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Abstract

A state space representation of a linearized DSGE model implies a VAR in terms of observ-

able variables. The model is said be non-invertible if there exists no linear rotation of the VAR

innovations which can recover the economic shocks. Non-invertibility arises when the observed

variables fail to perfectly reveal the state variables of the model. The imperfect observation of

the state drives a wedge between the VAR innovations and the deep shocks, potentially invali-

dating conclusions drawn from structural impulse response analysis in the VAR. The principal

contribution of this paper is to show that non-invertibility should not be thought of as an

“either/or” proposition – even when a model has a non-invertibility, the wedge between VAR

innovations and economic shocks may be small, and structural VARs may nonetheless perform

reliably. As an increasingly popular example, so-called “news shocks” generate foresight about

changes in future fundamentals – such as productivity, taxes, or government spending – and

lead to an unassailable missing state variable problem and hence non-invertible VAR represen-

tations. Simulation evidence from a medium scale DSGE model augmented with news shocks

about future productivity reveals that structural VAR methods often perform well in practice,

in spite of a known non-invertibility. Impulse responses obtained from VARs closely correspond

to the theoretical responses from the model, and the estimated VAR responses are successful in

discriminating between alternative, nested specifications of the underlying DSGE model. Since

the non-invertibility problem is, at its core, one of missing information, conditioning on more

information, for example through factor augmented VARs, is shown to either ameliorate or

eliminate invertibility problems altogether.

∗Author contact information: esims1@nd.edu. This is a revised version of a paper that previously circulated
under the title “Non-Invertibilities and Structural VARs.” I am grateful to Robert Barsky as well as two anonymous
referees for helpful comments.



1 Introduction

Structural VARs (SVARs) are frequently used, either formally or informally, as a tool to construct,

refine, and parameterize dynamic stochastic general equilibrium (DSGE) models.1 The validity of

this practice hinges upon whether or not SVARs can reliably uncover relevant objects of interest

from fully specified DSGE models, such as the impulse responses to structural shocks. There are

numerous problems that can arise when analyzing VARs estimated on relatively short data sets;

among these are issues due to downward biased autoregressive coefficients in finite samples and the

so-called lag truncation bias.2 Another, potentially more severe, problem is that there may exist

no direct mapping between the innovations in the observable variables included in a VAR and the

structural shocks of the underlying DSGE model.

While VARs are often touted for their flexibility and lack of imposed structure, and indeed are

often pejoratively referred to as “atheoretic,” there nevertheless exists a tight connection between

fully specified DSGE models and VARs. The equilibrium of a log-linearized DSGE model can

usually be expressed in terms of a state space system. The state space of the model implies a VAR

in terms of the observed variables. The model is said to be invertible if there exists, in population, a

linear rotation of the VAR innovations which recovers the deep structural shocks of the underlying

DSGE model. If no such mapping exists, the model is said to be non-invertible.

The so-called “non-invertibility” (or sometimes “non-fundamental”) problem has been known

to exist for some time but has only recently received much attention.3 At its core, it means that

innovations from a VAR on a set of observable variables may not, even in population, be used

to exactly uncover the structural shocks of a fully-specified DSGE model. The non-invertibility

problem is fundamentally one of missing information. As shown in Section 2, it arises when the

observed variables do not span the full state space of the underlying DSGE model. When this

happens, the population innovations of a VAR on observed variables are a combination of the true

structural shocks from the underlying DSGE model and what amounts to measurement error from

forecasting the state conditional on the observables. The mixing of the structural shocks with this

measurement error potentially confounds any analysis based on the rotations of the reduced form

VAR innovations, which is the core of the structural VAR methodology.

A principal objective of this paper is to argue and show that non-invertibility should not be

thought of as an “either/or” proposition. There may exist situations in which a model has a

non-invertible VAR representation but where structural VARs nevertheless perform reliably. I

make these arguments on the basis of analysis of a conventional, medium scale DSGE model

1There is a long list of papers in this literature, and any selection of papers will invariably be incomplete. Nev-
ertheless, a sampling of papers that employ VARs as tools to construct, refine, or estimate the parameters of DSGE
models includes Gali (1999); Christiano, Eichenbaum, and Evans (2005); Fisher (2006); Sims and Zha (2006); Altig,
Christiano, Eichenbaum, and Linde (2011); Barsky and Sims (2012); and Sims (2011).

2For a discussion of how downward-biased AR coefficients can affect identification, see Faust and Leeper (1997).
For a discussion of the lag-truncation bias – which means that most DSGE models imply VAR(∞) models, while
researchers in practice estimate finite order models – see Chari, Kehoe, and McGrattan (2008).

3For early treatments of this issue, see Quah (1990), Hansen and Sargent (1991), Hansen, Roberds, and Sargent
(1991), and Lippi and Riechlin (1994). A well-known recent treatment of this problem is found in Fernandez-
Villaverde, Rubio-Ramirez, Sargent, and Watson (2007).
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with a number of real and nominal frictions. A non-invertibility is hard-wired into the model

by augmenting it with a particular kind of shock that generates foresight about changes in future

productivity – a so called “news shock.”

There has recently been renewed interest in the economic effects of “news shocks” about changes

in future fundamentals – although in this paper I consider news about productivity, other papers

have explored news about taxes and government spending changes. Much of this literature is em-

pirical and makes use of structural VAR techniques. For example, Beaudry and Portier (2006) and

Barsky and Sims (2011) study the role of news about future productivity, while Mountford and

Uhlig (2009) and Forni and Gambetti (2011) focus on anticipated changes in government spend-

ing, all within the context of structural VARs. Leeper, Walker, and Yang (2011) show, however,

that foresight about changes in future state variables very likely leads to non-invertible VAR rep-

resentations. The intuition is fairly straightforward. News shocks – which are, by construction,

unobservable to an econometrician – are also state variables, as agents in the underlying economy

must keep track of lagged values of these shocks when making current decisions. Hence, foresight

leads to an unassailable missing state variable problem. The non-observation of the state may drive

a wedge between VAR innovations and economic shocks, and potentially invalidates any conclusions

drawn from structural VARs. Given the growing popularity of the news literature, an important

contribution of this paper is to investigate the quantitative relevance of non-invertibility for analysis

based on SVARs.

Section 3 lays out a DSGE model that serves as a laboratory for investigating the significance

of non-invertibility for VARs. The model features two sources of “real rigidity” – internal habit

formation in consumption and investment adjustment costs – and one source of “nominal rigidity”

– price stickiness according to the staggered contracts in Calvo (1983). Under specific parameter

restrictions it nests simpler models – for example, setting all three parameters governing the degree

of frictions to zero yields the canonical real business cycle (RBC) model, while setting the habit

formation and investment adjustment cost parameters to zero but keeping price stickiness gives rise

to a textbook sticky price model with capital. To keep things simple, the baseline model features

only two stochastic disturbances – a conventional surprise productivity shock and the news shock

about future productivity.

Using the “poor man’s invertibility condition” derived in Fernandez-Villaverde, Rubio-Ramirez,

Sargent, and Watson (2007), in Section 4 I analytically show that the presence of news shocks, as

long as there is more than one period of anticipation, generates non-invertible VAR representations

when TFP growth and any other variable of the model are observed.4 I then conduct a battery

of Monte Carlo exercises in which I examine the performance of apparently well-specified SVARs.

Although the model has a number of frictions, the relatively simple shock structure lends itself

to estimating a small VAR system and using a conventional recursive identifying assumption. In

particular, I estimate two variable VARs featuring TFP growth and output on data simulated from

the model. I rotate the statistical innovations into structural shocks using a Choleski decomposition

4As is common in the literature, I restrict attention to the “square case” in which the number of observables equals
the number of shocks.
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of the innovation variance-covariance matrix with TFP growth ordered first. This recursive ordering

conforms with the theoretical implications of the model – the innovation in TFP growth is identified

with the conventional surprise technology shock, while the innovation in output orthogonalized with

respect to TFP growth is identified with the news shock. While this is a particularly simple example,

it is nevertheless instructive and is not without precedent in the literature. For example, Beaudry

and Portier (2006) identify news shocks with stock price innovations orthogonalized with respect

to TFP growth.5

In spite of the presence of a known non-invertibility, SVARs applied to model simulated data

perform well in recovering the impulse responses to the model’s two shocks. The estimated responses

to both kinds of technology shocks are qualitatively in line with the predictions of the model.

Though there are biases in the estimated responses, these are typically quantitatively small and

are mostly at long forecast horizons. The short horizon responses, in contrast, are estimated quite

precisely. The different nested parameterizations of the model make very different predictions about

the behavior of output in response to both news and surprise technology shocks. For example, in the

RBC model output falls in response to good news about future productivity and rises by more than

productivity after a surprise technology shock. In contrast, in the fully parameterized model output

rises after good news and rises after a surprise positive technology shock, but by substantially less

than productivity. The estimated VARs do a very good job at picking up these features in the

simulations. This means that the VARs can be an effective tool at discriminating between different

nested versions of a model.

The simplicity of the assumed shock structure in the DSGE model lends itself to estimating

two variable VARs with a recursive restriction. This is nice in that it allows one to cleanly focus

in on the role of non-invertibility, but it is rather unrealistic and therefore may lack wider appeal.

In Section 5 I consider a number of robustness checks in richer model environments. In particular,

I consider situations in which TFP is not observed by the econometrician, in which there are

additional “demand shocks,” and in which an econometrician mistakenly introduces other sources

of bias into the estimated VAR. Among other things, these modifications of the model structure

invalidate the simple recursive identifying assumption that is used throughout Section 4. Using

long run restrictions, shape/sign restrictions, and combinations of short run, long run, and shape

restrictions I conduct additional Monte Carlo exercises on VAR systems featuring between two and

four variables. In all cases the identified VAR impulse responses are good approximations to the

true model impulse responses to both news and surprise technology shocks.

In summary, the simulation results of Sections 4 and 5 suggest that VARs can be an effective

tool for empirical researchers even if a model is technically non-invertible. While this finding may

prove comforting to some, it is nevertheless not possible to draw sweeping conclusions about the

perniciousness of non-invertibility more generally. If one wants to use a VAR in a situation in which

non-invertibility may arise, the onus is on that researcher to convince his or her readers that invert-

5There is a debate within the literature over how to best identify news shocks within SVAR settings. See, for
example, the discussion in Barsky and Sims (2011). So as to focus on the role of non-invertibility, I restrict attention
here to a simple case in which a recursive identification is valid.
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ibility is not a major problem in that particular context. I therefore consider in Section 6 what steps

a researcher can take to ameliorate or eliminate problems stemming from non-invertibility while

remaining within the flexible limited information framework that VARs provide. Non-invertibility

is fundamentally a problem of missing information; hence, adding more information is the most

straightforward way to deal with it.

In Section 6 I consider conditioning on additional “information variables.” These information

variables are noisy signals about future productivity, but are otherwise not central to the solution

of the model. If the signals are precise enough – or if one conditions on enough information

variables – then the missing states are essentially revealed, and the invertibility problem vanishes.

I show that adding these variables to the VAR systems considered in Section 4 works to reduce

the small biases in the estimated impulse responses to both news and surprise technology shocks.

One quickly runs into a sort of “curse of dimensionality” problem, however, as conditioning on

many information variables quickly consumes degrees of freedom. I therefore consider compressing

the information variables using principal components and estimate factor-augmented VARs. The

impulse responses obtained from the factor augmented VARs are essentially unbiased at all horizons.

These results suggests that factor-augmented VARs, which are coming into increasing popularity,

are an effective tool for researchers interested in using VAR techniques but who are nevertheless

concerned about the potential for biases stemming from non-invertibility. Recent papers such as

Giannone and Reichlin (2006), Forni, Giannone, Lippi, and Reichlin (2009), and Forni, Gambetti,

and Sala (2011) have also advocated for the use of factor-augmented VARs to overcome problems

due to non-invertibility, the last paper specifically in the context of news shocks. Factor-augmented

VAR methods have appeal in that they are straightforward to implement, while maintaining the

relative lack of structure that full information techniques require.6

The remainder of the paper is organized as follows. Section 2 reviews the mapping between

DSGE models and VARs, discusses reasons why invertibility may fail, and derives a simple condition

to check whether a system is non-invertible. Section 3 lays out a DSGE model with both real and

nominal frictions and a hard-wired non-invertibility because of the presence of foresight about

productivity. Section 4 conducts a number of Monte Carlo exercises for different, nested versions

of the model to examine the performance of SVARs. Section 5 conducts additional Monte Carlo

exercises in richer environments in which a simple recursive identification is not available. Section

6 considers conditioning on more information as a way to overcome invertibility issues. The final

section offers concluding thoughts.

2 The Mapping Between DSGE Models and VARs

A log-linearized DSGE models yields a state-space representation of the following form:

6Dupor and Han (2011) develop a four step procedure to partially identify impulse responses when non-invertibility
is feared present. Their approach cannot always eliminate a non-invertibility problem, whereas conditioning on a
very large information set can.
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st = Ast−1 +Bεt (1)

xt = Cst−1 +Dεt (2)

st is k × 1 vector of state variables, xt is a n× 1 vector of observed variables, and εt is a m× 1

vector of structural shocks. The variance-covariance matrix of these shocks is diagonal and given

by Σε. A, B, C, and D are matrixes of conformable size whose elements are functions of the

deep parameters of the model. So as to facilitate a comparison with standard assumptions in the

structural VAR literature, I restrict attention to the case in which n = m, so that there are the

same number of observed variables as shocks. D is thus square and hence invertible.

One can solve for εt from (2) as:

εt = D−1 (xt − Cst−1)

Plugging this into (1) yields:

st =
(
A−BD−1C

)
st−1 +BD−1xt

Solving backwards, one obtains:

st =
(
A−BD−1C

)t−1
s0 +

t−1∑
j=0

(
A−BD−1C

)j−1
BD−1xt−j (3)

If limt→∞
(
A−BD−1C

)t−1
= 0, then the history of observables perfectly reveals the current

state. This requires that the eigenvalues of
(
A−BD−1C

)
all be strictly less than one in modulus.

If this condition is satisfied, (3) can be plugged into (2) to yield a VAR in observables in which the

VAR innovations correspond to the structural shocks:

xt = C

t−1∑
j=0

(
A−BD−1C

)j−1
BD−1xt−1−j +Dεt (4)

The condition that the eigenvalues of
(
A−BD−1C

)
all be strictly less than unity is the “poor

man’s invertibility” condition given in Fernandez-Villaverde, Rubio-Ramirez, Sargent, and Watson

(2007). It is a sufficient condition for a VAR on observables to have innovations that map directly

back into structural shocks in population. When satisfied, a finite order VAR(p) on xt will yield a

good approximation to (4), and conventional estimation and identification strategies will allow one

to uncover the model’s impulse responses to structural shocks.

When this condition for invertibility is not satisfied the state space system nevertheless yields

a VAR representation in the observables, though the VAR innovations no longer correspond to the

structural shocks. The crux of the problem when the invertibility condition is not met is that the

observables do not perfectly reveal the state vector. To see this, use the Kalman filter to form a

forecast of the current state, ŝt, given observables and a lagged forecast:
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ŝt = (A−KC) ŝt−1 +Kxt (5)

Here K is the Kalman gain. It is the matrix that minimizes the forecast error variance of the filter,

i.e. Σs = E (st − ŝt) (st − ŝt)′. K and Σs are the joint solutions to the following two equations:

Σs = (A−KC) Σs (A−KC)′ +BΣεB
′ +KDΣεD

′K ′ −BΣεD
′K ′ −KDΣεB

′ (6)

K =
(
AΣsC

′ +BΣεD
′) (CΣsC

′ +DΣεD
′)−1

(7)

Given values of K and Σs, add and subtract Cŝt−1 from the right hand side of (2) to obtain:

xt = Cŝt−1 + ut (8)

ut = C (st−1 − ŝt−1) +Dεt (9)

Lagging (5) one period and recursively substituting into (8), one obtains an infinite order VAR

representation in the observables:

xt = (A−KC)t−1ŝ0 + C
t−1∑
j=0

(A−KC)jKxt−1−j + ut (10)

Under weak conditions, Hansen and Sargent (2007) show that (A−KC) is a stable matrix, so that

the (A−KC)t−1 ŝ0 term disappears in the limit and the infinite sum on the lagged observables

converges in mean square.

The innovations in this VAR representation are comprised of two orthogonal components: the

true structural shocks and the error in forecasting the state. The innovation variance is given by:

Σu = CΣsC
′ +DΣεD

′ (11)

Fernandez-Villaverde, Rubio-Ramirez, Sargent and Watson (2007) show that the eigenvalues of(
A−BD−1C

)
being less than unity in modulus implies that Σs = 0. When Σs = 0, then Σu =

DΣεD
′, and it is straightforward to show that (10) reduces to (4). If the “poor man’s invertibility”

condition is not satisfied, then Σs 6= 0, and the innovation variance from the VAR is strictly larger

than the innovation variance in the structural model. This discussion unveils a critical point –

the failure of invertibility is part and parcel a failure of the observables to reveal the state vector.

Non-invertibility is fundamentally an issue of missing information.

This discussion also reveals that non-invertibility is not necessarily an “either/or” proposition.

(11) makes clear that the extent to which a failure of invertibility might “matter” quantitatively is

how large Σs – i.e. how hidden the state is. This has a number of implications. First, even if the

condition for invertibility fails, Σs may nevertheless be “small,” meaning that Σu ≈ DΣεD
′. Put

differently, the VAR innovations may very closely map into the structural shocks even if a given

system is technically non-invertible. Second, what observable variables are included in a VAR might
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matter – some observables may do a better job of forecasting the missing states, hence leading to

smaller Σs and a closer mapping between VAR innovations and structural shocks. Finally, adding

more observable variables should always work to lower Σs, and thus ameliorate problems due to non-

invertibility. This means that estimating larger dimensional VARs may generally be advantageous

relative to the small systems that are frequently estimated in the literature. It also potentially

speaks to the benefits of estimating factor augmented models, which can efficiently condition on

large information sets. I return to this issue in Section 6 below.

3 A DSGE Model

For the purposes of examining quantitatively how important non-invertibility may be to applied

researchers, I consider a standard DSGE model with a particular kind of shock that is known to

lead to an invertibility problem. The model is DSGE model with both nominal and real frictions.

On the real side, there is habit formation in consumption, convex investment adjustment costs, and

imperfect competition. On the nominal side there is price rigidity. A nice feature of the model is

that, under certain parameter restrictions, it reverts to a simple neoclassical growth model with

variable labor supply. The shock that generates the non-invertibility, for reasons to be discussed

below, is a “news shock” about anticipated technological change.

The next subsections describe the decision problems of the various actors in the model as well

as results concerning aggregation and the definition of equilibrium.

3.1 Households

There is a representative household that consumes a final good, makes decisions to accumulate

capital, supplies labor, holds riskless one period nominal bonds issued by a government, and holds

nominal money balances. Imposing standard functional forms, its decision problem can be written:

max
ct,nt,It,kt+1,Mt+1,Bt+1

E0

∞∑
t=0

βt

ln (ct − γct−1)− θ n
1+ξ
t

1 + ξ
+ χ

(
Mt+1

pt

)1−ν

1− ν


s.t.

ct + It +
Bt+1 −Bt

pt
+
Mt+1 −Mt

pt
≤ wtnt +Rtkt + it−1

Bt
pt

+
Πt

pt
+
Tt
pt

kt+1 =

(
1− τ

2

(
It
It−1

−∆I

)2
)
It + (1− δ)kt

γ governs the degree of internal habit formation in consumption, ξ is the inverse Frisch labor

supply elasticity, and ν will determine the elasticity of the demand for real balances with respect

to the nominal interest rate, it. pt is the price of goods in terms of money. wt and Rt are the

real factor prices for labor and capital, respectively. Bt and Mt are the dollar amounts of bonds
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and money with which the household enters the period. It is investment in physical capital, Πt is

nominal profits distributed lump sum from firms, and Tt is nominal lump sum tax/transfers from

the government. τ is a parameter governing the cost of adjusting investment, with ∆I the (gross)

balanced growth path growth rate of investment.

The first order conditions for an interior solution to the household problem are:

λt =
1

ct − γct−1
− βγEt

1

ct+1 − γct
(12)

θnξt = λtwt (13)

λt = βEtλt+1(1 + it)
pt
pt+1

(14)

µt = βEt (λt+1Rt+1 + (1− δ)µt+1) (15)

χ

(
Mt+1

pt

)−ν
=

(
it

1 + it

)
λt (16)

λt = µt

(
1− τ

2

(
It
It−1

−∆I

)2

− τ
(

It
It−1

−∆I

)(
It
It−1

))
+ βτEtµt+1

(
It+1

It
−∆I

)(
It+1

It

)2

(17)

λt is the current value Lagrange multiplier on the flow budget constraint and µt is the multiplier

on the accumulation equation. (12) defines the marginal utility of consumption, (13) is a labor

supply condition, (14) is the Euler equation for bonds, and (15) is the Euler equation for capital.

(16) implicitly defines the demand for real balances. (17) is the first order condition with respect

to investment. When there are no adjustment costs, λt = µt, and (14)-(15) define the usual

approximate arbitrage condition between the real interest rate on bonds and the return on capital.

3.2 Production

Production is split up into two sub-sectors. The final goods sector is competitive and aggregates a

continuum of intermediate goods, yj,t, j ∈ (0, 1). The production technology for the final good is a

CES aggregate of the intermediate goods, with ε > 1 the elasticity of substitution:

yt =

(∫ 1

0
y
ε−1
ε

j,t dj

) ε
ε−1

Profit maximization yields a demand curve for each intermediate and an aggregate price index:

yj,t =

(
pj,t
pt

)−ε
yt (18)

pt =

(∫ 1

0
p1−ε
j,t dj

) 1
1−ε

(19)

Intermediate goods firms are price-takers in factor markets and produce output according to a

standard Cobb-Douglas production function:
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yj,t = atk
α
j,tn

1−α
j,t (20)

at is a technology shifter that is common across firms. Because firms have pricing power (as

long as ε <∞), it is helpful to break the firm problem into two parts. In the first stage firms choose

inputs to minimize total cost subject to producing as much as is demanded at a given price:

min
nj,t,kj,t

wtnj,t +Rtkj,t

s.t.

atk
α
j,tn

1−α
j,t ≥

1

pt

(
pj,t
pt

)−ε
yt

The first order conditions are:

wt = mcj,t(1− α)at

(
kj,t
nj,t

)α
(21)

Rt = mcj,tαat

(
kj,t
nj,t

)α−1

(22)

mcj,t, the multiplier on the production constraint, and has the interpretation of real marginal

cost. Because all intermediate firms face the same factor prices, it is straightforward to show that

real marginal cost will be the same across firms and that all firms will hire capital and labor in the

same ratio.

It is assumed that firms face exogenous price stickiness in setting their prices. This makes

the pricing problem dynamic. Following Calvo (1983) and much of the subsequent literature, let

1 − φ be the probability that a firm is allowed to adjust its price in any period. This probability

is independent of where the firm’s price is or when it last adjusted. When setting its price, the

firm seeks to maximizes the expected present discounted value of future profits, where profits

are discounted by both the stochastic discount factor measured in utils, Λt+s = βsλt+s, and the

probability that a price chosen today is still in effect in the future, φs. The problem of a firm with

the ability to update in date t is:

max
pj,t

Et

∞∑
s=0

(φβ)s Λt+s

(
pj,t
pt+s

(
pj,t
pt+s

)−ε
yt −mct

(
pj,t
pt+s

)−ε
yt

)

The solution is an optimal reset price, p#
t , satisfying:

p#
t =

ε

ε− 1

∞∑
s=0

(φβ)s
(
mct+sp

ε
t+syt+s

)
∞∑
s=0

(φβ)s
(
pε−1
t+syt+s

)
9



Note that p#
t does not depend on j, and is hence the same for all updating price-setters. This

follows from the fact that marginal cost, mct, is the same for all firms. The optimal reset price is

essentially a markup over marginal cost. If φ = 0, so that prices are flexible, this formula reduces

to the standard fixed markup over marginal cost, with the markup given by ε
ε−1 .

3.3 Government

The sole role of the government is to set nominal interest rates according to a Taylor rule. The

government then prints a sufficient amount of nominal money, Mt+1, so that the money market

clears at the desired interest rate. Any seignorage revenue is remitted to households lump sum via

Tt. The Taylor rule is:

it = ρit−1 + (1− ρ)ψπ (πt − π∗) + (1− ρ)ψy

(
yt
yt−1

−∆y

)
(23)

0 ≤ ρ ≤ 1 is an interest rate smoothing parameter, π∗ is an exogenous inflation target, and ψπ

and ψy are response coefficients to inflation and the output “growth gap,” where ∆y is the balanced

growth path (gross) growth rate of output. I abstract from a monetary shock and restrict attention

to parameter values that yield a determinate rational expectations equilibrium.

Remittance of seignorage revenue requires that:

Tt = Mt+1 −Mt (24)

3.4 Exogenous Process

For simplicity there is only one exogenous stochastic variable in the model – the level of technology,

at. It is assumed to follow a random walk with drift subject to two stochastic disturbances:

ln at = ga + ln at−1 + εt + ut−q (25)

εt ∼ N (0, σe)

ut ∼ N (0, σu)

εt is a standard technology shock. ut is a “news shock” in the sense that agents in the economy

see it in period t, but it has no effect on the level of technology until period t + q, where q ≥ 1.

For reasons to be spelled out below, the presence of news shocks like this can easily lead to the

non-invertibility problem. The two kinds of technology shocks are assumed to be distributed

independently. This assumption is less restrictive than it may seem – it would be straightforward

to allow the shocks to be correlated and then partition them into orthogonal components.
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3.5 Aggregation and Equilibrium

The notion of equilibrium is standard – it is a set of prices and quantities consistent with the first

order conditions of households and firms holding and the budget constraints binding with equality.

Market-clearing requires that total capital and labor demand equal that supplied by households:

∫ 1

0
nj,tdj = nt∫ 1

0
kj,tdj = kt

Aggregate inflation evolves according to:

1 + πt =

(
(1− φ)

(
1 + π#

t

)1−ε
+ φ

) 1
1−ε

(26)

Here 1 + π#
t =

p#t
pt−1

. Aggregation of the intermediate firm production functions yields:

yt =
atk

α
t n

1−α
t

vt
(27)

vt is a deadweight loss due to price dispersion:

vt =

∫ 1

0

(
pj,t
pt

)−ε
dj

It can be written recursively as:

vt = (1− φ)

(
1 + π#

t

1 + πt

)−ε
+ φ(1 + πt)

εvt−1 (28)

Aggregate bond market-clearing (Bt = 0) and the combination of the government and household

budget constraints yields the standard aggregate accounting identity:

yt = ct + It (29)

After normalizing variables to account for balanced growth owing to the unit root in technology,

the model is solved via log-linearizing about the normalized steady state using standard techniques.

The normalizations are as follows:

ât =
at
at−1

, ĉt =
ct

a
1

1−α
t

, ŷt =
yt

a
1

1−α
t

, Ît =
ct

a
1

1−α
t

, k̂t =
kt

a
1

1−α
t−1

Most other variables of the model, including hours, are stationary by construction. In logs, these

normalizations imply cointegrating relationships that can be brought to the data. The solution of

the transformed model gives rise to a state space system of the form in equations (1)-(2).
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Different parameterizations of the model nest popular, simpler models. When τ = 0, γ = 0,

φ = 0, and ε =∞ the model reverts to a standard competitive real business cycle model. I will refer

to this model as the “RBC model.” ε < ∞ gives rise an RBC model with imperfect competition;

this leads to a steady state distortion (due to price being greater than marginal cost), but has no

first order effects on the equilibrium dynamics, and is therefore not of much interest in its own

right. φ > 0 but τ = 0 and γ = 0 is a standard “sticky price model.” I will refer to the general

specification of the model as the “full model.”

3.6 Why Do News Shocks Give Rise to Non-Invertibility?

A non-invertibility means that a VAR estimated on observable variables will fail to perfectly recover

a model’s underlying structural shocks, even with an infinite sample size. As noted in Section 2,

the problem occurs when the included observable variables fail to perfectly reveal the state vector.

When this is the case, the innovations from a VAR in observables are a combination of the structural

shocks and errors in forecasting the state.

In many circumstances a researcher concerned about non-invertibility can simply include the

relevant state variables in the list of observables and estimate a VAR with those variables included.

This is not feasible in a model with news shocks, because the presence of news shocks introduces

an unassailable missing state variable problem. When there are anticipation effects, with q ≥ 1,

ut becomes both a shock and a state variable. This is because agents at time t must keep track of

realizations of ut−1, . . . , ut−q−1 when making choices at time t; because these shocks have not yet

affected at, even if at is observed the full state is hidden. This poses a potentially serious problem,

since the entire structural VAR enterprise is about identifying shocks, not conditioning on them.

In order to see this point clearly, it is helpful to introduce additional state variables which keep

track of lagged news shocks. There will be q additional states for q periods of anticipation. Define

these as zi,t for i = 1, . . . q. Doing so allows one to write a process for technology that satisfies the

Markov property:

ln at = ga + ln at−1 + εt + z1,t−1 (30)

z1,t = z2,t−1 (31)

z2,t = z3,t−1 (32)

...

zq,t = ut (33)

The agents in the economy must keep track of the zs; given that these are just equal to the

news shock at various lags, the econometrician cannot directly condition on the zs. Hence, the

state vector cannot, in general, be observed based on a history of observables, and the conditions

for invertibility are likely to fail.

Some authors, most notably Blanchard, L’Hullier, and Lorenzoni (2011), have studied envi-
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ronments in which agents observe noisy signals about the underlying state of the economy and

must solve a signal extraction problem. In a sense, the agents in the economy presented in this

section also observe noisy signals about the future state of the economy, though the problem is

considerably simpler. While the news shock does generate perfect foresight about future z, it does

not lead to perfect foresight about the level of future ln at. This is because of the presence of the

surprise technology shock, εt. Agents could observe a positive news shock today, ut, that does not

materialize into higher ln at+q because of a low realization of ε at any of the dates in between,

t+ 1, . . . , t+ q. On average, of course, the news shock is realized because the expected realizations

of the surprise technology shocks are all zero, and this average response is what is reflected in an

impulse response function, either one computed directly from the model or identified from a VAR.

A feasible modification of the problem, though not considered here, would be to allow agents to

observe only a noisy measure of ut, which would then translate into a noisy forecast of future z

and an even noisier forecast of future ln a relative to the specification described above. This setup

would necessitate solving a signal extraction problem in which the agents in the economy effectively

choose how much attention to pay to the signal of ut, with agents reacting less the noisier is the

signal. This kind of setup poses no special problems as pertains estimating a VAR, though it does

require that special attention be paid to how one defines and interprets an impulse response.7

4 VARs with Non-Invertibility: Monte Carlo Results

In this section I conduct several Monte Carlo experiments. The objective is to examine how

well an apparently correctly specified structural VAR performs on model simulated data when

there is a known non-invertibility. Can a VAR come close to replicating the structural model’s

theoretical impulse responses to shocks when there is a non-invertibility? Can estimated VAR

impulse responses be used to differentiate between competing models? This section seeks to provide

some answers to these questions.

Consider the model described in the previous section (under any of the nested parameter con-

figurations). The model has two stochastic shocks – the conventional surprise technology shock

and the news shock. Suppose that a researcher observes TFP growth, ln ât = ln at − ln at−1, and

another variable, say output, ln ŷt.
8 Recall that because of the normalization, observed output is:

7Blanchard, L’Hullier, and Lorenzoni (2011) look at whether a VAR identified with long run restrictions can
separately identify “news” (a true signal about permanent productivity) from “noise” (a signal about productivity
that is false ex-post). The answer is no, but this is because a long run restriction on an impulse response function is an
ex-ante restriction, and the agents in the model only learn that the signal is false ex-post. These authors refer to the
problem resulting from this signal extraction problem as a non-invertibility, but this is a bit of a mis-characterization.
Since the agents in their economy cannot separate out the true component of a signal from the false component
ex-ante, neither can an econometrician estimating a VAR. If, rather than trying to identify IRFs to the “deeper”
shocks that the agents cannot separate out, the econometrician seeks only to identify the impulse response to an
innovation in the signal, then there may be no invertibility problem. Non-invertibility problems as stressed in most
of the recent literature, and in the present paper, ask whether an econometrician can identify shocks observed by
agents. The exercise in Blanchard, L’Hullier, and Lorenzoni (2011) tasks the econometrician with identifying shocks
that agents cannot observe, which can only be (partially) accomplished with full information methods.

8For the remainder of this section I focus on the case in which output is observed. The results are essentially the
same conditioning on other observed variables.
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ln yt − 1
1−α ln at, so this imposes the cointegrating relationship of the structural model.9 Suppose

a researcher estimates a VAR(p) on the system xt = [ln ât ln ŷt] (abstracting from the constant

term):

xt = A1xt−1 + · · ·+Apxt−p + ut, E(utu
′
t) = Σu (34)

Where ut is a vector of innovations with variance-covariance matrix Σu, which in general is not

diagonal. It is assumed there exists a mapping between orthogonal shocks, et, and the reduced

form innovations given by: ut = A−1
0 et, where A−1

0 is the “impact matrix”. After normalizing the

variance of each orthogonal shock to unity, one sees that Σu = A−1
0 A−1′

0 . With n variables in the

system, one needs to impose n(n− 1)/2 restrictions to uniquely recover A−1
0 .

In the proposed VAR system, a recursive orthogonalization of the innovations, with ln ât “or-

dered” first, is apparently consistent with the implications of the model. This amounts to A−1
0 being

identified as the Choleski decomposition of the estimated variance-covariance matrix of residuals.

Surprise movements in TFP growth would be identified with the surprise technology shock, while

surprise movements in output (or any other variable) orthogonalized with respect TFP innovations

would be identified with the news shock. This kind of empirical strategy is precisely what is often

employed in the empirical literature. Beaudry and Portier (2006), for example, estimate a two vari-

able with VAR with TFP and stock prices, identifying stock price movements uncorrelated with

TFP innovations as news shocks.

For each of the nested parameter configurations (RBC, sticky price, and the full model), I

conduct the following Monte Carlo experiments. For the finite sample experiment, I create 500

different data sets with 200 observations each. 200 observations is about the size of most post-war

US data sets. On each simulated data set, I estimate a VAR with 8 lags, and orthogonalize the

innovations such that TFP growth is ordered first. For each simulation I compute impulse responses

to news and surprise technology shocks, and then compare the distribution of estimated response

to the true responses from the model. For the large sample experiment, I create one data set with

100,000 observations, estimate a VAR with 8 lags with TFP growth ordered first, and compare the

responses to the true model responses.10

These experiments require selecting parameter values for the model. Several parameters are

fixed at levels across the different nested specifications. The unit of time is taken to be a quarter.

The growth rate of TFP, ga, is set to 0.0025. This means that TFP grows by about one percent

at an annual frequency. The Cobb-Douglas share parameter, α, is fixed at 1/3. With average

productivity growth of one percent, output and its components will grow at 1.5 percent on average,

9Alternatives would be to estimate a VAR in levels, Xt = [ln at ln yt], or a vector error correction model (VECM).
These are all asymptotically equivalent. The Monte Carlo results below turn out to be very similar in all cases.

10The choice of 8 lags is somewhat arbitrary. As shown in Section 2, the mapping from model to data yields a
VAR(∞). Finite data samples require finite lag lengths, with p <∞. This introduces an additional source of bias, the
so-called “lag truncation bias” emphasized, for example, in Chari, Kehoe, and McGrattan (2008). In practice p = 8
lags appears to provide a sufficiently good approximation to the VAR(∞), so that estimating with 8 lags isolates the
bias due to non-invertibility. The results discussed below are qualitatively the same, though a little worse, with fewer
than 8 lags (e.g. the popular p = 4 specification with a year’s worth of lags).
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which is broadly consistent with the post-war US per capita data. The subjective discount factor,

β, is 0.99, while the inflation target is set to π∗ = 0.005, or 2 percent at an annual frequency.

This implies an average annualized nominal interest rate of i = 5.6%. The depreciation rate on

capital is set to δ = 0.02. The parameter ξ, which is the inverse Frisch labor supply elasticity, is

fixed at one. There is substantial disagreement on the value of this parameter in the literature;

many macro models need a high elasticity while most micro studies point to a low elasticity. The

central estimate in Kimball and Shapiro (2010) is unity, which strikes a middle ground between the

micro and macro literatures. The scaling parameter on the disutility of labor, θ, is always fixed

such that steady state hours are 1/3 of the normalized time endowment of one. Because of the

presence of the Taylor rule and separability in preferences, the parameters governing the utility

from holding real balances, χ and ν, need not be calibrated. The standard deviations of the two

shocks are fixed at σε = 0.01 and σu = 0.005. These shock magnitudes are not chosen with any

particular moments in mind, but they do imply that surprise technology shocks drive more of the

unconditional variance of TFP growth than do news shocks (80 percent vs. 20 percent). This

kind of calibration is necessary to produce data with similar co-movement among output and its

components that is observed in actual data.11 As we will see below, the surprise technology shock

being more important than news shocks tends to exacerbate any problems due to non-invertibility,

and can therefore be considered relatively conservative. Finally, the time lag between the revelation

of news and its affect on productivity, q, is set to 3. This means that there are three quarters of

anticipation.

The other parameters of the model govern the degree of frictions, and therefore the magnitudes

of the departure from the simple real business cycle framework. When prices are sticky, φ is set

to 0.7. This implies that the average duration between prices changes is between three and four

quarters, which is broadly consistent with micro estimates (e.g. Bils and Klenow, 2004) and a

number of macro estimates. The parameters of the Taylor rule are set to ρ = 0.8, ψπ = 1.5,

and ψy = 0.5. These are in line with standard calibrations and estimates within the literature.

For real frictions, the habit formation parameter is set to γ = 0.7 and the investment adjustment

cost parameter is τ = 2.5. These are the central estimates in Christiano, Eichenbaum, and Evans

(2005). Table 1 summarizes the parameter values for the different cases.

4.1 Full Model

In the fully parameterized model with both real and nominal frictions, the state vector is:12

st =
[

ln ŷt ln k̂t it ln vt z1,t z2,t z3,t ln Ît ln ĉt

]′
With three periods of anticipation there are three additional state variables – z1,t, z2,t, and

z3,t. TFP growth and normalized output are observed. Denote the vectors of observables as

11Jaimovich and Rebelo (2009) provides a nice intuitive introduction for why news shocks tend to generate coun-
terfactual co-movement among output and its components in many standard macro models.

12Note that the level of technology does not directly show up in the state space. It is, however, implicitly part of
the state in terms of the normalized variables; e.g. ln ŷt = ln yt − 1

1−α ln at.
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xt = [ln ât ln ŷt]
′. The shock vector is εt = [εt ut]. After solving the model at the parameter values

given in Table 1, the “poor man’s invertibility condition” of Fernandez-Villaverde, Rubio-Ramirez,

Sargent, and Watson (2007), and discussed in Section 2, can easily be checked. In the Appendix

section A.1 the numeric values of the A, B, C, and D matrixes are shown, as are the eigenvalues of

the matrix M =
(
A−BD−1C

)
. The maximum modulus of the eigenvalues of M is 1.32. Hence,

the invertibility condition fails.

Figure 1 plots impulse response obtained from Monte Carlo simulations of the “full model.”

The solid lines are the theoretical responses in the model of the log levels of output and TFP to

both news and surprise technology shocks.13 The left panel plots responses from the finite sample

simulations; the right panel shows results for the large sample simulation. In the finite sample panel,

the dashed lines are the mean responses to the two shocks averaged over 500 different simulations

of the model with 200 observations each. The shaded gray regions represent the middle 68 percent

of the distribution of estimated responses across the 500 simulations. In the large sample panel,

the dashed lines are the points estimates of the impulse responses obtained from one estimation of

the VAR on a single data set with 100,000 observations. All VARs are estimated with p = 8 lags,

and the innovations are orthogonalized with TFP growth ordered first.

A quick visual inspection reveals that, on average, the structural VAR does a good job of

capturing the qualitative dynamics of the impulse responses to both kinds of technology shocks.

Turning first to the finite sample results, the estimated responses to the news shock are essentially

unbiased at horizons up to forty quarters – the average estimated responses roughly lie atop the true

model responses. Further, the distributions of estimated responses are fairly tight and are centered

around the true responses. The results are somewhat worse for the responses to the surprise

technology shock, with some downward bias in the estimated responses, particularly at longer

forecast horizons. Nevertheless, the impulse responses at short forecast horizons are estimated

quite well, and the longer horizon dynamics are qualitatively in line with the true model dynamics.

The right panel plots responses obtained in the “large sample” exercise. The dashed lines are

very close to the true model responses at all horizons for both shocks. That they do not lie exactly on

top of the true model responses is a direct consequence of the non-invertibility resulting because of

the presence of foresight – non-invertibility means that, even in an infinitely large sample, a VAR

cannot exactly recover the true impulse responses of the underlying model. What this exercise

reveals is that the large sample bias is relatively small, and, for all practice purposes, likely of

little importance. In either finite or large samples, the VAR does a very good job at recovering the

model’s dynamics in response to both shocks.

Table 2 provides some quantitative evidence on the quality of fit of the estimated VARs. It

shows the average absolute deviations of the impulse responses estimated in the simulations relative

to the true model responses, at forecast horizons from impact to 40 quarters. For the large sample

panel the numbers are simply the average deviation over 40 quarters of the estimated responses on

one data set with 100,000 observations relative to the model responses; for the small sample panel

13The log levels are obtained by (i) cumulating the response of the growth rate of TFP to the shock and (ii) adding
1

1−α times the cumulated log level TFP response to the response of normalized output.
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the numbers are based on the deviation of the average estimated response across simulations. The

numbers in the table are multiplied by 100, so they have the interpretation of average percentage

point deviations. The average absolute deviations in the case of the news shock in the large

simulation of the full model are 0.026 percentage points and 0.07 percentage points, for the TFP

and output responses, respectively. These numbers are very small. For example, the TFP response

after three quarters is 0.5 percent. On average the estimated response thus lies between 0.47 and

0.53 percent. The large sample biases in response to the surprise technology shock are somewhat

larger, but nevertheless small. As one would expect, the finite sample biases tend to be larger, but

are again small and likely of little practical concern.

4.2 RBC Model

The RBC model is a special case of the full model with the parameter restrictions φ = γ = τ = 0.

This turns out to substantially simplify the model, significantly reducing the state space. The state

vector for this model is:

st =
[

ln k̂t z1,t z2,t z3,t

]′
Appendix A.2 shows the values of the parameters of the state space system when TFP growth

and normalized output are observed by an econometrician. As in the full model case, the invert-

ibility condition fails – the maximum modulus of the eigenvalues of M =
(
A−BD−1C

)
is 1.0572.

Figure 2 shows results for both the finite and large sample Monte Carlo exercises for the RBC

model. One interesting thing to note is that the theoretical impulse responses of output to both

news and surprise technology shocks differ a great deal relative to the full model with both real

and nominal frictions. In particular, in the RBC model output declines on impact in response

to good news about productivity growth, while it rises by more than productivity in response to

the surprise technology shock. These features are captured very well by the estimated VARs – in

both finite and large samples, the impact effects in response to both kinds of technology shocks are

estimated quite well. Examining Table 2, the biases in the estimated responses to the news shock

are somewhat larger relative to the full model here; the reverse is true in response to the surprise

technology shock. In both cases, the large sample biases, while present, are very small. In short,

the VAR seems to do a good job.

In spite of its simplicity, an advantage of the RBC model is that it is very easy to see why the

presence of news shocks leads to the invertibility problem. Suppose that there were only one shock

in the model, the surprise technology shock, εt. In this case, the state space of the model would

simply be the transformed capital stock, ln k̂t. Hence the matrixes A and B would just be scalars.

Referring to Appendix A.2, they would take on values A = 0.9554 and B = −1.4331. The matrixes

of the observer equation, with output observed, would also be scalars, equal to C = 0.2210 and

D = −0.3315. Then M =
(
A−BD−1C

)
= 0.9554− −1.4331×0.2210

−0.3315 , which is equal to 0. Hence, the

invertibility condition is satisfied. This means that a univariate autoregression of ln ŷt will correctly

(in a large enough sample with enough lags) recover the impulse response to a technology shock as
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well as the time series of technology shocks.14 In contrast, it is straightforward to show that if there

are only news shocks and no surprise shocks, a univariate autoregression in either output or TFP

growth is non-invertible. It is the presence of anticipation effects that drives the non-invertibility.

4.3 Sticky Price Model

The sticky price model imposes that γ = τ = 0, so that the only friction relative to a simple RBC

model is price stickiness. The state vector for this model is:

st =
[

ln ŷt ln k̂t it ln vt z1,t z2,t z3,t

]′
The maximum modulus of the eigenvalues of M =

(
A−BD−1C

)
is 1.2397, indicating a failure

of the condition for invertibility. Figure 3 shows results from the Monte Carlo simulations. The

model impulse responses to the news shock are quite similar to the RBC counterparts, whereas

the response to the surprise technology shock are rather different, with output significantly under-

shooting on impact. In both finite and large samples these effects are captured quite well in the

estimated VARs. In finite samples there is some downward bias at longer horizons in response to

both shocks, but qualitatively the estimated responses line up well with the model’s. The large

sample results continue to exhibit some bias but this is again relatively small.

4.4 Using SVARs to Conduct Model Comparisons

One of the main uses of structural VARs is to employ a common restriction that holds across dif-

ferent, potentially non-nested, models and to compare the qualitative pattern of impulse responses

in the VAR to predictions from the different models. For example, many models predict that tech-

nology shocks should be the sole source of the unit root in labor productivity. But these models

differ in terms of their predictions about the effects of technology shocks on other variables in the

short run – RBC models with few real frictions, for example, typically predict that hours should

increase following technological improvement, whereas some sticky price models with insufficiently

accomodative monetary policy predict the opposite. As a leading example, Gali (1999) identifies

technology shocks in a VAR setting and shows that productivity improvements lead to an imme-

diate hours decline, leading him to conclude that sticky price, New Keynesian models are more

promising than RBC models.15

The different nested versions of the model presented above also make very different predictions

about the responses of output and hours to both news and surprise technology shocks. In the RBC

14This statement requires some clarification; the impulse response estimated from the autoregression would correctly
recover the impulse response of the normalized variable ln ŷt = ln yt− 1

1−α ln at. The innovations in the autoregression
correspond to the technology shocks after normalizing the variance of these shocks to some value (typically 1 in the
applied literature).

15It should be pointed out that Gali’s (1999) results are disputed within the literature, and the sign of the hours
response to a permanent technology shock appears to depend on whether hours enter the VAR in first differences or
levels. The purpose of the present paper is not to dissect those results, but rather to use that paper as a motivating
example for how VARs are used to make model comparisons.
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model, for example, output declines on impact in response to good news (so that hours decline as

well), while output rises by more than TFP on impact following a surprise shock (so that hours

increase). The full model has the exact opposite prediction: hours and output increase on impact

following good news, while hours decline on impact in response to a surprise technology shock. In

the sticky price model hours decline on impact in response to both shocks, so that output falls

following good news and rises, but by less than TFP, after the surprise technology shock.

Can estimated VARs do a good job of differentiating between these different models? The

Monte Carlo results discussed above and graphically depicted in Figures 1 through 3 show a clear

answer: yes. The small biases that are present are mostly at longer forecast horizons. In either

small or large samples, the impact effects of both news and surprise technology shocks are estimated

both accurately and precisely. For example, in the RBC and sticky price model simulations, the

estimated output response declines immediately and only rises when TFP improves, just as in the

models. In the full model, output is estimated to rise on impact following a news shock and is

estimated to rise by less than productivity after a surprise shock, again just as in the data. In

short, a researcher hoping to use the impulse responses from an estimated VAR to qualitatively

differentiate between these different models would likely be quite successful.

4.5 Non-Invertibility and the Relative Importance of Shocks

In the simulation results up to this point, the relative importance of the two stochastic shocks has

been held fixed. While this may seem innocuous, the relative importance of the two kinds of shocks

turns out to matter somewhat for the performance of the VARs.

Figure 4 plots impulse responses obtained for the large sample Monte Carlo exercise for the full

model under two different parameterizations of the standard deviation of the surprise technology

shock: σε = 0.01 (which is the benchmark value) and σε = 0.001. The standard deviation of

the news shock is fixed at its benchmark value, σu = 0.005. The solid line depicts the true model

responses to the news shock, while the dashed and dotted lines, respectively, represent the responses

obtained in sample sizes of 100,000 under the two different parameterizations of the magnitude of

the surprise shock. In either case the estimation of the responses to the news shock is good, but it is

visually apparent that the fit is significantly better when the news shock is relatively more important

– i.e. when the standard deviation of the surprise technology shock is small. Quantitatively, the

average absolute deviation of the TFP response to the news shock is 0.026 percent points in the

large shock case and 0.008 percent points in the small shock case. For the response of output, these

differences are 0.07 percent points and 0.01, respectively. In short, there is a large improvement in

fit for the responses to the news shock when the surprise shock is less important in relative terms.

That the fit of the VARs improves as the news shock becomes relatively more important is easiest

to understand by referencing back to (11): Σu = CΣsC
′ + DΣεD

′. The variance of the forecast

of the state conditional on observables, Σs, drives a wedge between the VAR innovations, ut, and

the deep economic shocks, εt. The missing state variables that account for the non-invertibility are

lagged values of news shocks: ut−1, . . . , ut−q. It stands to reason that, as the relative importance
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of εt shocks declines, the observed variables will do a better job of revealing lagged values of the

news shock.

Figure 5 plots the Euclidian norm of Σs (a measure of the “size” of the variance in forecasting

the state) as a function of the relative magnitude of the standard deviations of the two shocks.

For this exercise, σu is held fixed at 0.005 and σε is varied. One observes that, as σu/σε gets

large, Σs goes to zero and the wedge disappears. Feve and Jidoud (2011) make the same point

analytically in a simpler environment with news shocks about productivity. Perhaps surprisingly,

the fit of the estimated VARs is not much worse than the benchmark when news shocks are relatively

unimportant, though the fit does improve fairly significantly as news shocks become relatively more

important.

4.6 The Role of the Anticipation lag

Up to this point the “anticipation lag” between when agents observe a news shock and when it

affects technology has been fixed at q = 3. This choice is arbitrary though it conforms with much of

the theoretical work on news shocks. Nevertheless, the quality of the results varies in an interesting

and instructive way with the anticipation lag. The manner in which the results vary reinforces the

notion that non-invertibility is fundamentally a problem of informational insufficiency.

First, consider the case in which q = 1, so that there is only one period of anticipation. Appendix

section A.5 presents the numerical values of the state space matrixes for the “full model” when q = 1

and shows that the eigenvalues of (A−BD−1C) are all strictly less than unity in modulus. In other

words, the model with one period of anticipation gives rise to an invertible VAR representation in

output and technology. This means that an estimated VAR in these variables on a long enough

sample with enough lags will exactly recover the impulse responses to both news and surprise

technology shocks. Kurmann and Otrok (2011) similarly find an invertible VAR representation

based on a Smets and Wouters (2007) type model with one period anticipated growth shocks. The

intuition for this is reasonably straightforward – with only one period of anticipation, there is only

one additional state, z1,t = ut. The innovation in output (or other variables from the model)

orthogonalized with respect to current technology growth reveals that missing state. With multiple

periods of anticipation the innovation in the second variable in the system cannot perfectly reveal

q missing states if q > 1. Hence, for news shocks to generate non-invertibility there must be more

than one period of anticipation.

Moving beyond the case of q = 1, since non-invertibility is fundamentally the result of informa-

tional deficiency, it stands to reason that the more missing state variables there are, the worse will

be the performance of VARs. Since the anticipation lag increases the state vector one for one, one

should expect that VARs perform more poorly as the anticipation lag increases.

Table 3 shows summary statistics for Monte Carlo exercises using data generated from the

full model with different anticipation lags. To focus in on the bias due to non-invertibility, these

statistics are based on estimating a VAR in technology growth and output on one data set of 100,000

observations (i.e. the “large sample” exercise). The structure of the table is similar to Table 2 – it
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shows the average absolute deviation of the responses of each variable to the two identified shocks

over a forty period forecast horizon. The final column shows the average of the average deviations,

which serves as a crude metric for the overall bias of the VAR impulse responses relative to the

model responses. As the final column indicates, the average fit declines as q, the anticipation lag,

increases. The intuition for this is straightforward – the bigger is q, the more missing state variables

there are, and therefore the bigger is the wedge between the VAR innovations and shocks. Though

there are biases in the estimated responses to the surprise technology shock, these are fairly similar

for different q. The biases in the estimated responses to news shocks, in contrast, rise with q. For

extremely long anticipation lags (e.g. q = 16), the VAR biases are quite large.16 The average

absolute deviation of the estimated output response over forty forecast horizons, for example, is

0.33 percent. This is quite large when considering that the long run response of output to a news

shock as calibrated is 0.75 percent.

These findings have some implications for the existing empirical literature on new shocks.

Beaudry and Portier (2006), for example, present impulse responses to a news shock which have no

discernable effect on TFP for a period of four or five years. The Monte Carlo exercise with q = 16

suggests that, if the true response to a news shock had a delay of that long, there would be little

hope of a structural VAR recovering the impulse responses correctly.17 This makes interpreting

the Beaudry and Portier (2006) impulse responses as responses to news problematic. The impulse

responses identified in Barsky and Sims (2011), in contrast, affect measured TFP within a few

quarters (and show quite different impact effects on hours and output). If the true news process

affects productivity quickly then there is a much better chance that these impulse responses are

accurate representations of the true responses from an economic model.

5 Robustness

The Monte Carlo exercises to this point have been conducted in a relatively simple environment.

In particular, I have restricted attention to a two variable system in which a recursive identification

lines up with the implications of news and surprise technology shocks in the economic model. This

has been done with the goal of cleanly focusing in on the role of non-invertibility as a source of

bias in impulse responses obtained from estimated VARs. Nevertheless, one might be interested in

how non-invertibilities matter in more realistic environments with which researchers typically have

to grapple – for example, in situations in which exogenous TFP is not observed, in which there

are more than two shocks, or when the VAR is subject to some other kind of specification bias.

16These exercises are conducted with a fixed lag length, p = 8, as the anticipation lag, q, varies. It bears pointing
out that one needs at least as many lags in the VAR as the anticipation lag to have any hope of capturing the dynamics
implied by the model. In that sense the “cards are stacked” against the specification with q = 16. Nevertheless,
allowing for a much longer lag structure preserves the basic pattern evident in the table. I maintain p = 8 to (i)
maintain congruity with Table 2 and (ii) to be consistent with empirical work using VARs, which almost never uses
more than two years worth of lags.

17It is worth pointing out that magnitude of the biases depends on the interaction of the discount factor, β, with
the anticipation lag. For example, the quality of the Monte Carlo results is essentially the same for a quarterly
calibration with q = 4 and β = 0.99, and an annual calibration with q = 1 and β = 0.96.
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This section considers several extensions to more realistic environments and confirms that the same

basic results from the earlier Monte Carlo analyses obtain.

Though much of the empirical work on news shocks which uses VARs assumes that “true

technology” is well-measured by a suitably constructed total factor productivity (TFP) series,

in practice this assumption may be problematic.18 I therefore consider cases in which TFP is

unobserved by the econometrician. Separately identifying surprise technology shocks from news

shocks is generally accomplished with a short run recursive assumption as implemented throughout

Section 4; without a measure of TFP, however, recursive zero restrictions are generally not available.

As such, I begin by assuming that there is no surprise technology shock – the only source of

movements in ln at in the model are news shocks. In terms of the process for technology, this can

be accomplished by setting the variance of εt to zero. So as to avoid stochastic singularity and be

able to estimate a VAR with more than one variable, I augment the model with a “demand” shock

to the monetary policy rule, replacing (23) with:

it = ρit−1 + (1− ρ)ψπ (πt − π∗) + (1− ρ)ψy

(
yt
yt−1

−∆y

)
+ νi,t, νi,t ∼ N(0, σν) (35)

For the purposes of the Monte Carlo exercise I simulate data from the full model with the

modified shock process using the baseline parameterization for news (i.e. q = 3 and σu = 0.005)

and set the standard deviation of the policy shock to σ = 0.0015, or 15 basis points. I conduct the

“small sample” exercise of the previous section – I draw shocks and generate 500 samples with 200

observations of data each. I estimate a VAR in output growth and the consumption-output ratio:

xt = [∆ ln yt ln ct − ln yt].
19 I use a long run restriction to separate out the technology news shock

from the monetary policy shock, imposing that only the news shock may have a permanent effect

on the level of output in the long run. This restriction is consistent with the implications of the

underlying model.20

Figure 6 summarizes the Monte Carlo results. The solid lines show theoretical impulse responses

of the levels of output and consumption to a news shock (upper row) and the monetary policy shock

(lower row). The dashed lines are the average estimated response over the 500 simulations, and the

shaded gray regions the middle 68 percent of the distribution of estimated responses. Qualitatively

the estimated VAR does a very good job at replicating the model’s dynamics to both shocks. The

estimated responses to the news shock are essentially unbiased on impact and for several horizons

thereafter; these responses are slightly downward biased at longer horizons but the magnitude of

18In practice there is some debate about how to best measure total factor productivity. The measure produced by
Basu, Fernald, and Kimball (2006) uses some simple theoretical restrictions to attempt to control for factor hoarding
and thus produces a measure of TFP which is immune to criticisms that it largely measures unobserved factor
variation due to demand shocks.

19This specification imposes the model generated cointegrating relationship, which is necessary to use a long run
restriction. A consumption-output VAR is also estimated in Cochrane (1994), which in many ways is an important
antecedent to the more recent literature on news shocks.

20The long run restriction is implemented as in Gali (1999). The long run response of the cumulated sums of the

variables in the VAR to the two orthogonal shocks is given by the matrix C0 =
(
I −

∑p
j=1Aj

)−1

A−1
0 . Letting the

policy shock occupy position 2, the restriction imposes that A−1
0 satisfy A−1

0 A−1′

0 = Σu and be such that the long
run response of the level of output to the second shock be zero, e.g. that the (1,2) element of C0 be zero.
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the bias is not large. The estimated responses to the policy shock are also quite good, on both

a qualitative and quantitative dimension. In short, the VAR with the long run restriction does a

good job at capturing the dynamic responses to both the news shock and the policy shock, even

when TFP is unobserved.

Next I consider the more challenging case in which there are both news and surprise technology

shocks (for this exercise there is no monetary policy shock), but continue to assume that the

econometrician cannot observe TFP. I continue to generate 500 data sets from the full model with

200 observations each. For this exercise I consider estimating a two variable VAR in the growth

rate of average labor productivity and labor hours, xt = [∆(ln yt − lnnt) lnnt].
21

The challenging aspect of this system is that “conventional” VAR identifying restrictions are

not available. Since both shocks permanently affect the non-stationary variables of the model, a

long run restriction cannot be used to differentiate between the two kinds of technology shocks.

And since TFP is not observed, and all other variables react on impact to both kinds of technology

shocks, short run zero restrictions are not available either. I therefore employ a modified sign/shape

restriction to separately identify the news and surprise technology shocks. In particular, I identify

the news shock as the orthogonal shock which generates an impulse response of labor productivity

with the greatest difference between the response at a horizon of 40 quarters from the impact

response. Even though average labor productivity reacts immediately to news shocks because of

movements in hours, this restriction gets at the idea that the news shock should have a much bigger

longer run effect on average productivity than on impact.

Before discussing the Monte Carlo results I briefly discuss the mechanics of this particular

restriction. In the VAR system (34) the reduced form innovations are a function of the structural

shocks: ut = A−1
0 et. For a particular A−1

0 satisfying A−1
0 A−1′

0 = Σu, call it Ã−1
0 , the entire space

of permissible impact matrixes can be represented by Ã−1
0 D̃, where D̃ is an orthonormal matrix,

e.g. D̃D̃′ = I. The sign/shape restriction methodology consists of (i) starting with an arbitrary

Ã−1
0 , say a Choleski decomposition and, (ii) searching over the space of orthonormal matrixes, D̃,

for an impact matrix, Ã−1
0 D̃ that satisfies the sign/shape restriction. Step (i) ensures that the

resulting impact matrix satisfies A−1
0 A−1′

0 = Σu. In many applications step (ii) results in a set

of candidate impulse vectors – i.e. there is not point identification, but rather set identification

(see, e.g., Faust, 1998, and Uhlig, 2005). Because my restriction is not simply qualitative (e.g. a

monetary tightening lowers both output and prices), but can rather be quantified in terms of the

difference between the impulse response of labor productivity at horizon 40 relative to impact, my

restriction achieves point identification.

Figure 7 summarizes the results from the sign/shape restriction exercise, where again the dashed

line represents the average estimated response across the 500 simulations, the solid line the true

model response, and the shaded gray region the middle 68 percent of the distribution of estimated

responses. The VAR does a very good job at capturing the model’s responses to the two technology

21In practice the variables in the VAR do not matter much. I consider a different system here than in the previous
exercise mainly for breadth of coverage, but also because the average productivity growth-hours VAR is popular in
the literature, e.g. Gali (1999).
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shocks. In response to the news shock hours rise slightly on impact and remain high until the level

of technology improves three periods later, after which time they sharply decline. The response of

labor productivity mirrors the movements in hours – it initially falls and then sharply rebounds

when technology actually improves, and continues to rise thereafter. The impulse responses from

the sign restricted VAR do a good job at capturing these features. The results for the surprise

technology shocks are even better – here the biases are very small. In spite of the non-invertibility

and in spite of the fact that TFP is not observed, the VAR does a very good job at capturing the

dynamic response to both technology shocks.

As a final robustness exercise I consider the realistic modification of the underlying DSGE model

in which there are more than two shocks. In addition to both kinds of technology shocks (news

and surprise), I assume that there are two “demand shocks” – a monetary policy shock as in (35),

and a preference shock that shifts the disutility of labor. The preference shock obeys a stationary

AR(1):

ln θt = (1− ρθ)θ∗ + ρθ ln θt−1 + εθt (36)

Here ρθ ∈ (0, 1) and θ∗ is chosen to generate steady state labor hours of one-third. For the Monte

Carlo exercises the parameterization is the same as in the benchmark, with the volatility of the

monetary policy shock of 15 basis points and the volatility of the preference shock of 1 percent,

with ρθ = 0.9. As earlier, I generate 500 data sets with 200 observations each.

I conduct two separate Monte Carlo exercises on data generated from the four shock system.

For simplicity I assume that the researcher can observe TFP, though the results using average

labor productivity and sign restrictions are similar. In one case I assume that a researcher esti-

mates a four variable VAR in TFP growth, output and consumption normalized relative to the

level of TFP (which imposes the model based cointegrating relationships), and hours worked:

xt = [ln ât ln ŷt ln ĉt lnnt]. In the other case I assume that the researcher estimates a three

variable VAR in TFP growth, normalized output, and hours: xt = [ln ât ln ŷt lnnt]. The second

specification introduces another bias in addition to non-invertibility, since there are four economic

shocks but the estimated VAR model includes only three variables.

With four shocks, even though TFP is observed, a recursive identification is inconsistent with

the predictions of the model. This is because the innovation in any of the other three variables

orthogonalized with respect to the TFP innovation will be driven by both the news shock and the

two demand shocks. As such, I implement a combined short run/long run identification. I use

two long run restrictions to separate out the two technology shocks from the two demand shocks,

and use a short run zero restriction to identify the surprise technology shock from the news shock.

In particular, the restrictions are (i) only the two technology shocks have a long run impact on

ln at, and (ii) the news shock has no immediate impact on ln at.
22 These restrictions are sufficient

22Using similar notation to above, the long run responses of the cumulated sums of the variables in the VAR are

given by: C0 =
(
I −

∑p
j=1Aj

)−1

A−1
0 . With TFP growth in the first position in the system and the surprise and

news shocks indexed by 1 and 2, the two long run restrictions impose that the (1,3) and (1,4) elements of C0 be zero.
The short run restriction that news not immediately effect TFP requires that the (1,2) element of A−1

0 be 0.
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to uniquely identify the two technology shocks, but do not identify the other shocks. The same

restrictions can be used in either the three or the four variable VAR systems.

Figures 8 and 9 show the Monte Carlo results; Figure 8 for the four variable system and Figure

9 for the mis-specified three variable system. Focusing first on the four variable system, one sees

that the estimated responses to the news shock align quite closely with the true model responses,

particularly at shorter forecast horizons. The transitional dynamics to the new steady state are also

estimated quite well, with only evidence of some small bias in the output response at longer forecast

horizons. Focusing on the responses to the surprise technology shock, there is some more evidence

of bias in the responses, particularly at longer forecast horizons. It should be noted, however, that

VAR impulse responses are quite good on impact and at short horizons, and the hours response is

estimated very well over all horizons.

Figure 9 summarizes the Monte Carlo results for the three variable system. The identification

is the same as in the four variable system. As noted, in addition to the non-invertibility due

to news, an additional bias is introduced due to the fact that the VAR is estimated with three

variables, whereas there are four shocks in the model. The estimated impulse responses to both

kinds of technology shocks nevertheless remain quite good. Qualitatively the estimated responses

to the news shock are in line with the responses from the model. Relative to the four variable

VAR, however, the three variable system does not do as good of a job at capturing the large

drop in hours when productivity improves, and the longer horizon biases in the output and TFP

responses are somewhat larger. The quality of the estimated responses to the surprise technology

actually appears somewhat better than in the three variable system. In terms of mean biases this is

illusory, as the distribution of estimated responses is quite a bit wider in the three variable system.

Nevertheless, the VAR does a good job at qualitatively matching the dynamic responses to the

surprise technology shock, and the estimated hours response is quite good.

There are a number of different permutations on these Monte Carlo exercises one could consider

for the four shock model. One is mentioned above, and that is assuming that the econometrician

cannot observe TFP. In that case, one can estimate either a three or four variable model, replacing

TFP with average labor productivity. The long run restrictions used to separate out the two

technology shocks from the two demand shocks are the same, and one can replace the zero recursive

restriction to identify the news shock with the sign/shape restriction implemented above in the

two variable example. These results turn out to be quite similar in terms of how closely the

estimated responses align with the model responses. I also considered including different observables

in the VAR system; here, too, the results are fairly similar. Finally, I considered alternative

parameterizations of non-technology shocks. As shown in Section 4.5, the relative magnitudes of

the news and surprise technology shocks impact the bias in the estimated responses to the news

shock. The relative magnitudes of the unidentified shocks can also matter for the quality of fit of

the identified responses (where in these exercises the unidentified shocks are the demand shocks).

It turns out that the biases of the identified responses grow with the relative magnitude of the non-

identified shocks, as suggested by Canova and Paustian (2011). However, even when increasing

the magnitudes of these shocks by a lot – say, a factor of three – the estimated responses to
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the two identified technology shocks remain qualitatively quite good with relatively small biases,

particularly at short horizons.

6 Adding Information

The Monte Carlo results of the previous two sections demonstrate that conventional VAR techniques

may perform quite well, even in the face of a known non-invertibility. While these results may prove

comforting to some, particularly those interested in the economic effects of news shocks about

productivity, it is nevertheless not possible to use them to draw sweeping conclusions about the

reliability of VAR techniques when the set of observables has a non-invertible VAR representation.

Short of imposing the extra structure that full information techniques require, what can a researcher

concerned about biases resulting from a potential non-invertibility do?

As the title of this section suggests, adding information to the set of observed variables is the

most straightforward route to go. Non-invertible representations arise when the observables fail

to perfectly forecast the state vector of the DSGE model serving as the data generating process.

Adding additional variables to the set of observables can only improve the forecast of the state,

and thus reduce the magnitude of the wedge between VAR innovations and deep shocks.

In the context of the DSGE model considered so far, it is not possible to condition on more

observables – one can only condition on as many observables as there are shocks when estimating

the VAR. So as to circumvent this stochastic singularity issue, suppose that an econometrician

observes a set of “information variables.” These are variables that convey information about the

underlying state of the model, but are not otherwise part of the solution of the model. For ex-

ample, these information variables could be stock prices, survey measures of consumer or business

confidence, bond spreads, etc. In particular, I assume that these information variables are noisy

signals about the news shock at time t – in other words, they are potentially useful in forecasting

future productivity conditional on current observed productivity. Let there be Q of these variables,

each obeying:

si,t = ut + vi,t, i = 1, . . . , Q (37)

The error term vi,t represents the noise in each signal. These are i.i.d. across i, with mean zero

and are drawn from a normal distribution with fixed variance. It is clear that, for Q sufficiently

large, conditioning on lags of si,t in a VAR will perfectly reveal the missing states, since the si,t

will average out to the ut by application of a law of large numbers. This is a particularly simple

informational structure, but could easily be extended on a number of different dimensions – for

example, there could be persistence in the signals, the signals could respond to other economic

shocks, the noise innovations in the signals could be correlated with one another or across time,

etc. The broader point is that conditioning on more information will reduce the variance in the

forecast of the state vector, and therefore ought to improve the performance of estimated VARs.

To see this point clearly, Figure 10 shows some Monte Carlo results when incorporating these
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information series as additional variables in an otherwise standard VAR. Because it arguably has

the worst overall fit in the simulations of Section 4, I consider the frictionless RBC model as

the data generating process. So as to fix ideas, I focus here on the “large sample” exercise of

simulating one data set with 100,000 observations. The standard deviation of the signals is set to

0.005. The solid line shows the true model responses to both shocks, while the dashed lines are the

estimated responses from the conventional two variable, recursively identified VAR estimated on

ln ât and ln ŷt. The thin dotted line shows the estimated responses from that same VAR augmented

with four independent signals, while the thick dotted line shows the responses estimated when the

VAR includes eight independent signals.23 The identifying restrictions are the same as above – the

surprise shock is associated with the innovation in TFP growth ordered first, while the news shock is

identified with the innovation in output ordered second. It is visually apparent that the fit improves

as more of the information variables are added: the biases are smaller in the VAR with four signals

than in the conventional two variable VAR, while the biases in the VAR with eight signals are smaller

than the VAR with four signals. Extending this exercise to more information variables continues

this pattern: the more information variables on which one conditions, the smaller are the large

sample biases in the estimated impulse responses.24 Table 4 shows the mean absolute deviations of

the estimated impulse responses of output and TFP to both news and surprise technology shocks

over a forty quarter forecast horizons. The final column shows the average of the mean deviations

as a measure of overall fit. The pattern is quite evident – as more information variables are added,

the average of the average absolute deviations becomes smaller.

The above large sample exercise of simply adding more variables to the VAR is informative,

but may not be of much practical interest when estimating VAR systems on relatively short sample

sizes. Adding more than a couple of additional series in a sample of, say, 200, with more than

a year’s worth of lags quickly becomes prohibitive. With different motivations and in different

contexts, a number of researchers have made use of factor analytic methods.25 These methods

make use of principal components to compress large sets of data into a small number of common

components. This effectively allows one to condition on a large amount of information without

consuming too many degrees of freedom.

As an alternative to estimating a VAR system with many additional variables, consider esti-

mating the following factor augmented VAR: xt = [ln ât ln ŷt Ft]
′, where Ft is the first principal

component of Q information variables. Isolating just the first principal component in this context

makes sense as the information variables only have one common component – the news shock. With

enough information variables, conditioning on the common component will be equivalent to condi-

tioning on current and lagged news shocks, and hence any biases due to non-invertibility ought to

23To be clear, the estimated VARs are then: Xt = [ln ât ln ŷt s1,t . . . sr,t]
′, for r = 4 or r = 8.

24It is worth pointing out that the standard deviation of the noise innovations, σv, does have an effect on these
conclusions. If the signals are very precise, then one does not need to add many signals to the VAR for the large
sample biases to vanish. In contrast, noisier signals necessitate including more information variables in order to
reduce the large sample biases.

25For applications in macroeconomics, see, for example Bernanke, Boivin, and Eliasz (2005) and Stock and Watson
(2005).
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disappear, since the missing state variables will effectively be revealed.

Figure 11 shows impulse responses obtained from both finite and large sample Monte Carlo

exercises making use of the first principal component of Q = 30 factors (the number 30 is arbitrary;

the important point is that it be “large”). I again take the frictionless RBC model as the data

generating process. The standard deviation of the noise innovations in the information variables is

again set to 0.005. The estimation procedure takes place in two steps. In the first step, the first

principal component of the Q information series is obtained, Ft. In the second step, a conventional

unrestricted VAR is estimated with ln ât, ln ŷt, and Ft. The identifying restrictions are as above –

the surprise technology shock is identified with the innovation in TFP growth, while the news shock

is identified as the output innovation ordered second. No interpretation is given to the innovation

in Ft ordered last.

Turning first to the large sample results, one observes that the large sample biases have essen-

tially disappeared. The estimated impulse responses virtually lie atop the true model responses

at all horizons. That any biases remain is mainly a function of Q being finite – conditioning on

sufficiently more variables in the first stage would cause any remaining biases to vanish entirely.

The last row of Table 4 shows average mean absolute deviations of the responses estimated in

the large sample exercise from the true model counterparts and reveals that the factor augmented

VAR represents an improvement over both the two variable system and the systems augmented

with smaller numbers of information variables. The results are also substantially better in finite

samples in comparison with the simple two variable VAR – comparing the finite sample results in

Figure 11 with Figure 2, there is a clear improvement. Here there remains some downward-bias in

the responses at longer horizons, but this is primarily due to finite sample bias in autoregressive

coefficients, and is largely unrelated to non-invertibility. The estimated responses are essentially

unbiased on impact and for a number of quarters thereafter. Similar results obtain for simulations

from the other version of the model with frictions.

These simulations results suggest that a sensible way of dealing with a potential non-invertibility

is to estimate a factor-augmented VAR, with the series used to construct the factors explicitly cho-

sen with the goal in mind of forecasting unobserved states. Indeed, this is consistent with the

recommendations in Giannone and Reichlin (2006), Forni, Giannone, Lippi, and Reichlin (2009),

and Forni, Gambetti, and Sala (2011). Since non-invertibility is fundamentally a missing infor-

mation problem, factor methods, which allow an econometrician to condition on a very large data

set, are an appropriate, flexible, and simple way to deal with the issue, short of resorting to full

information methods.

7 Concluding Thoughts

Fernandez-Villaverde, Rubio-Ramirez, Sargent, and Watson (2007) recommend that researchers

estimate the structural parameters of detailed models using full information techniques. If one

believes in a particular DSGE specification, then this is sound advice – from an efficiency perspective

one would never want to recover impulse responses from a VAR if one strongly believed in the
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underlying DSGE model. The advantage of VARs and similar limited information techniques is

that they do not impose as much structure as full information methods, and are therefore less

subject to specification bias and can be used to make cross-model comparisons. However, the

mapping between DSGE models and VARs is not always clean. The so-called non-invertibility

problem arises when the VAR on a set of observables cannot be mapped back into the structural

form of an economic model. This means that analysis based on VARs may not prove very useful

in building and refining fully specified DSGE models.

This paper has focused on the issue of non-invertibility within the context of a particular

shock structure known to create problems – so-called “news shocks” which generate foresight about

exogenous changes in future productivity. In so doing, it has emphasized that invertibility is

not an “either/or” proposition – a particular model may be technically non-invertible but the

resulting biases in estimated impulse responses may nonetheless be small. Non-invertibility is

best understood as a problem of missing information – therefore, the most straightforward way

to deal with it while remaining within the scope of limited information methods is to condition

on more information. In particular, estimating VARs which condition on more information –

either through adding additional variables informative about the missing states directly or through

factor augmented VARs – works to eliminate the biases due to non-invertibility. These methods

are relatively straightforward to implement and do not require imposing the structure that full

information estimation methods require.
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Table 1: Parameters

Full Model RBC Model Sticky Price Model

β = 0.99 γ = 0 γ = 0

δ = 0.02 τ = 0 τ = 0

ga = 0.0025 φ = 0

π∗ = 0.005

α = 1
3

ξ = 1

σe = 0.01

σu = 0.005

θ ⇒ n∗ = 1
3

γ = 0.7

τ = 2.5

φ = 0.7

ε = 11

ρ = 0.8

ψπ = 1.5

ψy = 1.5

The left column, labeled “Full Model,” lists the parameter values used in the fully parameterized specification. The remaining

columns list the parameter restrictions relative to the full model.

Table 2: Mean Absolute Deviations: VAR Monte Carlo Exercises

Tech. to News Output to News Tech. to Surprise Output to Surprise Average

Large Sample

Full 0.0266 0.0698 0.0693 0.0871 0.0632

RBC 0.0676 0.1006 0.0366 0.0596 0.0661

Sticky Price 0.1062 0.1402 0.0403 0.0619 0.0872

Small Sample

Full 0.0466 0.0522 0.2833 0.3545 0.1841

RBC 0.0974 0.1339 0.2595 0.3375 0.2071

Sticky Price 0.2031 0.2662 0.1278 0.1524 0.1874

These numbers represent the average absolute deviations of the estimated impulse responses relative to the true responses in the

models over the first 40 horizons, times 100, for the various different Monte Carlo exercises. In the “Large Sample” block the

numbers are based on one sample with 100,000 observations relative to the true model responses. In the “Small Sample” block

the numbers are based on the difference between the average estimated responses across 500 simulations relative to the true

model responses. The final column, labeled “Average,” shows the average of the mean absolute deviations of all four impulse

responses.
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Table 3: Mean Absolute Deviations: Different Anticipation Lags

Tech. to News Output to News Tech. to Surprise Output to Surprise Average

Anticipation Lag

q = 2 0.0330 0.0273 0.0389 0.0454 0.0362

q = 8 0.0996 0.1495 0.0459 0.0544 0.0874

q = 16 0.1942 0.3300 0.0485 0.0679 0.1601

These numbers represent the average absolute deviations of the estimated impulse responses relative to the true responses in

the models over the first 40 horizons, times 100, for different news anticipation lags in the full model specification in a two

variable VAR in ln ât and ln ŷt. The final column, labeled “Average,” shows the average of the mean absolute deviations of all

four presented impulse responses.

Table 4: Mean Absolute Deviations: Adding Information

Tech. to News Output to News Tech. to Surprise Output to Surprise Average

Number of Signals

Standard VAR (s = 0) 0.0634 0.0932 0.0298 0.0511 0.0594

s = 1 0.0613 0.0924 0.0272 0.0454 0.0566

s = 2 0.0500 0.0758 0.0160 0.0288 0.0426

s = 4 0.0369 0.0562 0.0056 0.0130 0.0279

s = 8 0.0206 0.0317 0.0074 0.0078 0.0169

Factor VAR 0.0068 0.0102 0.0159 0.0200 0.0132

These numbers represent the average absolute deviations of the estimated impulse responses relative to the true responses in

the models over the first 40 horizons, times 100, for different numbers of additional information variables included in a two

variable VAR in ln ât and ln ŷt. The final column, labeled “Average” shows the average of the mean absolute deviations of all

four presented impulse responses.
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Figure 1: Monte Carlo Results in Full Model
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The solid lines are the theoretical impulse responses to news and surprise technology shocks in the “Full Model” using the

parameterization as described in the text. For the Monte Carlo exercises the VARs feature ln ât and ln ŷt and are estimated with

p = 8 lags. In the left panel, labeled “Finite Sample,” the dashed lines are the mean responses averaged across 500 simulations

of data sets with 200 observations each, while the shaded gray regions depict the middle 68 percent of the distribution of

estimated responses across the 500 simulations. In the right panel, labeled “Large Sample,” the dashed lines are the estimated

impulse responses from the estimation on one sample with 100,000 observations.
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Figure 2: Monte Carlo Results in RBC Model
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The solid lines are the theoretical impulse responses to news and surprise technology shocks in the “RBC Model” using the

parameterization as described in the text. For the Monte Carlo exercises the VARs feature ln ât and ln ŷt and are estimated with

p = 8 lags. In the left panel, labeled “Finite Sample,” the dashed lines are the mean responses averaged across 500 simulations

of data sets with 200 observations each, while the shaded gray regions depict the middle 68 percent of the distribution of

estimated responses across the 500 simulations. In the right panel, labeled “Large Sample,” the dashed lines are the estimated

impulse responses from the estimation on one sample with 100,000 observations.
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Figure 3: Monte Carlo Results in Sticky Price Model

Finite Sample: Large Sample:
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The solid lines are the theoretical impulse responses to news and surprise technology shocks in the “Sticky Price Model”

using the parameterization as described in the text. For the Monte Carlo exercises the VARs feature ln ât and ln ŷt and are

estimated with p = 8 lags. In the left panel, labeled “Finite Sample,” the dashed lines are the mean responses averaged across

500 simulations of data sets with 200 observations each, while the shaded gray regions depict the middle 68 percent of the

distribution of estimated responses across the 500 simulations. In the right panel, labeled “Large Sample,” the dashed lines are

the estimated impulse responses from the estimation on one sample with 100,000 observations.

37



Figure 4: Monte Carlo Results: Large vs. Small Surprise Shocks
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The solid lines are the theoretical impulse responses to a news shock in the “Full Model” using the parameterization as described

in the text. The dashed and dotted lines represent the estimated responses from a large sample Monte Carlo exercise using

two different values for the standard deviation of surprise technology shocks: σε = 0.01 (dashed line, which also corresponds to

the baseline used in previous figures) and σε = 0.001 (dotted line). 100,000 observations are simulated from the “Full Model”

and then a VAR is estimated on a system featuring TFP growth and normalized output, with the news shock identified as the

orthogonalized output innovation. The VAR uses p = 8 lags.

Figure 5: Theoretical Wedge and Varying Shock Magnitudes
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This figure plots the Euclidian norm of Σs, the variance-covariance matrix of period t optimal forecast of the state, as a function

of the relative shock magnitudes between surprise, εt, and news shocks, ut. This is done in the context of the “Full Model”

conditional on observing TFP growth and normalized output. The vertical axis plots the ratio of the the standard deviation

of ut divided by the standard deviation of εt against the determinant of Σs, which is obtained numerically from solving the

Ricatti equations (6)-(7).
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Figure 6: Monte Carlo Results: Two Variable Model, TFP Unobserved, LR Restriction
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The solid lines are the theoretical impulse responses to a news shock about productivity and to a monetary policy shock in the

full specification of the model in which (i) there is no surprise technology shock and (ii) the standard deviation of monetary

policy shocks is set to 0.15 basis points. For the Monte Carlo exercise the estimated VAR features ∆ ln yt and ln ct − ln yt and

is estimated with p = 8 lags. The shocks are identified using a long run restriction such that the news shock is the sole source

of the unit root in output. The dashed lines are the mean responses to each shock averaged across 500 simulations of data with

200 observations each, while the shaded gray regions depict the middle 68 percent of the distribution of estimated responses

across the 500 simulations.
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Figure 7: Monte Carlo Results: Two Variable Model, TFP Unobserved, Sign Restriction

Output per Hour to News

10 20 30 40
−0.01

−0.005

0

0.005

0.01
Hours to News

10 20 30 40
−4

−2

0

2

4

6

8
x 10

−3

Output per Hour to Surprise

10 20 30 40
0

0.005

0.01

0.015
Hours to Surprise

10 20 30 40
−15

−10

−5

0

5
x 10

−3

The solid lines are the theoretical impulse responses to a news shock about productivity and to a surprise technology shock

in the full model. For the Monte Carlo exercise the estimated VAR features the growth rate of average labor productivity,

∆ (ln yt − lnnt) and log hours worked, lnnt, and is estimated with p = 8 lags. The shocks are identified with a shape restriction:

in particular, the news shock is identified as the shock that results in an impulse response with the largest difference between

the level response of average productivity at a 40 period horizon relative to the impact response. The dashed lines are the

mean responses to each shock averaged across 500 simulations of data with 200 observations each, while the shaded gray regions

depict the middle 68 percent of the distribution of estimated responses across the 500 simulations.
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Figure 8: Monte Carlo Results: Four Variable Model, LR and SR Restrictions
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The solid lines are the theoretical impulse responses to a news shock about productivity and to a surprise technology shock

in the full model with four shocks: a news shock, a surprise technology shock, a monetary policy shock, and a labor supply

preference shock. For the Monte Carlo exercise the estimated VAR features ln ât, ln ŷt, ln ĉt, and lnnt, total hours worked, and

is estimated with p = 8 lags. The news and surprise technology shocks are identified with a combined short run and long run

restriction: the long run restriction says that these two shocks are the sole source of the unit root in observed TFP, and the

short run restriction says that news shock does not affect TFP on impact. The remaining two shocks are left unidentified. The

dashed lines are the mean responses to each shock averaged across 500 simulations of data with 200 observations each, while

the shaded gray regions depict the middle 68 percent of the distribution of estimated responses across the 500 simulations.
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Figure 9: Monte Carlo Results: Three Variable Model (Four Shocks), LR and SR Restrictions
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The solid lines are the theoretical impulse responses to a news shock about productivity and to a surprise technology shock

in the full model with four shocks: a news shock, a surprise technology shock, a monetary policy shock, and a labor supply

preference shock. For the Monte Carlo exercise the estimated VAR features ln ât, ln ŷt, and lnnt, total hours worked, and is

estimated with p = 8 lags. The model is misspecified in the sense that there are four shocks in the data generating process but

only three variables are included in the VAR. The news and surprise technology shocks are identified with a combined short run

and long run restriction: the long run restriction says that these two shocks are the sole source of the unit root in observed TFP,

and the short run restriction says that news shock does not affect TFP on impact. The dashed lines are the mean responses to

each shock averaged across 500 simulations of data with 200 observations each, while the shaded gray regions depict the middle

68 percent of the distribution of estimated responses across the 500 simulations.
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Figure 10: Adding Information to the VAR: RBC Model
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The solid lines are the impulse responses to both news and surprise technology shocks in the RBC model. For the Monte Carlo

simulations, 100,000 observations are simulated from the model, with additional noisy “information variables” about future

productivity included in a VAR featuring ln ât and ln ŷt, identified using a recursive restriction with TFP growth ordered first

and output ordered second. The dashed, small dotted, and wide dotted lines show the estimated responses with no signals

included in the VAR, with four signals, and with eight signals, respectively.
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Figure 11: Monte Carlo Results: Factor Augmented VAR (RBC Model)
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The solid lines are the theoretical responses to news and surprise technology shocks in the RBC model. For the Monte

Carlo exercises the estimated VARs include ln ât, ln ŷt, and the first principal component of thirty noisy signals about future

productivity. The VARs are estimated with p = 8 lags. In the left panel, labeled “Finite Sample,” the dashed lines are the

mean responses averaged across 500 simulations of data sets with 200 observations each, while the shaded gray regions depict

the middle 68 percent of the distribution of estimated responses across the 500 simulations. In the right panel, labeled “Large

Sample,” the dashed lines are the estimated impulse responses from the estimation on one sample with 100,000 observations.
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A State Space Representation of the Various Models

This appendix provides details on the parameters of the state space representations of the various

nested models.

A.1 The Full Model

The state vector is:

st =
[

ln ŷt ln k̂t it ln vt z1,t z2,t z3,t ln Ît ln ĉt

]′
The vector of observables is:

xt =
[

ln ât ln ŷt

]′
These variables represent logarithmic deviations from their normalized steady state values. The

shock vector is εt = [εt ut]
′. The parameters of the state space representation are:

A =



0.0552 0.0746 −0.4402 −0.0909 −1.1461 0.3006 0.2305 0.1544 0.4798

0.0034 0.9723 −0.0267 −0.0049 −1.4857 0.0111 0.0070 0.0185 −0.0037

−0.0603 −0.0278 0.4806 0.0424 −0.0452 0.0096 0.0407 0.0307 0.0875

0.0175 −0.0179 −0.1398 0.7656 −0.0410 −0.0105 0.0089 0.0077 0.0200

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.1417 −0.1717 −1.1291 −0.2051 −0.8958 0.4691 0.2960 0.7831 −0.1558

0.0319 0.1411 −0.2543 −0.0600 −1.2136 0.2552 0.2129 −0.0153 0.6513



B =



−1.1461 0.1603

−1.4857 0.0029

−0.0452 0.0551

−0.0410 0.0198

0.0000 0.0000

0.0000 0.0000

0.0000 1.0000

−0.8958 0.1206

−1.2136 0.1711



C =

[
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

0.0552 0.0746 −0.4402 −0.0909 −1.1461 0.3006 0.2305 0.1544 0.4798

]

D =

[
1.0000 0.0000

−1.1461 0.1603

]
The modulus of the eigenvalues of the matrix M =

(
A−BD−1C

)
are:
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Λ =
(

1.3208 1.3208 0.5781 0.9471 0.7239 0.8057 0.0000 0.0000 0.0000
)

There are two eigenvalues with modulus outside the unit circle. Hence, the “poor man’s invert-

ibility condition” is not satisfied.

A.2 The RBC Model

The state vector is:

st =
[

ln k̂t z1,t z2,t z3,t

]′
The vector of observables is the same as above.

The parameters of the state space representation are:

A =


0.9554 −1.4331 −0.0745 −0.0704

0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 0.0000 0.0000



B =


−1.4331 −0.0666

0.0000 0.0000

0.0000 0.0000

0.0000 1.0000


C =

[
0.0000 1.0000 0.0000 0.0000

0.2210 −0.3315 −0.2903 −0.2745

]

D =

[
1.0000 0.0000

−0.3315 −0.2597

]
The modulus of the eigenvalues of the matrixes M =

(
A−BD−1C

)
are:

Λ =
(

0.8987 1.0572 1.0572 0.0000
)

Again, the conditions required for invertibility are not met.

A.3 The Sticky Price Model

The state vector is:

st =
[

ln ŷt ln k̂t it vt z1,t z2,t z3,t

]′
The vector of observables is as above. The parameters of the state space representation are:
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A =



1.1043 −0.4590 −8.8015 −0.2184 −0.9680 −0.4384 −0.3754

0.1192 0.8796 −0.9498 −0.0143 −1.4982 −0.1024 −0.0921

0.0996 −0.1080 −0.7942 0.0036 0.0125 −0.0737 −0.0590

0.0453 −0.0314 −0.3611 0.7524 −0.0208 −0.0151 −0.0108

0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000



B =



−0.9680 −0.3095

−1.4982 −0.0818

0.0125 −0.0455

−0.0208 −0.0073

0.0000 0.0000

0.0000 0.0000

0.0000 1.0000


C =

[
0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000

1.1043 −0.4590 −8.8015 −0.2184 −0.9680 −0.4384 −0.3754

]

D =

[
1.0000 0.0000

−0.9680 −0.3095

]
he modulus of the eigenvalues of the matrixes M =

(
A−BD−1C

)
are:

Λ =
(

1.2397 1.2397 0.8087 0.8087 0.7638 0.0000 0.0000
)

The conditions for invertibility are not satisfied.

A.4 The Full Model with One Period Anticipation

The full model with one period of anticipation is similar to that presented in A.1 but the state space

can be reduced because of one period of anticipation. In particular, the process for technology can

be written:

ln at = ga + ln at−1 + εt + z1,t−1

z1,t = ut−1

For this specification the state vector is:

st =
[

ln ŷt ln k̂t it ln vt z1,t ln Ît ln ĉt

]′
The vector of observables is again TFP growth and normalized output, ln ât and ln ŷt, and the

shock vector is εt = [εt ut]
′. The parameters of the state space representation are:
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A =



0.0552 0.0746 −0.4402 −0.0909 −1.1461 0.1544 0.4798

0.0034 0.9723 −0.0267 −0.0049 −1.4857 0.0185 −0.0037

−0.0603 −0.0278 0.4806 0.0424 −0.0452 0.0307 0.0875

0.0175 −0.0179 −0.1398 0.7656 −0.0410 0.0077 0.0200

0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 0.0000

0.1417 −0.1717 −1.1291 −0.2051 −0.8958 0.7831 −0.1558

0.0319 0.1411 −0.2543 −0.0600 −1.2136 −0.0153 0.6513



B =



−1.1461 0.3006

−1.4857 0.0111

−0.0452 0.0096

−0.0410 −0.0105

0.0000 1.0000

−0.8958 0.4691

−1.2136 0.2552


C =

[
−0.0000 −0.0000 −0.0000 0.0000 1.0000 0.0000 0.0000

0.0319 0.1411 −0.2543 −0.0600 −1.2136 −0.0153 0.6513

]

D =

[
1.0000 −0.0000

−1.2136 0.2552

]
The modulus of the eigenvalues of the matrixes M =

(
A−BD−1C

)
are:

Λ =
(

0.5381 0.9411 0.8043 0.7294 0.0000 0.0000 0.0000
)

Since the maximum modulus of the eigenvalues lies inside of the unit circle, the conditions for

invertibility are satisfied with only one period of anticipation.
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