brake the procyclicality of the real interest rate.

2.4 Non-Stationary Productivity

In the specifications we have thus far looked at, we have (implicitly, most of the time) assumed

that the non-stationary series of the model are trend stationary, because we assumed that labor

augmenting technology followed a deterministic, linear time trend, while the other productivity

term followed a stationary AR(1) process:

Yt = AtK
α
t (ZtNt)

1−α

Zt = (1 + gz)
tZ0

lnAt = ρ lnAt−1 + εt

When writing down the model with no growth, as I have been doing, I’ve been implicity setting

gz = 0 and z0 = 1. Allowing gz > 0 requires re-writing the variables, but would only very mildly

affect the equilibrium conditions (in essence, would have a small effect on the discount factor).

A priori, some people object to the notion of temporary productivity shocks – if one thinks

of At as representing knowledge, does it make sense to forget things we’ve learned. Let’s instead

suppose that technology follows a stochastic trend. We can get rid of Zt altogether and write the

model as:

Yt = aAtK
α
t N

1−α
t

∆ lnAt = (1− ρA)gz + ρA∆ lnAt−1 + εt

∆ lnAt = lnAt − lnAt−1

Here what I’ve assumed is that At follows an AR(1) process in the growth rate, with 0 ≤ ρa < 1.

This means that shocks, εt, will have permanent effects on the level of at. gz is the mean growth

rate; if I set ρa = 0, then lnAt would follow a random walk with drift.

We could write this process in the levels as:(
At
At−1

)
= exp(gz)

1−ρA
(
At−1

At−2

)ρA
exp(εt)

If you take logs of this you get back the process written above. Because we only want one period

of leads/lags in writing down the equilibrium conditions, it is useful to introduce a new variable,

call it gt ≡ At
At−1

. We can then write the process above as:

gt = exp(gz)
1−ρagρAt−1 exp(εt)

Or in logs:
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ln gt = (1− ρA)gz + ρA ln gt−1 + εt

Let’s figure out how to transform the variables of this model. Start with the production function,

then take logs, and then first difference so as to get in growth rate form:

Yt = AtK
α
t N

1−α
t

lnYt = lnAt + α lnKt + (1− α) lnNt

(lnYt − lnYt−1) = (lnAt − lnAt−1) + α(lnKt − lnKt−1) + (1− α)(lnNt − lnNt−1)

Along a balanced growth path hours will not grow and capital will grow at the same rate as

output (capital and output must grow at the same rate because the real interest rate is constant

along a balanced growth path, and the real interest rate in the long run is tied to the capital/output

ratio). Using these facts, we have:

(lnYt − lnYt−1) = (lnAt − lnAt−1) + α(lnYt − lnYt−1)

lnYt − lnYt−1 =
1

1− α
(lnAt − lnAt−1)

This says that, along a balanced growth path, output will grow at 1
1−α times the rate of

technological progress (if we had written this as labor augmenting technological progress, as opposed

to neutral, they would grow at the same rate . . . these two setups are equivalent provided we

re-define the trend growth rate appropriately).

Play around with the above:

ln

(
Yt
Yt−1

)
= ln

(
At
At−1

) 1
1−α

Yt
Yt−1

=

(
At
At−1

) 1
1−α

Yt

A
1

1−α
t

=
Yt−1

A
1

1−α
t−1

In other words, along the balanced growth path output divided by A
1

1−α
t does not grow – i.e. it

is stationary. Hence, we can induce stationarity into the model by dividing through by this.

Define the following stationarity inducing transformations:
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Ŷt ≡
Yt

A
1

1−α
t

Ît ≡
Kt

A
1

1−α
t−1

Ît ≡
It

A
1

1−α
t

ŵt ≡
wt

A
1

1−α
t

Ĉt ≡
Ct

A
1

1−α
t

There is one very slight modification due to a timing assumption – we need to divide by Kt by

At−1. Intuitively, this is because Kt is chosen at t− 1, not t. We need to write it this way so that

K̂t is a predetermined state variable in the model; scaling Kt by At instead would also render the

model stationary, but would induce issues with the solution. We can use these transformations to

alter the first order conditions of the basic model as needed. Begin with the production function,

dividing both sides by the scaling factor A
1

1−α
t :

Ŷt = A
−α
1−α
t Kα

t N
1−α
t

Now, multiply and divide by A
α

1−α
t−1 to get the capital stock in the correct terms:

Ŷt = A
−α
1−α
t

 Kt

A
1

1−α
t−1

α

A
α

1−α
t−1 N

1−α
t

Ŷt =

(
At
At−1

) −α
1−α

K̂α
t N

1−α
t

Using our change of variables, we can write this as:

Ŷt = g
− α

1−α
t K̂α

t N
1−α
t

Next go to the capital accumulation equation, and divide both sides by the scaling factor at

date t.
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Kt+1

A
1

1−α
t

=
It

A
1

1−α
t

+ (1− δ) Kt

A
1

1−α
t

K̂t+1 = Ît + (1− δ)

 Kt

A
1

1−α
t−1

(At−1

At

) 1
1−α

We can simplify this further by noting our change of variable:

K̂t+1 = Ît + (1− δ)g
− 1

1−α
t K̂t

The accounting identity is the same in terms of the transformed variables as always: ŷt = ĉt+ Ît.

Next, consider expressions for factor prices:

wt = (1− α)AtK
α
t N
−α
t

Rt = αAtK
α−1
t N1−α

t

Transform these:

wt

A
1

1−α
t

= (1− α)A
− α

1−α
t Kα

t N
−α
t

ŵt = (1− α)A
− α

1−α
t A

α
1−α
t−1

 Kt

A
1

1−α
t−1

α

N−αt

ŵt = (1− α)g
− α

1−α
t K̂α

t N
−α
t

For the rental rate, we have:

Rt = αAtA
α−1
1−α
t−1

 Kt

A
1

1−α
t−1

α−1

N1−α
t

Rt = α

(
At
At−1

)
K̂α−1
t N1−α

t

Rt = αgtK̂
α−1
t N1−α

t

Now what about the Euler equations? Start with the one for bonds:
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1

Ct
= βEt

1

Ct+1
(1 + rt)

A
1

1−α
t

Ct
= βEt

A
1

1−α
t

Ct+1
(1 + rt)

A
1

1−α
t

Ct
= βEt

A
1

1−α
t+1

A
1

1−α
t+1

A
1

1−α
t

Ct+1
(1 + rt)

1

Ĉt
= βEtg

− 1
1−α

t+1

1

Ĉt+1

(1 + rt)

Since the rental rate on capital is stationary, the Euler equation for capital is going to look the

same in terms of transformed variables:

1

Ĉt
= βEtg

− 1
1−α

t+1

1

Ĉt+1

(Rt+1 + (1− δ))

The labor supply condition is straightforward to re-write in terms of transformed variables –

since wt
Ct

shows up on the right hand side, and we divide both variables by the same scaling factor,

we can simply write:

θ
1

1−Nt
=

1

Ĉt
ŵt

Then the full set of equilibrium conditions are:

1

Ĉt
= βEtg

− 1
1−α

t+1

1

Ĉt+1

(1 + rt)

1

Ĉt
= βEtg

− 1
1−α

t+1

1

Ĉt+1

(Rt+1 + (1− δ))

θ
1

1−Nt
=

1

Ĉt
ŵt

ŵt = (1− α)g
− α

1−α
t K̂α

t N
−α
t

Rt = αgtK̂
α−1
t N1−α

t

Ŷt = Ĉt + Ît

K̂t+1 = Ît + (1− δ)g
− 1

1−α
t K̂t

Ŷt = g
− α

1−α
t K̂α

t N
1−α
t

ln gt = (1− ρA)gz + ρA ln gt−1 + εt

This is nine equations in nine variables.
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I solve the model using our standard parameter values. Dynare will produce impulse responses

of the detrended variables. To construct impulse responses of the regular variables, I need to

transform the responses produced by Dynare. First, I can find the response of the log level of At

by cumulating the response of the log growth rate, ln gt. Then once I have the impulse response

of At, I can “add back” 1
1−α lnAt to the impulse responses of the other variables to get them back

in log level form (recall that Dynare will produce the impulse response of the logs, so ln x̂t. Since

x̂t ≡ xt

A
1

1−α
t

, I can add 1
1−α lnAt to ln x̂t to recover the log level of the variable of interest; I only

need to do this for variables that are non-stationary – so not for the real interest rate, the rental

rate on capital, or the level of employment).

I compute impulse responses under some different parameter configurations in order to make

a few points. First, I show IRFs under a stationary shock with ρA = 0.979. Second, I show two

different permanent shocks, one with ρA = 0 (random walk) and the other with ρA = 0.33 (so

some positive autocorrelation in the growth rate). I set the size of the transitory shock to 0.01 (so

productivity increases by one percent); in the case of the two permanent shocks, I set the size of

the shocks such that the long run effect on productivity is also 0.01 (so one percent); this means

that the size of the shock is 0.01 in the random walk case, but (1− ρA)0.01 more generally. So for

the shock that is persistent in growth rates, I’m actually hitting the economy with a smaller initial

shock.

Below, the solid black lines show the responses to the transitory productivity shock; the dashed

black line shows the responses to the random walk productivity shock; the blue solid line shows

the responses to the persistent growth rate shock.
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Stationary, ρa = 0.979

ρa = 0

ρa = 0.33
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The main take-away from this picture is that the impact effects on output, hours, and investment

are smaller the more persistent is the productivity shock. For the shock that is autocorrelated in

growth rates, we see that labor hours essentially do not react. Also worth noting is that after about

10 periods the responses with the random walk shock and the persistent growth rate shock are very

similar.

What is going on here? It’s the same intuition from labor demand-supply. If the productivity

shock is permanent, you get a much bigger initial jump in consumption than you do in the transitory

shock case; this translates to a bigger inward shift of the labor supply curve, which for a given labor

demand shift results in a smaller increase in Nt. A smaller increase in Nt means that output goes up

by less on impact; this combined with a bigger increase in Ct means a smaller increase in investment.

One thing that is interesting to note is that the impact increase in Ct is actually smaller in the

case of the autocorrelated shock than in the case of the random walk shock. What is going on

here? Consumption is very forward-looking; by the way I constrained the size of the shocks, the

long run effects are identical in each case. Because you get more of the extra productivity sooner

in the random walk case than later in the persistent growth rate case, the wealth effect is actually

bigger in the random walk case, so Ct jumps by more (although not by a lot). Why then do we

observe a smaller increase in Nt in the autocorrelated growth rates case than the random walk case

if the wealth effect / jump in ct is smaller? It’s because the outward shift in labor demand is also

smaller given that I constrained the long run effect on productivity to be the same in both cases;

when the shock is autocorrelated, the immediate effect on productivity (and hence labor demand)

is smaller. This combines to result in a much smaller increase in Nt, a smaller initial increase in

Yt, and a much smaller initial increase in It.

The bottom line here is that it is (relatively) straightforward to augment the model to allow

for permanent productivity shocks, but this will only make the model fit the data worse along the

dimensions of the relative volatility of hours as well as the overall lack of amplification.

2.5 Variable Capital Utilization

In this section we consider adding another amplification mechanism to the model – variable capital

utilization. The idea here is that while the capital stock may be predetermined within period, but

we can “work” the capital more intensively (or not) depending on conditions. One could also think

about variable labor utilization, but for this to work we’d need to make labor at least partially

predetermined – you’ll only get a unique value of utilization if you can’t completely change the

factor (capital in our main case, in this case labor).

There are different ways to model capital utilization and the costs associated with it. What I’m

going to do here assumes (i) the households own the capital stock, (ii) the households choose the

level of utilization, and (iii) the household leases “capital services” (the product of utilization and

physical capital) to firms at rental rate Rt. The cost of utilization is faster depreciation.

Define ut to be utilization and K̂t ≡ utKt as capital services (Kt is the physical capital stock).

The depreciation rate is now a function of capital utilization, which we want to normalize to be
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one in steady state. In particular:

δ(ut) = δ0 + φ1(ut − 1) +
φ2

2
(ut − 1)2

The household problem is otherwise standard. We can write it as:

max
Ct,Nt,Kt+1,ut

E0

∞∑
t=0

βt (lnCt + θ ln(1−Nt))

s.t.

Ct +Kt+1 − (1− δ(ut))Kt +Bt+1 ≤ wtNt +RtutKt + Πt + (1 + rt−1)Bt

The first order conditions for bonds/consumption and labor work out to be the same as we had

earlier:

1

Ct
= βEt

1

Ct+1
(1 + rt)

θ
1

1−Nt
=

1

Ct
wt

The first order condition for utilization works out to:

δ′(ut) = Rt

Or:

φ1 + φ2(ut − 1) = Rt

The Euler equation for capital is:

1

Ct
= βEt

1

Ct+1
(Rt+1ut+1 + (1− δ(ut+1)))

The firm produces output using:

Yt = AtK̂
α
t N

1−α
t

Note that the firm acts as though it gets to choose capital services at rental rate Rt, even

though household can separately choose utilization and capital. The first order conditions of the

firm problem are otherwise standard:

wt = (1− α)AtK̂
α
t N
−α
t

Rt = αAtK̂
α−1
t N−αt
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The aggregate resource constraint is standard and we assume that productivity follows an AR(1)

in the log. The full set of equilibrium conditions can be written (getting ride of K̂t by replacing it

with utKt):

1

Ct
= βEt

1

Ct+1
(1 + rt)

θ
1

1−Nt
=

1

Ct
wt

φ1 + φ2(ut − 1) = Rt

1

Ct
= βEt

1

Ct+1
(Rt+1ut+1 + (1− δ(ut+1)))

wt = (1− α)Atu
α
t K

α
t N
−α
t

Rt = αAtu
α−1
t Kα−1

t N−αt

Yt = Atu
α
t K

α
t N

1−α
t

Yt = Ct + It

Kt+1 = It + (1− δ(ut))Kt

δ(ut) = δ0 + φ1(ut − 1) +
φ2

2
(ut − 1)2

lnAt = ρ lnAt−1 + εt

This is 11 equations in 11 variables. The parameters of the utilization cost function are not

entirely free. To normalize u = 1 in steady state, we must have: R = 1
β − (1 − δ0). But from the

FOC for utilization this requires:

1

β
− (1− δ0) = φ1

In other words, φ1 must be set to pin down steady state utilization at 1; φ2 is a free parameter,

and δ0 is the steady state depreciation rate, which we can calibrate to match the steady state

investment-output ratio as before.

We can think about φ2 →∞ as fixing ut = 1, which puts us back in the RBC model. This may
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not be obvious, because one would be tempted to look at the above expression and think this fixed

Rt at its steady state value, 1
β − (1− δ). This is not so, because ∞ times 0 is something finite.

0 20 40
0

0.01

0.02

0.03
Y

0 20 40
−5

0

5

10
x 10

−3 N

0 20 40
−0.01

0

0.01

0.02
u

0 20 40
4

6

8
x 10

−3 C

0 20 40
0

0.05

0.1
I

0 20 40
6

8

10

12
x 10

−3 w

0 20 40
−2

0

2

4
x 10

−4 r

 

 

φ2 = 100

φ2 = 0.1

φ2 = 0.01

We can see that there is significantly more amplification of the productivity shock when the

costs of utilization are lower (i.e. when φ2 is smaller): output, employment, consumption, and

investment rise by significantly more with variable utilization than without. Without variable

utilization (φ2 = 100), HP filtered output volatility is about 0.017; as I decrease φ2, I get output

volatility of 0.019 and 0.027 (φ2 = 0.1 and φ2 = 0.01, respectively). This means that, in principle,

we’d need smaller productivity shocks to generate the observed output volatility we observe in

the data, which many people find attractive. We also see that the inclusion of variable utilization

(slightly) increases the relative volatility of employment: its volatility relative to output goes from

0.43 in the no utilization case to 0.49 with φ2 = 0.01.

Finally, and importantly, it is worth pointing out that variable capital utilization invalidates

standard “growth accounting” techniques to get measured TFP. Measured TFP is defined as ln Ât =

lnYt − α lnKt − (1 − α) lnNt. In this model, this is equal to lnAt + α lnut. Hence, to the extent

to which utilization moves around, the volatility of measured TFP will be an overstatement of the

volatility of the model counterpart, lnAt. We see this in the quantitative simulations here. The

volatility of actual lnAt is 0.0117; with no utilization the volatility of measured TFP is the same,

with φ2 = 0.1 it is 0.0131, and with φ2 = 0.01 it is 0.0184. This is a big difference.

Because the model is only driven by one shock (the productivity shock), the inclusion of variable

capital utilization doesn’t do much to change the cyclicality of measured TFP versus true produc-

tivity – they are both very positively correlated with output. Suppose there is some shock which
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raises Nt (like a government spending shock, or perhaps a preference shock). Because labor and

capital services are complementary in the model, anytime Nt goes up you’d like to also increase ut.

But from above, this means that measured TFP will rise (along with output) even though actual

lnAt won’t change. Thus, variable capital utilization will change both the volatility and the cycli-

cality of measured TFP – measured TFP will be both more volatile and more positively correlated

with output with variable capital utilization than the true exogenous productivity variable, lnAt,

is.

2.6 Preference Shocks

The basic RBC model focuses on the productivity shock, but it is possible and fruitful to consider

other sources of shocks. It is popular to write down models where there are preference shocks –

shocks to how agents get utility from consumption and/or leisure/labor. I will write down the

standard model with two such shocks – an intertemporal preference shock that governs how you

weight current utility relative to future utility, and an intratemporal preference shock that governs

how you value utility from labor/leisure.

Consider the following household problem:

max
Ct,Kt+1,Nt,Bt+1

E0

∞∑
t=0

βtψt

(
lnCt − νtθ

N1+χ
t

1 + χ

)
s.t.

Ct +Kt+1 − (1− δ)Kt +Bt+1 −Bt ≤ wtNt +RtKt + Πt + rt−1Bt

I assume that both ψt and νt follow mean zero AR(1)s in the log (so that the non-stochastic

levels are unity):

lnψt = ρψ lnψt−1 + εψ,t

ln νt = ρν ln νt−1 + εν,t

The exogenous variable ψt is an intertemporal preference shock – it doesn’t impact you value

utility from consumption versus utility from leisure, but rather how you value utility today versus

utility in the future. If ψt increases, for example you place relatively more weight on present utility

than the future. νt is an intratemporal preference shock – it affects how you value utility from

consumption relative to disutility from labor (or utility from leisure).

The first order conditions of the model can be written:

1

Ct
= βEt

[
ψt+1

ψt

1

Ct+1
(Rt+1 + (1− δ))

]
1

Ct
= βEt

[
ψt+1

ψt

1

Ct+1
(1 + rt)

]
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νtθN
χ
t =

1

Ct
wt

Two things to point out. First, ψt does not show up in the labor supply condition: higher ψt

increases the marginal utility of both consumption and the marginal disutility of labor, but these

cancel out. Second, since ψt is mean reverting, when ψt is high we will have Et
ψt+1

πt
be relatively

low. This means that an increase in ψt is isomorphic to a temporary reduction in β – it means you

are relatively more impatient. Third, νt shows up in the labor supply condition in a way analagous

to a distortionary tax rate on labor income – if you divide both sides by νt you see that an increase

in νt is functionally equivalent to an increase in τnt (since (1− τnt ) would show up on the right hand

side of the condition).

I solve the model quantitatively using a first order log-linear approximation using our “standard”

parameter values (a Frisch elasticity of 1, χ = 1). I assume that the AR coefficients on the two

preference shocks are 0.9 (i.e. ρψ = ρν = 0.9) and that the standard deviations of each shock are

one percent (i.e. 0.01). I’m not trying to parameterize these in any serious way; and for impulse

response analysis in a first order approximation, the size of the shocks is irrelevant for the shape

of the IRFs, thought it may have large effects on unconditional moments.

Below are the responses to the intertemporal preference shock, ψt. We see that output, hours,

investment, and the real interest rate all decline immediately, while consumption and the real wage

increase. What is going on here is the following. The increase in ψt is effectively like a decrease

in the discount factor – households value current utility relatively more than future utility. This

means they want to consume more in the present and work less – hence the increase in Ct and

decline in Nt (in a mechanical sense from the FOC for labor the increase in Ct shifts the labor

supply curve in). The inward shift of labor supply along a stable labor demand curve leads to an

increase in the wage. Falling hours with no immediate change in At or Kt means that Yt must fall.

Output falling with consumption increasing means that investment must fall. The real interest

rate must fall immediately. There are two ways to see this. First, since consumption is high

and falling, the real interest rate must fall for the Euler equation to hold. Second, the fall in Nt

lowers the marginal product of capital, and with capital fixed this means that the rental rate on

capital must decline, and without adjustment costs rt moves in the same direction as Rt. Overall,

while this shock produces interesting dynamics, it does not produce positive co-movement between

consumption and output, and hence cannot be the primary driving force of the business cycle.
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Next, consider the intratemporal preference shock. This leads to a reduction in Ct, Nt, Yt, and

It, with an increase in wt. The increase in ψt means that people dislike labor relatively more – this

means naturally that they want to work less. This shifts the labor supply curve in; along a stable

labor demand curve, this means that the wage must rise. Lower employment means lower output.

Consumption also falls – this occurs naturally because household income declines. Investment also

falls.
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We see here that, unlike the intertemporal preference shock, the intratemporal preference shock

can produce co-movement between consumption and output and employment. I’ve said before that

the FOC for labor makes it difficult for consumption and employment to move together unless At

changes. In a mechanical sense here, an increase in νt functionally plays a similar role (although

in a different way). What you need to get co-movement between Ct and Nt is for either the labor

demand or supply curves to shift for a reason other than pure wealth effect of Ct shifting the labor

supply curve. νt will do the trick, as would a change in the tax rate on labor income (see discussion

above).

2.7 Investment Shocks

The standard RBC model assumes that shocks to neutral productivity are the primary (or sole)

driver of business cycle fluctuations. Another kind of disturbance that has recently received a good

deal of attention is a shock to the marginal efficiency of investment (MEI), or just “investment

shock” for short. The investment shock makes the economy more productive at transforming

investment into new physical capital (in a way somewhat analogous to how the productivity shock,

At, makes you more productive at transforming capital and labor into output).

Let Zt denote the investment shock. It enters the capital accumulation equation as follows:

Kt+1 = ZtIt + (1− δ)Kt

Here, an increase in Zt means you get more Kt+1 for a given amount of It – i.e. this shock increases

the efficiency of investment. Some authors have argued that this shock is a reduced form proxy for
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modeling the health of the financial system – the financial system essentially turns investment into

capital, so the higher (or lower) Zt is, the better (or worse) the financial system is.

Let’s again assume that the household owns the capital stock and leases it to firms. The

household problem can be written with two constraints:

max
Ct,Nt,Kt+1,Bt+1

E0

∞∑
t=0

βt

{
lnCt − θ

N1+χ
t

1 + χ

}
s.t.

Ct + It +Bt+1 −Bt ≤ wtNt +RtKt + Πt + rt−1Bt

Kt+1 = ZtIt + (1− δ)Kt

These constraints can be combined into one:

Ct +
Kt+1

Zt
− (1− δ)Kt

Zt
+Bt+1 −Bt ≤ wtNt +RtKt + Πt + rt−1Bt

The first order conditions for bonds, labor, and capital can be written:

1

Ct
= βEt

(
1

Ct+1
(1 + rt)

)
θNχ

t =
1

Ct
wt

1

Ct
= βEt

[
1

Ct+1

Zt
Zt+1

(Zt+1Rt+1 + (1− δ))
]

The rest of the equilibrium conditions are standard:

Yt = Ct + It

Kt+1 = ZtIt + (1− δ)Kt

wt = αAtK
α
t N
−α
t

Rt = (1− α)AtK
α−1
t N1−α

t

Yt = AtK
α
t N

1−α
t

I assume that both At and Zt follow mean zero AR(1) processes in the log:

lnAt = ρa lnAt−1 + εa,t

lnZt = ρz lnZt−1 + εz,t

I use a standard parameterization of the model. Here I assume that ρz = 0.9 and that the

standard deviation of the investment shock is 0.01. The impulse responses to the investment shock
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are shown below.
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We observe that the investment shock leads to a sizeable increase in output, hours, and invest-

ment, with reductions in consumption and the real wage. The intuition for what is going on is as

follows. When Zt increases, since turning investment into capital is more efficient, it makes sense

to save more through capital. Hence, consumption jumps down. This results in an inward shift of

the labor supply curve (along an initially stable labor demand curve), which leads an increase in

Nt and a reduction in wt. The increase in Nt results in an increase in Yt, which combined with

the reduction in Ct means It is higher. The real interest rate rises because the marginal product

of capital is initially higher. As we go further out, we start to accumulate more capital, and the

Zt shock fades away, consumption beings to increase, which shifts labor supply back in, driving

down Nt and the wage up. We do not generate co-movement between Ct and Nt (and Yt and It)

here for reasons that have been mentioned above: with our standard labor supply relationship,

absent a change in At consumption and hours cannot move together (this holds the capital stock

fixed, which is a safe approximation at short forecast horizons). Hence, while the investment shock

produces interesting dynamics here, in the model as currently presented it cannot be a major source

of business cycle fluctuations as it does not get the co-movement right. In difference setups where

the labor supply condition is broken this is not necessarily the case.

A final caveat is in order here. The investment shock as presented is closely related to a different

kind of shock that is often called “investment-specific technology” (or IST). This is a shock which

affects the transformation of consumption goods into investment goods, whereas the investment

shock laid out here impacts the transformation of investment goods into capital goods. Since
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investment is non-consumed output, in terms of the capital accumulation equation both the IST

and MEI shocks show up the same way. But the two kinds of shocks have different implications for

the relative price of investment and consumption. In our setup, the relative price of investment to

consumption is 1; in the IST setup, the relative price of investment is the inverse of the IST shock.

The relative price of investment to consumption has trend significantly down in the post-war era,

suggesting that IST shocks are an important long run feature of the data. But the relative price of

investment does not move a ton at cyclical frequencies, so mean-reverting shocks to IST cannot be

super important business cycle shocks. Since the MEI shock here doesn’t affect the relative price

of investment, you can’t rule out that it’s important over the business cycle.

2.8 Imperfect Competition

We now deviate from the assumption of perfect competition. Although it is not necessary, it

is helpful to break production up into two sectors. The first is the “final goods” sector and is

competitive, so we can think about there being a representative final goods firm. This firm doesn’t

use any factors of production, but rather “bundles” intermediate goods into a final good. The

intermediate goods use capital and labor to produce. There are a continuum of intermediate goods

firms who populate the unit interval. This is just a convenient normalization – the point is that

there are a “lot” of intermediate good firms, but they produce differentiated goods.

The final good is a constant elasticity of substitution aggregate of intermediate goods. The

“production” technology is:

Yt =

(∫ 1

0
Y

ν−1
ν

j,t dj

) ν
ν−1

(27)

Remember that an integral is just the sum – this is the sum of each intermediate input raised to a

power, with the whole sum raised to a power that is the inverse of the power on each intermediate

input. ν is a parameter assumed to be positive and it governs the degree of substitutability among

intermediate inputs. As it goes to infinity, this just becomes the sum of intermediate goods (i.e.

goods are perfect substitutes). As it goes to zero, the production technology becomes Leontief

(perfect complements). For ν = 1, there is a “unit elasticity of substitution” and the production

technology is Cobb-Douglas (the product of the intermediate inputs). Assume for what follows

that ν > 1.

The final goods firm wants to maximize (nominal) profits, given a final good price, Pt, and

taking intermediate good prices, Pj,t, as given:

max
Yj,t

ΠF
t = Pt

(∫ 1

0
Y

ν−1
ν

j,t dj

) ν
ν−1

−
∫ 1

0
Pj,tYj,tdj

The first order conditions are found by differentiating with respect to yi,t and setting equal to

zero:
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∂ΠF
t

∂yi,t
= 0⇔ Pt

ν

ν − 1

(∫ 1

0
Y

ν−1
ν

j,t dj

) ν
ν−1
−1

ν − 1

ν
Y

ν−1
ν
−1

j,t = Ppj,t

Pt

(∫ 1

0
Y

ν−1
ν

j,t dj

) 1
ν−1

Y
−1
ν

j,t = Pj,t

Y
−1
ν

j,t =

(
Pj,t
Pt

)(∫ 1

0
Y

ν−1
ν

j,t dj

) −1
ν−1

Yj,t =

(
Pj,t
Pt

)−ν (∫ 1

0
Y

ν−1
ν

j,t dj

) ν
ν−1

Using the definition of the aggregate final goods production technology, this reduces nicely to:

Yj,t =

(
Pj,t
Pt

)−ν
Yt (28)

In words, the relative demand for differentiated intermediate good j depends on its relative

price, with ν the price elasticity of demand.

We can now solve for the aggregate price index. The nominal value of the final good is just the

sum of prices times quantities of intermediate goods, using the above demand specification:

PtYt =

∫ 1

0
Pj,tYj,tdj =

∫ 1

0
Pj,t

(
Pj,t
Pt

)−ν
Ytdj

PtYt =

∫ 1

0
P 1−ν
j,t PtνYtdj = P νt Yt

∫ 1

0
P 1−ν
j,t dj

Simplifying, we get:

Pt =

(∫ 1

0
P 1−ν
j,t dj

) 1
1−ν

(29)

The intermediate goods firms produce output using capital and labor, according to a standard

production technology:

Yj,t = AtK
α
j,tN

1−α
j,t (30)

At is aggregate technology and is common across intermediate goods firms. It follows that

aggregate capital and aggregate employment are just the sum of these factors across intermediate

goods firms:
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Kt =

∫ 1

0
Kj,tdj

Nt =

∫ 1

0
Nj,tdj

Assume that there are no debt instruments and that the intermediate goods firm rents capital

from households. These firms all face the same factor prices (rental rate and wage rate). The firms

do, however, have the ability to set their own price, given that they face downward sloping demand

curves (as long as ν is not ∞). Hence, they want to solve the following constrained problem:

max
Yj,t,Pj,t,Kj,t,Nj,t

Pj,tYj,t − wtNj,t −RtKj,t

s.t.

Yj,t = AtK
α
j,tN

1−α
j,t

Yj,t =

(
Pj,t
Pt

)−ν
Yt

Set the problem up using a Lagrangian, with two multipliers, λj1,t and λj2,t.

L = Pj,tYj,t − wtNj,t −RtKj,t + λj1,t

(
AtK

α
j,tN

1−α
j,t − Yj,t

)
+ λj2,t

((
Pj,t
Pt

)−ν
Yt − Yj,t

)

The first order conditions are:

∂L
∂Yj,t

= 0⇔ Pj,t = λj1,t + λj2,t (31)

∂L
∂Pj,t

= 0⇔ Yj,t = νλj2,tP
−ν−1
j,t P νt Yt (32)

∂L
∂Kj,t

= 0⇔ Rt = λj1,tαAtK
α−1
j,t N1−α

j,t (33)

∂L
∂Nj,t

= 0⇔ wt = λj1,t(1− α)AtK
α
j,tN

α
j,t (34)

The first order condition for the price can be simplified:
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Yj,t = νλj2,t

(
Pj,t
Pt

)−ν
ytP

−1
j,t

Pj,t = νλj2,t

λj2,t =
Pj,t
ν

Now plug this into the first order condition for output:

Pj,t = λj1,t +
Pj,t
ν

Simplify:

Pj,t =
ν

ν − 1
λj1,t (35)

Now that ν
ν−1 ≥ 1. What is the interpretation of this statement? λj1,t can be interpreted as

marginal cost. It is the shadow value on the first constraint: if I make you produce a little less,

by how much do your profits go up (equivalently how much do your costs go down). Hence, this

expression says that the optimal pricing rule is to set price equal to a “markup” of price over

marginal cost, with the markup defined as ϕ = ν
ν−1 . The less substitutable the intermediate goods

are (i.e. the smaller is ν) the bigger the markup will be.

Plug this into the first order conditions for capital and labor; this will allow these conditions

to be written in terms of the real product wage and the real product rental rate (the “product”

qualifier means that we divide the nominal factor price by the price of the product, not the price

level of all goods . . . this is the real factor price relevant for firm decision making):

wt
Pj,t

=
ν − 1

ν
αAtK

α
j,tN

−α
j,t (36)

Rt
Pj,t

=
ν − 1

ν
(1− α)AtK

α−1
j,t N1−α

j,t (37)

Because ν−1
ν ≤ 1, factors will be paid less than their marginal products; this gives rise to

economic profits for the intermediate goods firms.

Now use the first order conditions for labor and capital to eliminate λj1,t:
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λj1,t =
Rt

αAtK
α−1
j,t N1−α

j,t

wt =
Rt

αAtK
α−1
j,t N1−α

j,t

(1− α)AtK
α
j,tN

−α
j,t

wt = Rt
1− α
α

Kj,t

Nj,t

Kj,t

Nj,t
=

α

1− α
wt
Rt

This last condition is important. It says that all forms will hire capital and labor in the same

ratio, since the wage, the rental rate, and α are common to all firms. Use this fact to go back to

the expression for λj1,t, which again has the interpretation as marginal cost:

λj1,t =
Rt

αAt

(
Kj,t
Nj,t

)α−1

Since all firms will hire capital and labor in the same ratio, this means that they all have the

same marginal cost. But going back to the pricing rule, if they all have the same marginal cost,

then they all will charge the same price. Then using the formula for the aggregate price level, we

see:

Pj,t = Pt ∀ j (38)

In other words, all firms charge the same price, which is equal to the final goods price. From

the demand specification, if all firms charge the same price, they must produce the same amount

of output:

Yj,t = Yt ∀ j (39)

This may seem a little odd, but this is the advantage of defining firms as existing over the unit

interval – the output of any one firm is equal to the aggregate output which is equal to average

output. The individual production function is:

Yj,t = At

(
Kj,t

Nj,t

)α
Nj,t

Since all firms hire capital and labor in the same ratio, and also produce the same amount of

output, we can see that they must all hire the same amount of labor, and hence the same amount

of capital:
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Kj,t = Kt ∀ j

Nj,t = Nt ∀ j

This means that we can think of there being an aggregate production function (for the final

good) that is identical to the production function of any intermediate good firm:

Yt = AtK
α
t N

1−α
t (40)

Because all firms charge the same price, the relative price of all goods comes out to be 1 in

equilibrium. The level of prices is indeterminate without specifying some process for money (i.e.

we could easily do that). Hence, we can normalize all prices to be one; this means that there is no

difference between real and nominal factor prices. The factor demand equations become:

wt =
ν − 1

ν
(1− α)AtK

α
t N
−α
t (41)

Rt =
ν − 1

ν
αatK

α−1
t N1−α

t (42)

The household side of the model is the same as in our benchmark case, and has the same first

order conditions. The entire set of first order conditions characterizing the equilibrium of this model

are:

1

Ct
= βEt

(
1

Ct+1
(Rt+1 + (1− δ)

)
(43)

1

Ct
= βEt

(
1

Ct+1
(1 + rt+1)

)
(44)

θ

1−Nt
=

1

Ct
wt (45)

wt =
ν − 1

ν
(1− α)AtK

α
t N
−α
t (46)

Rt =
ν − 1

ν
αAtK

α−1
t N1−α

t (47)

Yt = Ct + It (48)

Yt = AtK
α
t N

1−α
t (49)

Kt+1 = It + (1− δ)Kt (50)

lnAt = ρ lnAt−1 + εt (51)

We can see that these are exactly the same first order conditions which obtain in the basic RBC

model, with the exception of the inverse of the price markup in the factor demand equations. If
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we assume that ν is constant, then the only thing that will be different about this model is the

steady state – in particular, ν < ∞ will distort the steady state values. In a linearization of the

model, the impulse responses will be identical. Essentially the imperfect competition is a steady

state distortion; to a first order approximation it does not impact the dynamics of the model. The

competitive equilibrium steady state allocations will be different than what a planner would choose

– a welfare optimizing government would want to equate marginal products of capital and labor to

their factor prices, and could eliminate the distortion with Pigouvian taxes.

We can, however, entertain fluctuations in ν. We can effectively think of these as being markup

shocks. As above, define ϕ = ν
ν−1 . Suppose that the log of this follows a stationary AR(1):

lnϕt = (1− ρϕ)ϕ∗ + ρϕ lnϕt−1 + εϕ,t

I can re-write the factor demand equations as:

wt =
1

ϕt
(1− α)AtK

α
t N
−α
t (52)

Rt =
1

ϕt
αAtK

α−1
t N1−α

t (53)

I’m just going to first create parameterization of the process for ϕ out of thin air: let’s assume

that ϕ∗ = 1.2 (equivalently ν∗ = 5, that ρϕ = 0.9, and that the standard deviation of the innovation

is 0.01 (i.e. 1 percent). Below are impulse responses to a markup shock in the model with our

benchmark parameterization (note that, to match the steady state hours of 1
3 , I would need to

adjust θ to reflect ϕ∗ . . . I don’t do that here, as it doesn’t affect the dynamics).
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There are a couple of things evident from these responses. First, the markup shock causes

consumption, hours, output, and investment to all decline together (i.e. positive co-movement).

But second, average labor productivity goes up, which means that hours are falling by more than

output. Adding markup shocks is thus going to do two things for us that the basic RBC model

struggles with – it will reduce the cyclicality of labor productivity (which is way too high in the

basic model relative to the data), and it will increase the volatility of hours relative to output

(which is way too low in the model relative to the data). In many respects the markup shock is

very similar (but not identical) to the intratemporal shock to labor supply or a shock to a tax rate

on labor.

2.9 Money

We have abstracted from money thus far. Isn’t economics all about money? We will give money

a functional definition – it is anything which is used as a medium of exchange, serves as a unit of

account, and serves as a store of value. The existence of money eliminates the problems presented

by the double coincidence of wants presented by a system of exchange based on barter. In the

model we have presented thus far the presence of money is somewhat trivial, since there is only

one good. But in a multi-good world (i.e. reality) money is obviously important.

That being said, it turns out to be fairly difficult to get agents to hold money. Agents will not

willingly hold money in equilibrium for its store of value function – agents can also “save” through
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capital or bonds, which pay interest. What differentiates money is that it does not pay interest.

Hence, the “cards are stacked” against money. It must be the exchange motive that gets people to

hold money.

There are three ways in which to get agents to hold money, and we will consider two of them. The

one we will not consider is the “money search” literature. This is a super micro-founded literature

that considers money as rising endogenously in a search-theoretic framework. It is beyond the

scope of this course. We will consider two “shortcuts” – cash in advance and money in the utility

function. Both get at the exchange role of money. Cash in advance assumes that cash is required to

purchase goods. This can be thought of as a “technological” constraint and is a reduced-form way

of getting at the exchange role of money. The other approach is “money in the utility function”.

In this case we assume that agents get utility from holding money. This is also a reduced form way

of getting at the idea that holding money makes conducting exchange “easier”. These approaches

yield similar results but they are not exactly the same. We consider each in turn.

2.9.1 The Budget Constraint

Before proceeding we need to write out a budget constraint that includes money. This is because

money is a store of value. Let Mt−1 denote the nominal holdings brought into period t – this is

predetermined. Let Mt denote new money holdings (determined at time t) that will be brought

into t+ 1. Let pt denote the nominal price of goods – this is the price of goods measured in units

of money. Let it−1 denote the nominal interest rate on nominal bonds, Bt+1, observed at time t

that pays off in time t+ 1. It pays off in dollars.

The household earns real income on work (wtNt), real income from leasing capital (RtKt), and

nominal interest earned on bonds brought into this period (it−1Bt). We can convert this income

from holding bonds into real terms by dividing by the price level, Pt. With this real income

the household can (i) consume, Ct; (ii) purchase more capital, Kt+1, (iii) buy more (real) bonds,

Bt+1/Pt, or )iv) accumulate more money, (Mt −Mt−1)/Pt. The household also pays a lump sum

tax, Tt, which I return to below:

Ct +Kt+1 − (1− δ)Kt +

(
Bt+1 −Bt

Pt

)
+

(
Mt −Mt−1

Pt

)
= wtNt +RtKt − Tt + Πt + it−1

Bt
Pt

(54)

In either of the following setups, the household can freely choose the real variables Ct and Nt.

It can freely choose the bond and money holdings it carries over into the future, Mt and Bt+1. It

takes all prices (wt, Rt, it, and Pt as given). Firms are unaffected by money, since we can model

their problem as completely static (they technically have the ability to operate in debt markets,

but this ends up being indeterminate anyway so we can abstract from that part of the problem).

The firm problem is always standard:

max
Kt,Nt

AtF (Kt, Nt)− wtNt −RtKt
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The first order conditions are:

wt = AtFN (Kt, Nt)

Rt = AtFK(Kt, Nt)

There exists a central bank that sets the money supply in both set ups. Let’s suppose that the

exogenous process for the money supply follows an AR(1) in the growth rate (first difference of the

log). This specification will generate positive trend inflation:

lnMt − lnMt−1 = (1− ρm)π∗ + ρm (lnMt−1 − lnMt−2) + εm,t (55)

Here π∗ is the steady state growth rate of the money supply. This will end up being equal to

steady state inflation in both models.

Because the government prints money, it effectively earns some revenue (which we call seignor-

age). We are going to assume that there is no government spending and that the government does

not operate in the bond market (which will mean that in equilibrium Bt = 0); this is without loss

of generality because Ricardian equivalence holds in this setup as long as taxes are lump sum. The

budget constraint is:

0 ≤ Tt +
Mt −Mt−1

Pt

This says that government expenditure (which I assume is zero) cannot exceed revenue, which

is lump sum taxes plug the change in the money supply divided by the price level. Mt−Mt−1

Pt
is

“seignorage revenue” in the sense that the change in money that the government produces divided

by the price level is essentially like a tax. If the government budget constraint holds with equality,

this means that:

Tt = −Mt −Mt−1

Pt

When imposing equilibrium, plugging this into the household budget constraint causes the terms

involving Mt and Mt−1 to cancel out, so we get the standard resource constraint that Yt = Ct + It.

2.9.2 Money in the Utility Function

In this specification households get utility from consumption, leisure, and holding real money

balances – Mt/Pt. Note the timing convention here – Mt is how much money the household

chooses to hold today to carry into tomorrow. The idea here is that the more money one has

(relative to the price level), the “easier” conducting transactions is. As before, we will go ahead

and make functional form assumptions that permit a quantitative solution of the model. The

household problem is:
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max
Ct,Nt,Kt+1,Bt+1,Mt

E0

∞∑
t=0

lnCt + θ ln(1−Nt) + ψ

(
Mt
Pt

)1−ζ
− 1

1− ζ


s.t.

Ct +Kt+1 − (1− δ)Kt +

(
Bt+1 −Bt

Pt

)
+

(
Mt −Mt−1

Pt

)
= wtNt +RtKt − Tt + Πt + it−1

Bt
Pt

Form a current value Lagrangian:

L = E0

∞∑
t=0

lnCt + θ ln(1−Nt) + ψ

(
Mt
Pt

)1−ζ
− 1

1− ζ
+ . . .

· · ·+ λt

(
wtNt +RtKt − Tt + Πt + (1 + it)

Bt
Pt
− Ct −Kt+1 + (1− δ)Kt −

Mt

Pt
+
Mt−1

Pt
− Bt+1

Pt

)}
The first order conditions are:

∂L
∂Ct

= 0⇔ 1

Ct
= λt (56)

∂L
∂Nt

= 0⇔ θ

1−Nt
= λtwt (57)

∂L
∂Kt+1

= 0⇔ λt = βEt (λt+1(Rt+1 + (1− δ))) (58)

∂L
∂Bt+1

= 0⇔ λt = βEt

(
λt+1(1 + it)

Pt
Pt+1

)
(59)

∂L
∂Mt

= 0⇔ ψ

(
Mt

Pt

)−ζ 1

Pt
=
λt
Pt
− βEt

λt+1

Pt+1
(60)

The first four equations can be re-arranged to yield the exactly the same first order conditions

which obtain in the standard RBC model:

θ

1−Nt
=

1

Ct
wt (61)

1

Ct
= βEt

(
1

Ct+1
(Rt+1 + (1− δ))

)
(62)

1

Ct
= βEt

(
1

Ct+1

(
(1 + it)

Pt
Pt+1

))
(63)

This is identical to the previous setup because of the Fisher relationship, which says that

1 + rt = (1 + it)
Pt
Pt+1

. We can greatly simplify the first order condition for holdings of money by

using the first order condition for bonds:
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(
Mt

Pt

)−ζ
= λt − βEtλt+1

Pt
Pt+1

βEtλt+1
Pt
Pt+1

=
λt

1 + it
⇒(

Mt

Pt

)−ζ
= λt

(
1− 1

1 + it

)
Define mt = Mt

Pt
as “real money balances”. This essentially says how much current consumption

you are giving up by carrying money from today into tomorrow. Simplifying the above we have:

ψm−ζt =
1

Ct

(
it

1 + it

)
This can be simplified further to yield:

mt = ψζCζt

(
1 + it
it

)ζ
(64)

This is quite intuitive. It says that the demand for money (i) increases one for one in the price

level; (ii) is increasing in consumption; and (iii) is decreasing in the nominal interest rate. The

nominal interest rate is the opportunity cost of holding money – if you didn’t save in money, you

could have saved in bonds, earning nominal interest. The fact that it is increasing in consumption

essentially just says that money is a “normal” good in this setup – the wealthier you are, the

more consumption you want and the more money you want to hold. The fact that the demand

for money increases one for one with the price level gets at the idea that you get utility from real

money balances, so an increase in the price level (which affects nothing else in the model) leads one

to desire to hold more money.

To close the model out we need to deal with the non-stationarity inherent in the assumed process

for the money supply. In particular, we want to write it in terms of real balances (which will be

stationary). Hence, we need to play around with the exogenous process for money by adding and

subtracting logs of the price level at various leads and lags.

lnMt − lnMt−1 = (1− ρm)π∗ + ρm (lnMt−1 − lnMt−2) + εm,t

lnMt − lnPt + lnPt − lnPt−1 − lnMt−1 + lnPt−1 = (1− ρm)π∗ . . .

· · ·+ ρm (lnMt−1 − lnPt−1 + lnPt−1 − lnPt−2 − lnMt−2 + lnPt−2) + εm,t

We have lnmt = lnMt − lnPt, and define πt = lnPt − lnPt−1. We can write this as:

∆ lnmt + πt = (1− ρm)π∗ + ρmπt−1 + ρm∆ lnmt−1 + εm,t (65)

46



The full set of conditions characterizing the model’s equilibrium are then:

θ

1−Nt
=

1

Ct
wt (66)

1

Ct
= βEt

(
1

Ct+1
(Rt+1 + (1− δ))

)
(67)

1

Ct
= βEt

(
1

Ct+1
(1 + rt)

)
(68)

Rt = αAtK
α−1
t N1−α

t (69)

wt = (1− α)AtK
α
t N
−α
t (70)

Yt = AtK
α
t N

α
t (71)

Kt+1 = It + (1− δ)Kt (72)

Yt = Ct + It (73)

∆ lnmt = (1− ρm)π∗ − πt + ρmπt−1 + ρm∆ lnmt−1 + εm,t (74)

mt = ψζCζt

(
1 + it
it

)ζ
(75)

1 + rt = (1 + it)Et(1 + πt+1)−1 (76)

lnAt = ρ lnAt−1 + εt (77)

∆ lnmt = lnmt − lnmt−1 (78)

This is 13 equations in 13 variables – Nt, Ct, Rt, rt, wt, Kt, At, Yt, It, ∆ lnmt, mt, it, and πt.

The equations determining the real variables of the model are exactly the same as in the basic RBC

model – you can determine Nt, Ct, wt, Rt, rt, wt, Kt, Yt, and At independently of mt, πt, or it.

Intuitively, this means that the response of the real variables to a technology shock will be identical

in this set up to earlier, and real variables will not respond to monetary shocks. Put differently,

money is completely neutral with respect to real variables, and the classical dichotomy holds – real

variables are determined first and then nominal variables are determined.

I parameterize the model exactly the same as before in the basic RBC notes. There are a few

new parameters to be set, however. I set ρm = 0.5, and the standard deviation of the monetary

policy shock to 0.01 (i.e. 1 percent). I set π∗ = 0.00, so that there is no inflation in the steady

state. I set ψ = 1 and ζ = 2. The steady state growth rate of money, equal to the steady state

inflation rate, does not have interesting short run dynamic effects here

Below I show impulse response functions (just of the nominal variables, since the responses

of the real variables to a technology shock are the same as in the baseline RBC model and their

response to the monetary shock is zero) to both shocks. I construct the responses of the price level

and the level of the nominal money supply using the facts that:

47



ln pt = πt + ln pt−1

lnMt = lnmt + ln pt

Since the model is linearized, impulse responses don’t depend on initial conditions, so I can

normalize ln pt−1 = 0 in constructing those responses.
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These have features we would more or less expect – inflation (and hence the price level) fall in

response to a technology shock and rise in response to a monetary shock. The nominal interest

rate rises when the money supply increases at an unexpectedly fast rate; the nominal interest rate

also rises after the technology shock. Further, we can immediately tell that the price level will

be countercyclical – this is because technology shocks (which raise output) lower inflation and the
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price level, inducing a negative correlation. That correlation is consistent with the data.

It’s an interesting exercise to see what happens if I make ρm = 0, which means that the money

supply follows a random walk (with drift, if π∗ 6= 0). In response to a monetary shock, the only

effect is for the price level to immediately jump up by the amount of the change in M – there is

no change in the nominal interest rate. The logic for this is as follows. Since nothing real changes,

the real interest rate, rt, will not respond to the monetary shock. But since there is no persistence

to the shock, the price level will just jump up by the increase in Mt, and since there is no further

change in Mt in period t+ 1 or beyond, nothing more will happen to the price level after period t.

This means that expected inflation between t and t+ 1 will not react – e.g. πt+1 will not change.

But if πt+1 doesn’t change, and rt doesn’t change, then from the Fisher relationship it doesn’t

change either. In response to a monetary shock, it will simply move with Etπt+1 in such a way as

to keep rt unchanged. We can see this in the impulse responses shown below:
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2.9.3 Cash in Advance

Now we undertake another assumption that allows us to get money into our basic RBC model. It

ends up having fairly similar implications to the money in the utility model specification but it is

not identical. In particular, in this framework money is not completely neutral and the classical

dichotomy does not hold.

The cash in advance constraint says that one must have enough money on hand to finance all

nominal purchases of consumption goods. In particular:

Mt−1 ≥ PtCt (79)

Otherwise the problem is the standard real business cycle model, modified to have money

entering the budget constraint as a store of value. We can write out the household problem as:

49



max
Ct,Nt,Kt+1,Bt+1,Mt+1

E0

∞∑
t=0

{lnCt + θ ln(1−Nt)}

s.t.

Ct +Kt+1 − (1− δ)Kt +

(
Bt+1 −Bt

Pt

)
+

(
Mt −Mt−1

Pt

)
= wtNt +RtKt − Tt + Πt + it−1

Bt
Pt

Mt−1 ≥ ptCt

We can form a current value Lagrangian:

L = E0

∞∑
t=0

βt
{

lnCt + θ ln(1−Nt) + µt

(
Mt−1

Pt
− Ct

)
. . .

· · ·+ λt

(
wtNt +RtKt − Tt + Πt + (1 + it−1)

Bt
Pt
− Ct −Kt+1 + (1− δ)Kt −

Bt+1

Pt
− Mt

Pt
+
Mt−1

Pt

)
This is a similar setup to before, except now there is no money in the utility function and there

is an extra constraint, with Lagrange multiplier given by µt. The first order conditions are:

∂L
∂Ct

= 0⇔ 1

Ct
= λt + µt (80)

∂L
∂Nt

= 0⇔ θ

1−Nt
= λtwt (81)

∂L
∂Kt+1

= 0⇔ λt = βEt (λt+1(Rt+1 + (1− δ)) (82)

∂L
∂Bt+1

= 0⇔ λt = βEtλt+1

(
(1 + it)

(
Pt
Pt+1

))
(83)

∂L
∂Mt

= 0⇔ −λt
Pt

+ βEt
µt+1

Pt+1
+ βEt

λt+1

pt+1
= 0 (84)

The final first order condition can be simplified to yield:

λt = βEt

(
µt+1

Pt
Pt+1

+ λt+1
Pt
Pt+1

)
(85)

The first four of these first order conditions are identical to the money in the utility function

setup. Take a look at the last one. Suppose that one had enough money (i.e. Mt was sufficiently

big relative to consumption) that the cash in advance constraint was never binding. This would

mean that Etµt+1 = 0 for all time. Plugging this in to the last first order condition and comparing

with the previous first order condition, we see that the only way the two could simultaneously hold

is if it = 0. This makes sense – as long as bonds pay non-zero interest, one would never want

to hold money. Hence, we would be at a corner solution. In the presence of the cash in advance

constraint, however, this will not be true.
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I solve the model in Dynare assuming that the cash in advance constraint always binds. The

firm problem, money growth rule, and stochastic process for technology are identical to above. It is

helpful to not eliminate the Lagrange multipliers when solving this problem – that’s fine, as it just

introduces more variables. I also have to solve the model using inflation and real money balances,

as the nominal money supply and price level are non-stationary.

The impulse responses of real variables to a technology shock are exactly the same in the cash

in advance model as in the money in the utility function model, which are, in turn, exactly the

same as in the basic RBC model. It is in this sense that abstracting from money altogether in that

model is fine. It turns out here, however, that money does have real effects, although these are

small. The impulse responses of the real variables to a monetary policy shock are shown below:
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Here we see something perhaps not very intuitive. Not only does the monetary shock have real

effects, it actually causes an output contraction (albeit it is very small). What is the intuition

for this? Inflation is essentially a tax on holders on money. In the absence of the technological

constraint requiring them to hold money (the cash in advance constraint), people thus wouldn’t

hold it at all. But given that they do have to hold it, an increase in the rate of growth of the

money supply – which causes more inflation – makes people want to “get out of” money because

it’s essentially a tax on money. Since consumption requires money, they can’t substitute from

money to consumption, so they substitute from money to leisure. Hence, there is a reduction in

labor supply and a reduction in consumption, which leads to an output decline, real wage increase,

and investment increase.

That being said, the real effects of money in this model are pretty small (in comparison with
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the responses to a productivity shock) and are not very persistent. In particular, for the param-

eterization I used, money explains less than 1 percent of the variance of output, about 6 percent

of the variance of investment, about 1 percent of the variance of horus, and about 4 percent of

the variance of consumption. Hence, money is approximately neutral in this model. To get large

monetary non-neutrality, one needs to introduce other kinds of frictions (like price stickiness).

2.9.4 Optimal Long Run Inflation

I’ve thus far ignored the optimal trend growth rate of the money supply (which is in turn equal

to the long run steady state growth rate of prices), simply taking it is given. What would be the

optimal long run inflation rate in either of these models?

The so-called Friedman rule is to set the nominal interest rate on bonds equal to zero it = 0. It

turns out that this is optimal (from the perspective of steady state welfare) in both the cash in ad-

vance and money in the utility function models. Friedman’s original intuition was straightforward.

Money is a “good” thing in the sense of reducing transactions frictions and therefore increases

welfare. It is (essentially) costless to produce. The nominal interest rate being positive imposes a

tax on the holders of money, which distorts welfare. Put differently, the private marginal cost of

holding money is the nominal interest rate, while the public marginal cost of producing money is

(essentially) zero. To bring about efficiency we need to bring these into equality by reducing the

distortion.

At a more formal level, we can see why this is optimal in both of these specifications. It is

perhaps easiest to see in the CIA model. What you would like is for the cash in advance constraint

to not bind – if the constraint doesn’t bing, agents have to be weakly better off than if it does bind.

The constraint not binding would mean that µt = 0. The only way for the first order conditions

to all hold with µt = 0 is if it = 0. Hence, setting i = 0 in the long run is optimal, as Friedman

conjectured. From the Fisher relationship, since r = 1
β −1, i = 0 requires that 1+π = (1/β − 1)−1,

which means π < 0. Hence, you want deflation in the steady state.
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