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1 Introduction

This note describes the canonical real business cycle model. A couple of classic references here are

Kydland and Prescott (1982), King, Plosser, and Rebelo (1988), and King and Rebelo (2000). The

model is essentially just the neoclassical growth model augmented to have variable labor supply.

2 The Decentralized Model

I will set the problem up as a decentralized model, studying first the behavior of households and

then the behavior of firms.

There are two primary ways of setting the model up, which both yield identical solutions. In

both households own the firms, but management and ownership are distinct, and so households

behave as though firm profits are given. In one formulation firms own the capital stock, and issue

both debt and equity to households. In another formulation, households own the capital stock

and rent it to firms; firms still issue debt and equity to households. We will go through both

formulations. Intuitively these set-ups have to be the same because, either way, households own

the capital stock (either directly or indirectly).

In both setups I abstract from trend growth, which, as we have seen, does not really make much

of a difference anyway.

2.1 Firms Own the Capital Stock

Here we assume that firms own the capital stock. We begin with the household problem.

2.1.1 Household Problem

There is a representative household. It discounts the future by β < 1. It supplies labor (measured

in hours), Nt, and consumes, Ct. It gets utility from consumption and leisure; with the time

endowment normalized to unity, leisure is 1 − Nt. It earns a wage rate, wt, which it takes as
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given. It holds bonds, Bt, which pay interest rate rt−1. rt−1 is the interest rate known at t − 1

which pays out in t; rt is the interest rate known in t which pays out in t + 1. Bt > 0 means

that the household has a positive stock of savings; Bt < 0 means the household has a stock of

debt. Note that “savings” is a stock; “saving” is a flow. The household takes the interest rate as

given. Its budget constraint says that each period, total expenditure cannot exceed total income. It

earns wage income, wtNt, profit distributions in the form of dividends, Πt, and interest income on

existing bond holds, rt−1Bt (note this can be negative, so that there is an interest cost of servicing

debt). Household expenditure is composed of consumption, Ct and saving, Bt+1 − Bt (i.e. the

accumulation of new savings). Hence we can write the constraint:

Ct + (Bt+1 −Bt) ≤ wtNt + Πt + rt−1Bt (1)

Note a timing convention – rt−1 is the interest you have to pay today on existing debt. rt is

what you will have to pay tomorrow, but you choose how much debt to take into tomorrow today.

Hence, we assume that the household observes rt in time t. Hence we can treat rt as known from

the perspective of time t. The household chooses consumption, work effort, and the new stock of

savings each period to maximize the present discounted value of flow utility:

max
Ct,Nt,Bt+1

E0

∞∑
t=0

βt (u(Ct) + v(1−Nt))

s.t.

Ct +Bt+1 ≤ wtNt + Πt + (1 + rt−1)Bt

We can form a current value Lagrangian:

L = E0

∞∑
t=0

βt (u(Ct) + v(1−Nt) + λt(wtNt + Πt + (1 + rt−1)Bt − Ct −Bt+1))

The first order conditions characterizing an interior solution are:

∂L
∂Ct

= 0⇔ u′(Ct) = λt (2)

∂L
∂Nt

= 0⇔ v′(1−Nt) = λtwt (3)

∂L
∂Bt+1

= 0⇔ λt = βEtλt+1(1 + rt) (4)

These can be combined together to yield:
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u′(Ct) = βEt
(
u′(Ct+1)(1 + rt)

)
(5)

v′(1−Nt) = u′(Ct)wt (6)

(5) and (6) have very intuitive, intermediate micro type interpretations. (5) says to equate the

marginal rate of substitution between consumption today and tomorrow (i.e. u′(ct)
βEtu′(ct+1)

) to the

relative price of consumption today (i.e. 1+rt). (6) says to equate the marginal rate of substitution

between leisure and consumption (i.e. v′(1−nt)
u′(ct)

) to the relative price of leisure (i.e. wt).

In addition, there is the transversality condition:

lim
t→∞

βtBt+1u
′(Ct) = 0 (7)

2.1.2 The Firm Problem

There is a representative firm. The firm wants to maximize the present discounted value of (real)

net revenues (i.e. cash flows). It discounts future cash flows by the stochastic discount factor. The

way I’ll write the stochastic discount factor puts cash flows (measured in goods) in terms of current

consumption (we take the current period to be t = 0). Define the stochastic discount factor as:

Mt = βt
E0u

′(Ct)

u′(C0)

The firm discounts by this because this is how consumers value future dividend flows. One unit

of dividends returned to the household at time t generates u′(Ct) additional units of utility, which

must be discounted back to the present period (which we take to be 0), by βt. Dividing by u′(C0)

gives the period 0 consumption equivalent value of the future utils. The firm produces output, Yt,

according to a constant returns to scale production function, Yt = AtF (Kt, Nt), with the usual

properties. It hires labor, purchases new capital goods, and issues debt. I denote its debt as Dt,

and it pays interest on its debt, rt−1. Its revenue each period is equal to output. Its costs each

period are the wage bill, investment in new physical capital, and servicing costs on its debt. It can

raise its cash flow by issuing new debt (i.e. Dt+1−Dt raises cash flow). Its problem can be written

as:

max
Nt,It,Dt+1,Kt+1

V0 = E0

∞∑
t=0

Mt (AtF (Kt, Nt)− wtNt − It +Dt+1 − (1 + rt−1)Dt)

s.t.

Kt+1 = It + (1− δ)Kt

3



We can re-write the problem by imposing that the constraint hold each period:

max
Nt,Kt+1,Dt+1

V0 = E0

∞∑
t=0

Mt (AtF (Kt, Nt)− wtNt −Kt+1 + (1− δ)Kt +Dt+1 − (1 + rt−1)Dt)

The first order conditions are as follows:

∂V0
∂Nt

= 0⇔ AtFN (Kt, Nt) = wt (8)

∂V0
∂Kt+1

= 0⇔ u′(Ct) = βEt(u
′(Ct+1)((At+1FK(Kt+1, Nt+1) + (1− δ)) (9)

∂V0
∂Dt+1

= 0⇔ u′(Ct) = βEt(u
′(Ct+1)(1 + rt)) (10)

(9) and (10) follow from the fact thatMt = βtu′(Ct)/u
′(C0) and EtMt+1 = βt+1Etu

′(Ct+1)/u
′(C0).

Note that (10) is the same as (5), and therefore must hold in equilibrium as long as the household

is optimizing. This means that the amount of debt the firm issues is indeterminate, since the

condition will hold for any choice of Dt+1. This is essentially the Modigliani-Miller theorem – it

doesn’t matter how the firm finances its purchases of new capital – debt or equity – and hence the

debt/equity mix is indeterminate.

2.1.3 Closing the Model

To close the model we need to specify a stochastic process for the exogenous variable(s). The only

exogenous variable in the model is at. We assume that it is well-characterized as following a mean

zero AR(1) in the log (we have abstracted from trend growth):

lnAt = ρ lnAt−1 + εt (11)

2.1.4 Equilibrium

A competitive equilibrium is a set of prices (rt, wt) and allocations (Ct, Nt,Kt+1, Dt+1, Bt+1) taking

Kt, Dt, Bt, At and the stochastic process for At as given; the optimality conditions (5) - (7), (8)-

(10), and the transversality condition holding; the labor and bonds market clearing (Nd
t = N s

t and

Bt = Dt in all periods, so Bt+1 = Dt+1 as well); and both budget constraints holding with equality.

Let’s consolidate the household and firm budget constraints:

Ct + (Bt+1 −Bt) = wtNt + rt−1Bt +AtF (Kt, Nt)− wtNt − It +Dt+1 − (1 + rt−1)Dt (12)

⇒ (13)

AtF (Kt, Nt) = Ct + It (14)
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In other words, bond market-clearing plus both budget constraints holding just gives the stan-

dard accounting identity that output must be consumed or invested.

If you combine the household’s first order condition for labor supply with the firm’s condition,

you get:

v′(1−Nt) = u′(Ct)AtFN (Kt, Nt)

The first order condition for bonds/debt along with the first order condition for the firm’s choice

of its next period’s capital stock imply that:

Etu
′(Ct+1) (At+1FK(Kt+1, Nt+1) + (1− δ)) = Etu

′(Ct+1)(1 + rt)

This can be written:

1 + rt =
Etu

′(Ct+1) (At+1FK(Kt+1, Nt+1) + (1− δ))
Etu′(Ct+1)

I can perform this operation because rt is known at t, and hence can be taken out of the

expectations operator. One would be tempted to cancel the Etu
′(Ct+1) terms on the right hand

side, but note that you cannot do that because you cannot distribute the Et in the numerator.

Suffice it to say rt is closely tied to the marginal product of capital – this makes sense in that bonds

and capital are substitutable savings vehicles.

2.2 Households Own the Capital Stock

Now we consider a version of the decentralized problem in which the households own the capital

stock and rent it to firms. Otherwise the structure of the problem is the same.

2.2.1 Household Problem

As before, the household consumes and supplies labor. Now it also owns the capital stock. It earns

a rental rate for renting out the capital stock to firms each period, Rt. The household budget

constraint is:

Ct +Kt+1 − (1− δ)Kt +Bt+1 −Bt = wtNt +RtKt + rt−1Bt + Πt (15)

The household has income comprised of labor income, capital income, interest income, and

profits (again it takes profits as given). It can consume this, accumulate more capital (this is the

Kt+1 − (1− δ)Kt term), or accumulate more saving. Its problem is:

max
Ct,Nt,Kt+1,Bt+1

E0

∞∑
t=0

βt (u(Ct) + v(1−Nt))

s.t.
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Ct +Kt+1 − (1− δ)Kt +Bt+1 −Bt = wtNt +RtKt + rt−1Bt + Πt

Form a current value Lagrangian:

L = E0

∞∑
t=0

βt (u(Ct) + v(1−Nt) + λt(wtNt +RtKt + (1 + rt−1)Bt + Πt − Ct −Kt+1 + (1− δ)Kt −Bt+1))

The first order conditions are:

∂L
∂Ct

= 0⇔ u′(Ct) = λt (16)

∂L
∂Nt

= 0⇔ v′(1−Nt) = λtwt (17)

∂L
∂Kt+1

= 0⇔ λt = βEtλt+1(Rt+1 + (1− δ)) (18)

∂L
∂Bt+1

= 0⇔ λt = βEtλt+1(1 + rt) (19)

These first order conditions can be combined to yield:

v′(1−Nt) = u′(Ct)wt (20)

u′(Ct) = βEtu
′(Ct+1)(Rt+1 + (1− δ)) (21)

u′(Ct) = βEtu
′(Ct+1)(1 + rt) (22)

Note that (20) and (21) are the same as (5) and (9). (22) is the same as (6). One is tempted

to claim that rt + δ = Rt+1 given that (19) and (20) must both hold. This is not quite right. rt

is known at time t; Rt+1 is not. Hence one can take 1 + rt outside of the expectations operator in

(22) to get:

1 + rt =
u′(Ct)

βEtu′(Ct+1)

But once cannot do the same for (21). Intuitively, Et(u
′(Ct+1)(Rt+1+(1−δ)) = Et(u

′(Ct+1)Et(Rt+1+

(1−δ))+cov(u′(Ct+1), Rt+1). In general, that covariance term is not going to be zero. It is likely to

be negative – as we will see, EtRt+1 is the expected marginal product of capital. When the marginal

product of capital is high (so Rt+1 is high), then consumption is likely to be high (because MPK

being high probably means that productivity is high), which means that marginal utility of con-

sumption is low. To be compensated for holding an asset whose return covaries negatively with

consumption, the household would demand a premium over the safe, riskless return rt.

In a linearization of the model, that covariance term would drop out, and we could say that
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rt = EtRt+1 − δ, but in general there is another term that is essentially the equity premium.

2.2.2 The Firm Problem

The firm problem is similar to before, but now it doesn’t choose investment. Rather, it chooses

capital today given the rental rate, Rt. Note that the firm can vary capital today even though the

household cannot given that capital is predetermined. The labor choice and debt choice are similar.

In fact, because the amount of the debt is going to end up being indeterminate, it is common to

just assume that firms don’t issue/hold debt and just solve a static problem. Again, the firm wants

to maximize the present discounted value of cash flows.

max
nt,kt,dt+1

V0 = E0

∞∑
t=0

Mt (AtF (Kt, Nt)− wtNt −RtKt +Dt+1 − (1 + rt−1)Dt)

The first order conditions are:

∂V0
∂Nt

= 0⇔ AtFK(Kt, Nt) = wt (23)

∂V0
∂Kt

= 0⇔ AtFK(Kt, Nt) = Rt (24)

∂V0
∂Dt+1

= 0⇔ u′(Ct) = βEtu
′(Ct+1)(1 + rt) (25)

(25) follows from the definition of the stochastic discount factor, and again is automatically

satisfied; so again the amount of debt is indeterminate.

2.2.3 Equivalence to the Other Setup

Plug (24) into (21) and you get:

u′(Ct) = βEt(u
′(Ct+1)(At+1FK(Kt+1, Nt+1) + (1− δ)) (26)

This is identical to (9). Also, (20) is equivalent to (6); (5) is equivalent to (22); and (23) is the

same as (8). Hence, all the first order conditions are the same. The definition of equilibrium is the

same. Both the firm and household budget constraints holding again give rise to the accounting

identity (14). Hence, these setups give rise to identical solutions. It simply does not matter whether

households own the capital stock and lease it to firms or whether firms own the capital stock. Since

households own firms, these are equivalent ownership structures.
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3 Equilibrium Analysis of the Decentralized Model

We can combined first order conditions from the firm and household problems (in either setup) to

yield the equilibrium conditions:

u′(Ct) = βEt
(
u′(Ct+1)(At+1FK(kt+1, Nt+1) + (1− δ)

)
(27)

v′(1−Nt) = u′(Ct)AtFN (Kt, Nt) (28)

Kt+1 = Atf(Kt, Nt)− Ct + (1− δ)Kt (29)

lnAt = ρ lnAt−1 + εt (30)

Yt = Atf(Kt, Nt) (31)

Yt = Ct + It (32)

u′(Ct) = βEtu
′(Ct+1)(1 + rt) (33)

wt = AtFN (Kt, Nt) (34)

Rt = AtFK(Kt, Nt) (35)

(27) can essentially be interpreted as an investment-saving equilibrium. (28) characterizes

equilibrium in the labor market, since the wage is equal to the marginal product of labor. (29)

is just the capital accumulation equation, and (31) is the exogenous process for technology. (31)

defines output and (32) defines investment. (33)-(35) just give us back the equilibrium factor

prices. We have 1 truly forward-looking variable (consumption); two state/exogenous variables

(capital and productivity); and six static/redundant variables (hours, output, investment, the real

interest rate, the real wage, and the real rental rate). That’s a total of nine variables and we have

nine equations.

We need to specify functional forms. For simplicity, assume that u(Ct) = lnCt and v(1−Nt) =

θ ln(1−Nt). Assume that the production function is Cobb-Douglas: Yt = AtK
α
t N

1−α
t .

Given these parameter values we can analyze the steady state. The steady state is a situation

in which A∗ = 1 (its non-stochastic unconditional mean), Kt+1 = Kt = K∗, and Ct+1 = Ct = C∗.

Given the steady state values of these variables, the steady state values of the static variables can

be backed out. We can most easily solve for the steady state by beginning with the dynamic Euler

equation, (27).

1 = β(αK∗α−1N∗1−α + (1− δ))

Let’s use this to solve for the steady state capital to labor ratio (life is much easier if you do it

this way):
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1

β
− (1− δ) = α

(
K∗

N∗

)α−1
⇒

K∗

N∗
=

(
α

1
β − (1− δ)

) 1
1−α

(36)

This is the same expression we had for the steady state capital stock in the model with labor

inelastically supplied at one. Given the steady state capital-labor ratio, we now have the steady

state factor prices:

W ∗ = (1− α)

(
K∗

N∗

)α
(37)

R∗ = α

(
K∗

N∗

)α−1
(38)

r∗ = R∗ − δ (39)

From the capital accumulation equation evaluated in steady state it is clear that I∗ = δk∗. Use

this and look at the production function combined with the accounting identity:(
K∗

N∗

)α
N∗ = C∗ + δK∗

Divide everything by N∗, and use this to express the consumption-hours ratio as a function of

now-known things (the capital to hours ratio):

C∗

N∗
=

(
K∗

N∗

)α
− δ

(
K∗

N∗

)
(40)

Hold on to this. Now go to (28), the intratemporal consumption-leisure tradeoff condition,

evaluated at steady state:

θ

1−N∗
=

1

C∗
(1− α)

(
K∗

N∗

)α
Multiply and divide both sides by N∗ and re-arrange to expression the consumption-hours ratio

on the right hand side:

C∗

N∗
=

(
1−N∗

N∗

)
1− α
θ

(
K∗

N∗

)α
(41)

(40) and (41) essentially constitute two equations in two unknowns – the consumption-hours

ratio and hours. Set them equal:
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(
1−N∗

N∗

)
1− α
θ

(
K∗

N∗

)α
=

(
K∗

N∗

)α
− δ

(
K∗

N∗

)
Now solve for N∗:

N∗ =
1−α
θ

(
K∗

N∗

)α
θ+1−α

θ

(
K∗

N∗

)α − δ (K∗N∗ ) (42)

Now that we have N∗, the rest of this is pretty easy to compute:

I∗ = δ

(
K∗

N∗

)
N∗ (43)

Steady state output is:

Y ∗ =

(
K∗

N∗

)α
N∗ (44)

Steady state consumption then comes from the accounting identity:

C∗ = N∗
((

K∗

N∗

)α
− δ

(
K∗

N∗

))
(45)

To do a quantitative analysis one would need to specify parameter values. Before doing that,

let’s think about analyzing the model qualitatively first. I’m going to log-linearize the first order

conditions about the non-stochastic steady state. Start by taking logs of the static labor supply

condition (28):

ln θ − ln(1−Nt) = − lnCt + ln(1− α) + lnAt + α lnKt − α lnNt

The linearization (here I’m going to ignore the evaluation at steady state, which cancels out)

is:

Nt −N∗

1−N∗
= −Ct − C

∗

C∗
+
At −A∗

A∗
+ α

Kt −K∗

K∗
− αNt −N∗

N∗

Simplify into our “tilde” notation:

(
N∗

1−N∗

)
Ñt = −C̃t + Ãt + αK̃t − αÑt

So as to economize on notation, let’s denote γ = N∗

1−N∗ > 0. Then we get:

Ñt = −
(

1

γ + α

)
C̃t +

(
1

γ + α

)
Ãt +

(
α

γ + α

)
K̃t (46)
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Now let’s linearize the accumulation equation. Begin by taking logs:

lnKt+1 = ln(AtK
α
t N

1−α
t − Ct + (1− δ)Kt)

Now linearize, again ignoring the evaluation at steady state part, which cancels out anyway:

Kt+1 −K∗

K∗
=

1

K∗
(
K∗αN∗1−α(At −A∗) + αK∗α−1N∗1−α(Kt −K∗) + . . .

+(1− α)K∗αN∗−α(Nt −N∗)− (Ct − C∗) + (1− δ)(Kt −K∗)
)

Now simplify and use our “tilde” notation to denote the percentage deviation of a variable from

its steady state:

K̃t+1 =

(
K∗

N∗

)α−1 (
Ãt + αK̃t + (1− α)Ñt

)
− C∗

K∗
C̃t + (1− δ)K̃t

K̃t+1 =
1

β
K̃t +

(
K∗

N∗

)α−1
Ãt + (1− α)

(
K∗

N∗

)α−1
Ñt −

C∗

K∗
C̃t

The last simplification follows from the fact that αK∗α−1N∗1−α + (1− δ) = 1
β . Now substitute

the log-linearized expression for employment into this expression:

K̃t+1 =

(
1

β
+

1− α
γ + α

α

(
K∗

N∗

)α−1)
K̃t+

((
K∗

N∗

)α−1( 1 + γ

γ + α

))
Ãt−

(
C∗

K∗
+

1− α
γ + α

(
K∗

N∗

)α−1)
C̃t

(47)

Now we need to log-linearize the consumption Euler equation. Begin by taking logs:

− lnCt = lnβ − lnCt+1 + ln
(
αAt+1K

α−1
t+1 N

1−α
t+1 + (1− δ)

)
Now linearize, ignoring the evaluation at steady state and making use of the fact that αK∗α−1N∗1−α+

(1− δ) = 1
β :

−Ct − C
∗

C∗
= −Ct+1 − C∗

C∗
+ β

(
αK∗α−1N∗1−α(At+1 −A∗) + (α− 1)αK∗α−2N∗1−α(Kt+1 −K∗) + . . .

+(1− α)αK∗α−1N∗−α(Nt+1 −N∗)
)

This can be simplified using our tilde notation:

−C̃t = −C̃t+1 + βα

(
K∗

N∗

)α−1 (
Ãt+1 + (α− 1)K̃t+1 + (1− α)Ñt+1

)
(48)
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Now eliminate Ñt+1 using (41):

−C̃t = −C̃t+1 + βα

(
K∗

N∗

)α−1
Ãt+1 + βα(α− 1)

(
K∗

N∗

)α−1
K̃t+1 + . . .

· · ·+ βα(1− α)

(
K∗

N∗

)α−1(
−
(

1

γ + α

)
C̃t+1 +

(
1

γ + α

)
Ãt+1 +

(
α

γ + α

)
K̃t+1

)
Simplifying:

−C̃t = −

(
1 + βα(1− α)

(
K∗

N∗

)α−1( 1

γ + α

))
C̃t+1 +

(
βα

(
K∗

N∗

)α−1)( 1 + γ

γ + α

)
Ãt+1 + . . .

· · · −

(
βα(1− α)

(
K∗

N∗

)α−1)( γ

γ + α

)
K̃t+1 (49)

Equations (47) and (49) (plus the exogenous process for TFP) define a system of linearized

difference equations. Let’s try to think about this in the context of a phase diagram. The c̃t+1 = c̃t

isocline can be solved for from (44):

βα(1− α)

(
K∗

N∗

)α−1(
1

γ + α

)
C̃t+1 =

(
βα

(
K∗

N∗

)α−1
)(

1 + γ

γ + α

)
Ãt+1 −

(
βα(1− α)

(
K∗

N∗

)α−1
)(

γ

γ + α

)
K̃t+1

This simplifies greatly to yield:

C̃t+1 =

(
1 + γ

1− α

)
Ãt+1 − γK̃t+1

To make things easier, evaluate this at t (we again engage in the abuse of terminology in treating

the two time periods as approximately the same):

C̃t =

(
1 + γ

1− α

)
Ãt − γK̃t (50)

This is the C̃t+1 = C̃t = 0 isocline – i.e. the set of (C̃t, K̃t) pairs where consumption is constant.

In (C̃t, K̃t) space it is downward sloping, and it will shift up if Ãt were to change. How does this

compare to what we had in the neoclassical model? Re-arrange terms to write this:

K̃t =
1 + γ

γ

1

1− α
Ãt −

1

γ
C̃t

In the neoclassical model we normalized N∗ = 1. If this is the case, then γ →∞. This means

that the Ct term drops out and 1+γ
γ = 1. So the isocline would be:

K̃t =
1

1− α
Ãt
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This would be a vertical line, just like in the neoclassical growth model case. What makes the

C̃t+1 = C̃t isocline downward sloping is γ <∞. As we will see below, γ has the interpretation of the

inverse Frisch labor supply elasticity. So as long as labor supply isn’t perfectly inelastic (γ = ∞),

this isocline will be downward-sloping (at least locally in the region of the steady state, since we

are taking a linear approximation).

Now go to (47) to find the k̃t+1 = k̃t = 0 isocline:

(
C∗

K∗
+

1− α
γ + α

(
K∗

N∗

)α−1)
C̃t =

(
1

β
− 1 +

1− α
γ + α

α

(
K∗

N∗

)α−1)
K̃t +

((
K∗

N∗

)α−1( 1 + γ

γ + α

))
Ãt

Simplify a bit:

C̃t =

(
C∗

K∗
+

1− α
γ + α

(
K∗

N∗

)α−1)−1(( 1

β
− 1 +

1− α
γ + α

α

(
K∗

N∗

)α−1)
K̃t +

((
K∗

N∗

)α−1( 1 + γ

γ + α

))
Ãt

)
(51)

This is upward-sloping in K̃t. Furthermore, we actually know that the coefficient on the capital

stock must be less than one. The coefficient can be written as follows:

(
C∗

K∗
+

1− α
γ + α

(
K∗

N∗

)α−1)−1(( 1

β
− 1 +

1− α
γ + α

α

(
K∗

N∗

)α−1))

We know that 1−α
γ+α >

α(1−α)
γ+α since 0 < α < 1. Hence, we can prove that this coefficient is less

than unity if we can show that 1
β − 1 is less than C∗

K∗ (because this would be sufficient to show

that the numerator is less than the denominator, and hence the total coefficient is less than unity).

We can find an expression for the consumption-capital ratio in the steady state by looking at the

accounting identity and simplifying:

C∗ = K∗αn∗1−α − δK∗

C∗

K∗
=

(
K∗

N∗

)α−1
− δ

C∗

K∗
=

1
β − (1− δ)

α
− δ

C∗

K∗
=

1
β − 1

α
+ δ

(
1− α
α

)
This has to be greater than 1

β − 1, since 0 < α < 1 and δ > 0. Note that we are taking a local,

linear approximation around the steady state. As we saw in the neoclassical growth model with

fixed labor, the isocline for capital was hump-shaped. In the region of the steady state, however,
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it was upward-sloping, just as it is here.

We thus have two isoclines. We want to plot these in a plane with C̃t on the vertical axis and

K̃t on the horizontal axis. When Ãt = 0 (i.e. we were at the unconditional mean of technology),

it is clear that the two isoclines cross at the point c̃t = k̃t = 0 – i.e. they cross at the non-

stochastic steady state. We have that the C̃t+1 − C̃t = 0 isocline is downward sloping and that the

K̃t+1 − K̃t = 0 isocline is downward sloping.

We want to examine the dynamics off of the isoclines so as to locate the saddle path. Quite

intuitively, if K̃t is “too big” relative to what it would be when C̃t+1 − C̃t = 0 – i.e. we are to

the right of the C̃t+1 − C̃t = 0 iscoline – then consumption will be expected to decline over time.

The intuition for this is straight from the Euler equation – if the capital stock is “too big”, then

the marginal product of capital (and hence the real interest rate) is “too small” given concavity

of the production function. The low interest rate means that consumption is high but expected to

fall. Hence, anywhere to the right of C̃t+1 − C̃t = 0 isocline the arrows point down. If C̃t is “too

big” relative to where it would be along the K̃t+1 − K̃t = 0 isocline, then capital will be expected

to decline – intuitively, people aren’t saving enough. Hence, anywhere above the K̃t+1 − K̃t = 0

iscoline, arrows point left; anywhere below, arrows point right.

We can see that the saddle path must be upward-sloping, moving from southwest to northeast

in the picture. Note also that the slope of the saddle path must be steeper than the slope of the

K̃t+1− K̃t isocline. One can show (albeit tediously) that the K̃t+1− K̃t isocline has slope less than

1, which we did above.

 

�̃�𝐶𝑡𝑡 

𝐾𝐾�𝑡𝑡 

�̃�𝐶𝑡𝑡+1 = �̃�𝐶𝑡𝑡 
 

𝐾𝐾�𝑡𝑡+1 = 𝐾𝐾�𝑡𝑡 
 

saddle path 

This phase diagram tells us what C̃t needs to be given K̃t and Ãt so as to be consistent with the

first order conditions and the transversality condition holding. Given the two states, once we know

C̃t, we can back out the values of the static variables (employment, output, and consumption) and

the factor prices (the real wage and the real interest rate).

Begin by going to the labor market. Labor supply is implicitly determined by (6). Using our

functional forms, this is:
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θ

1−Nt
=

1

Ct
wt

In other words, the amount of labor households want to supply depends negatively on consump-

tion and positively on the real wage. Loosely speaking, we can think about consumption being in

there as picking up wealth effects – when you’re wealthier you want more leisure, which means less

work. Let’s log-linearize this equation:

ln θ − ln(1−Nt) = − lnCt + lnwt

−Nt −N∗

1−N∗
= −Ct − C

∗

C∗
+
wt − w∗

w∗

Simplify using the “tilde” notation to get:(
N∗

1−N∗

)
Ñt = −C̃t + w̃t (52)

The term 1−N∗
N∗ has a special name in economics – it is called the Frisch labor supply elasticity.

It gives the percentage change in employment for a percentage change in the real wage, holding

the marginal utility of wealth (i.e. the Lagrange multiplier from the household’s problem) fixed,

which with these preferences is like holding consumption fixed. If N∗ = 1
3 , for example, then the

Frisch elasticity would be 2. In terms of a graphical representation of the linearized labor supply

function, it would be upward sloping in w̃t, with slope equal to the Frisch elasticity, and would shift

in whenever consumption goes up (or out whenever consumption goes down). Using our notation

from above, γ = N∗

1−N∗ will be the inverse Frisch labor supply elasticity.

Now go to the firm’s first order condition which implicitly define a labor demand curve (i.e.

equation (8)). Using our functional form assumptions, this is:

At(1− α)Kα
t N
−α
t = wt

Let’s log-linearize this:

lnAt + ln(1− α) + α lnKt − α lnNt = lnwt
wt − w∗

w∗
=
At −A∗

A∗
+ α

Kt −K∗

K∗
− αNt −N∗

N∗

Using the “tilde” notation, this simplifies to:

w̃t = Ãt + αK̃t − αÑt (53)

In terms of a graph, this is downward sloping in w̃t, and will shift out whenever Ãt or K̃t

increase. We graph this below. The intersection of the labor supply and demand curves determines

15



w̃t and Ñt.

 

𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡 + 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡 + 𝛾𝛾𝑁𝑁�𝑡𝑡  

𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 

Ãt and K̃t are given. Once we know C̃t from the phase diagram, we can determine the position

of the labor supply curve. The position of the labor demand curve is given once we know capital

and productivity. The intersection of the curves determines the real wage and level of employment.

Next we can determine output, given employment. Using our functional form assumptions,

yt = atk
α
t n

1−α
t . Let’s log-linearize this:

lnYt = lnAt + α lnKt + (1− α) lnNt

Yt − Y ∗

Y ∗
=
At −A∗

A∗
+ α

Kt −K∗

K∗
+ (1− α)

Nt −N∗

N∗

Using the “tilde” notation, we get:

Ỹt = Ãt + αK̃t + (1− α)Ñt (54)

The basic idea is the following. Once we know C̃t from the phase diagram, we can determine

Ñt from the intersections of labor supply and demand. Once we know Ñt, given Ãt and K̃t, we can

determine Ỹt.

Now let’s log-linearize the capital demand equation (from the setup in which households own

the capital stock and lease it to firms on a period-by-period basis):

lnRt = lnα+ lnAt + (α− 1) lnKt + (1− α) lnNt

R̃t = Ãt + (α− 1)K̃t + (1− α)Ñt

Capital supply is fixed, at least within period. Hence, the capital supply curve is vertical. Hence

the intersection of capital demand and supply determines the real rental rate on capital as follows:
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𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡 + (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡 

𝐾𝐾�𝑡𝑡 

𝑅𝑅�𝑡𝑡 

Once we have determined Ñt above, we can use this graph to determine R̃t.

How can we determine the real interest rate? Recall the Euler equation for bonds:

1

Ct
= βEt

1

Ct+1
(1 + rt)

Let’s log-linearize this:

− lnCt = lnβ − lnCt+1 + ln(1 + rt)

Using the approximation that ln(1 + rt) ≈ rt, we can write this in tilde notation as:

r̃t = EtC̃t+1 − C̃t

In doing this linearization, note that we interpret r̃t = rt − r∗ (i.e. the absolute deviation from

steady state, not the percentage deviation, since rt is already measured in percentage units. Hence,

the real interest rate is equal to the expected growth rate of consumption. This can be determined

from the saddle path in the phase diagram.

Another way to think about the behavior of the real interest rate is as follows. Look at the

Euler equation for capital (in the setup where the households own the capital stock and lease it to

firms). This can be written:

1

Ct
= βEt

1

Ct+1
(Rt+1 + (1− δ))

Let’s log-linearize this:

− lnCt = lnβ − lnCt+1 + ln (Rt+1 + (1− δ))

−C̃t = −EtC̃t+1 + βdRt+1
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Or:

−C̃t = −EtC̃t+1 + βR∗EtR̃t+1

Combining this with what we have above, we must have:

r̃t = βR∗EtR̃t+1

In other words, there is a very close connection between the real interest rate on bonds and the

expected return on capital.

Finally, we can determine investment from the accounting identity. In log-linear form:

Ỹt =
C∗

Y ∗
C̃t +

I∗

Y ∗
Ĩt

Since the phase diagram determined the value of C̃t, and once we know that we know Ñt and

hence Ỹt, we can back out Ĩt. We could also determine Ĩt from the phase diagram, which tells us

the expected trajectory of the capital stock.

Hence, one can think about there being a “causal ordering”. Given productivity and capital,

determine consumption from the phase diagram. Given consumption, determine employment and

the real wage. Once you know employment, you know output. Given employment and productivity,

determine the rental rate on capital. Given the rental rate, determine the interest rate. . Then

given output and consumption, determine investment:

Ãt & K̃t exogenous→ C̃t → Ñt & w̃t → Ỹt&R̃t → r̃t → Ĩt

4 Dynamic Analysis in Response to TFP Shocks

We want to qualitatively characterize the dynamic responses of the endogenous variables of the

model to shocks to productivity/TFP (the only source of stochastic variation in the model as it

currently stands).

Consider first an unexpected, permanent increase in At. Assume that the economy initially

sits in a steady state. This means we will end up in a new steady state, which means that the

new steady state of the linearized variables will not be zero, as we linearized about the old steady

state. From (50) and (51), we know that the two isoclines must both shift “up” when Ãt suddenly

increases. The new isoclines must cross at a point with a higher (relative to the initial) steady state

capital and consumption (one can show this analytically). There will also be a new saddle path

associated with the “new” system. At time t, consumption must jump to the new saddle path,

from which point it must be expected to “ride” it all the way to the new steady state. The initial

jump in consumption turns out to be ambiguous – it could increase, decrease, or not change at

all (similarly to the basic neoclassical case with fixed labor input). That being said, for plausible

parameterizations, consumption will jump up on impact (permanent income intuition), and hence
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that’s how I’m going to draw it. See the phase diagram below:

 

�̃�𝐶𝑡𝑡 

𝐾𝐾�𝑡𝑡 

�̃�𝐶𝑡𝑡+1 = �̃�𝐶𝑡𝑡 
 

𝐾𝐾�𝑡𝑡+1 = 𝐾𝐾�𝑡𝑡 
 

(a) Initial position 

(b) Impact 
jump 

(c) New SS 
 

We can see from the picture that C̃t jumps up on impact, from its initial steady state. From

thereafter it must ride the new saddle path to the new steady state, which in terms of these linearized

variables will feature K̃∗ > 0 and C̃∗ > 0, since we linearized about the steady state associated

with the old level of TFP. Both consumption and capital must be expected to increase along the

new transitional dynamics. We can therefore glean that the impulse responses of consumption and

capital ought to look something like what they did in the neoclassical growth model:

 

 

𝑘𝑘0∗ 

𝑘𝑘1∗ 

𝑐𝑐0∗ 

𝑐𝑐1∗ 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 

These are qualitatively very similar to what we would get in the neoclassical growth model with

fixed labor.

Now that we know consumption, go to the labor market. Higher productivity shifts labor

demand out. Higher consumption shifts labor supply in. These effects are shown in blue in the

diagram below. The net effect is for the real wage to definitely be higher, but there is an ambiguous
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effect on employment – it could go up, down, or not change at all. I’m going to draw it as going

up, as this seems to be the plausible case.

 

𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡 + 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡 + 𝛾𝛾𝑁𝑁�𝑡𝑡  

𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 

𝑤𝑤�𝑡𝑡′ 

𝑁𝑁�𝑡𝑡′ 

𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡′+ 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡  

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡′+ 𝛾𝛾𝑁𝑁�𝑡𝑡 

Now what happens dynamically in expectation? As we ride the new saddle path to the new

higher steady state, consumption and capital are both increasing (At jumps up and in expectation

stays up). Capital increasing is going to continue to shift the labor demand curve to the right,

whereas consumption increasing is going to shift the labor supply curve inward. These effects are

shown below in orange for the next period, t + 1. The net effect is that the real wage continues

to rise after period t and into t + 1 (and similarly going forward). Depending on the magnitudes

of the shifts, labor input could be increasing relative to its t value or decreasing; I have drawn the

diagram where labor input decreases relative to its higher value in t + 1. These effects are shown

in the diagram below:

 

𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡 + 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡 + 𝛾𝛾𝑁𝑁�𝑡𝑡  

𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 

𝑤𝑤�𝑡𝑡′ 

𝑁𝑁�𝑡𝑡′ 

𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡′+ 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡  

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡′+ 𝛾𝛾𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡+1′ 

𝑤𝑤�𝑡𝑡+1 = �̃�𝐶𝑡𝑡+1 + 𝛾𝛾𝑁𝑁�𝑡𝑡+1 

𝑤𝑤�𝑡𝑡+1 = �̃�𝐴𝑡𝑡+1 + 𝛼𝛼𝐾𝐾�𝑡𝑡+1 − 𝛼𝛼𝑁𝑁�𝑡𝑡+1 

𝑁𝑁�𝑡𝑡+1 

The figure below qualitatively shows the impulse response functions of both the real wage and
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labor input to a permanent increase in productivity. The wage definitely jumps up on impact

and continues to rise thereafter. The impact effect on employment is ambiguous; for plausible

parameterizations it goes up, as I have shown here. The dynamics of Ñt subsequent to impact are

also ambiguous per the diagram above; below I show it where labor hours come back down, and

eventually revert to where they were before. This means that in the long run, the substitution

effect of a higher real wage (which says to work more) exactly offsets the income effect (which says

to work less). The preferences I have used above are consistent with labor hours being stationary

in response to a permanent increase in productivity, and hence with labor hours return to where

they started before the shock.

 

 

𝑁𝑁0∗ 𝑤𝑤0∗ 

𝑤𝑤1∗ 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 

Next, go to the picture for capital demand. In the period of the shock, higher productivity

and higher employment (what I have shown here) shift the capital demand curve to the right.

Within period, the capital supply curve is fixed. Hence, R̃t must rise. If labor hours were to

decline on impact, it is apparently conceivable that the capital demand curve could shift in, with

R̃t falling. This turns out to be impossible for the production function we are using. We can write

the expression for the rental rate as Rt = α Yt
Kt

– in other words, for a Cobb-Douglas production

function, the marginal products (factor prices) are proportional to the average products (ratios of

output to the input), with the weights the Cobb-Douglas shares. As I will argue below, output

must go up after an increase in At, even if Nt declines. In any event, we also know that R̃t+1 must

go up, since consumption must be expected to grow along the saddle path.
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𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡 + (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡 

𝐾𝐾�𝑡𝑡 

𝑅𝑅�𝑡𝑡 

𝑅𝑅�𝑡𝑡′ 

𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡′+ (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡′ 

The dynamic behavior of the rental rate is considered below. We actually know that the rental

rate must return to its original steady state after an increase in At. Why is this? From the Euler

equation, if consumption is constant, R̃t must be zero. Since consumption eventually goes to a new

steady state in which it is constant, the rental rate must return to its original steady state. What

happens qualitatively over time is that as we accumulate capital along the saddle path, the supply

of capital increases. This works to drive down the equilibrium rental rate. In addition, if labor

hours are returning to where they started, this depresses the demand for capital, which also drives

down the equilibrium rental rate. Both of these effects mean that we would expect R̃t to jump

up immediately but then start declining, eventually returning to where it started. This is shown

below:

 

𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡 + (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡 

𝐾𝐾�𝑡𝑡 

𝑅𝑅�𝑡𝑡 

𝑅𝑅�𝑡𝑡′ 

𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡′+ (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡′ 

𝑅𝑅�𝑡𝑡+1 = �̃�𝐴𝑡𝑡+1 + (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡+1 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡+1 

𝐾𝐾�𝑡𝑡+1 

𝑅𝑅�𝑡𝑡+1 
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝑅𝑅�𝑡𝑡 

𝑡𝑡 

What about the behavior of output and investment? We know that output will jump imme-

diately. Note that this must happen even if Nt declines (which is not how I drew the pictures

above but which is nevertheless conceivable). Why is this? We know that It must increase im-

mediately, since along the saddle path capital must be increasing. For labor hours to decline on

impact, it would have to be the case that consumption increases on impact, which means that the

inward shift of the labor supply curve “dominates” the outward shift of the labor demand curve

above. But if consumption and investment both increase, then output must increase. What about

if consumption declines on impact? If consumption declines on impact, then labor hours definitely

must go up (because the labor supply curve would shift out, not in). But if labor hours go up and

the capital stock is fixed, then output must go up. Output ought to continue to rise over time as

capital is accumulated and we transition towards the new steady state. Dynamically, we would

expect investment to “overshoot” its long run steady state response because the capital stock will

grow fastest immediately after the shock. These impulse response diagrams are shown below:

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝑌𝑌�𝑡𝑡 

𝑡𝑡 

𝑌𝑌0∗ 

𝑌𝑌1∗ 
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝐼𝐼𝑡𝑡 

𝑡𝑡 

𝐼𝐼0∗ 

𝐼𝐼1∗ 

To summarize, following a permanent increase in TFP, we have an ambiguous initial jump in

consumption (though likely up), an increase in the real wage, an ambiguous change in employment,

an increase in output, an increase in investment, and an increase in the real interest rate. After

these impact effects, we follow the dynamics of the phase diagram. In particular, consumption and

the capital stock will grow (which means the real interest rate and investment will stay high). The

real wage will continue to grow – this is because, as consumption grows, the labor supply curve

will continue to shift in, and as capital grows, the labor demand curve will continue to shift out.

Employment may continue to increase or decrease, but with the preferences I have assumed it will

come back down to where it began. Output will go up and continue to rise as capital accumulates,

and investment will also rise.

Next, consider a transitory change in Ãt. As in the neoclassical model with fixed labor, we

would expect a transitory change in productivity to be associated with the same direction of

jump for consumption immediately as in the case of a permanent shock, though the dynamics

will be different. For the sake of simplicity, and in accord with what will happen with reasonable

parameterizations, assume that consumption jumps up in response in response to the permanent

productivity shock.

To make ideas as stark as possible, suppose that the change in At is only one period. In other

words, it only lasts today and the expected value of At+1 is unchanged. In the phase diagram, this

will approximately do nothing. In reality consumption must jump a little, ride unstable dynamics

for one period, and then end up on the original saddle path, from which point it must be expected

to return to its initial steady state. Since the change is only “in effect” for a very short period

of time, we can approximate the jump in consumption as being zero. Thus, what approximately

happens in the phase diagram is nothing at all.

Given that consumption doesn’t jump, next go to the labor market. Labor demand immediately

shifts out, and the outward shift is the same as in the case of a permanent change in productivity.

Labor demand only depends on current productivity, and hence the persistence of the shock does
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not factor in at all. But since consumption doesn’t change, labor supply doesn’t shift. Hence, we

observe that both hours and the real wage go up. Importantly, relative to the case of the permanent

shock, hours rise by more (in the permanent case the effect on hours was ambiguous) and the real

wage rises by less. This is because there is effectively no wealth effect on labor supply, which there

is in the case of a permanent shock.

Once we know what happens to employment, then we know what happens to output. Since

employment goes up by more in the case of the purely transitory shock, we can see that output

rises by more on impact to a productivity shock when it is transitory than when it is permanent.

Because output goes up by more and consumption is approximately unaffected, we would expect

investment to go up by more on impact in response to a transitory change in productivity than

when the change in productivity is permanent.

Finally, go to the demand for capital curve. The demand for capital depends just on current

conditions; hence it shifts out. It is important to note that it actually shifts out by more than in

the case of a permanent technology shock, the reason being that employment increases by more

here, so the marginal product of capital increases by more. This means that Rt ought to increase

by more in response to a transitory productivity change.

What happens to rt? In reality, consumption must jump a little bit today, but then return to

its original steady state eventually. This means that consumption must actually be expected to fall

over time, which means that rt must go down.

The two cases thus far considered are somewhat knife edge. Most of the time we are interested

in looking at what happens in response to persistent – but transitory – shocks. The above exercises

are helpful because they provided “bounding results”. The more persistent the shock is (i.e. the

bigger is ρ), the more the results look like the permanent case. The less persistent the shock (i.e.

the smaller is ρ), the more the results like the purely transitory case.

We can thus make the following qualitative statements that can be verified quantitatively by

numerically solving the model:

1. The more persistent the increase in productivity, the more consumption increases on impact

(or falls by less). In the limiting case where the change in TFP is just one period, consumption

will approximately not react.

2. The more persistent the increase in productivity, the less hours react and the more real wages

increase.

3. The more persistent the increase in productivity, the less output reacts

4. The more persistent the increase in productivity, the less investment reacts and the real

interest rate increases by more (or falls by less).
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