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Abstract

This online appendix accompanies “State-Dependent Fiscal Multipliers: Calvo vs. Rotemberg.”
Section 1 provides some numerical details concerning the computation of impulse responses and
fiscal multipliers. Section 2 shows results using a second order approximation and compares them
to the third order approximation used in the paper. Section 3 studies robustness to alternative
specifications of the monetary policy rule.

1 Numerical Details

Let st be a ns × 1 vector of state variables and let xt be a nx × 1 vector of non-predetermined

variables. Let εt be a nk × 1 vector of shocks. To economize on notation, define yt = [ st
xt

] as the

full (ns + nx) × 1 vector of state and non-predetermined variables. The solution to the model is a
non-linear mapping, h(⋅), from period t − 1 values of the states and period t values of the shocks
into the full period t vector of variables:

yt = h (st−1, εt) (1)

Letting variables with tildes denote deviations from the steady state, the third order approxima-
tion takes the form:

ỹt ≈A0 +A1s̃t−1 +A2εt +A3 (̃st−1 ⊗ s̃t−1) +A4 (εt ⊗ εt) +A5 (̃st−1 ⊗ εt)
+A6 (̃st−1 ⊗ s̃t−1 ⊗ s̃t−1) +A7 (εt ⊗ εt ⊗ εt) +A8 (̃st−1 ⊗ s̃t−1 ⊗ εt) +A9 (̃st−1 ⊗ εt ⊗ εt) (2)

The coefficient matrixes Ai, i = 1, . . . ,9, refer to different order derivatives of the function h(⋅)
evaluated in the non-stochastic steady state (i.e. the point of approximation is st−1 = s∗ and εt = 0).
Implicitly, the 1

1! ,
1
2! and 1

3! terms are incorporated into these matrixes. The matrix A0 is a “shift
term” that arises due to the variance of the shocks in a higher order approximation. In a first
order solution, Ai, i = 3, . . . , 9, are matrixes of zeros, and A0 is a vector of zeros. In a second order
solution, Ai, i = 6, . . . ,9 are matrixes of zeros. As is well-known, the solution has the properties
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that A1 and A2 are the same whether a first, second, or third order approximation is employed,
while A3, A4, and A5 are the same whether a second or third order solution is used.

The impulse response of the vector of variables ỹt to a one standard deviation innovation to the
ith exogenous shock is defined as:

E [ỹt+h ∣ s̃t−1, εt(i) = si] −E [ỹt+h ∣ s̃t−1] , h = 0, . . . ,H (3)

The impulse response is defined as the change in conditional expectations of the future paths
of variables conditional on (i) a one standard deviation shock to the variable of interest and (ii)
the initial state vector. Because of the non-linear nature of the model and because of the lack of
certainty equivalence in a higher order approximation, the conditional expectations in (3) must be
computed via simulation. Our process for computing these responses numerically is as follows:

(i) Start with an initial value of the state vector, s̃t−1.

(ii) Draw a random sample of dimension (H + 1) × nk of random shocks. Rows correspond to
time periods (first row is period t, second is t + 1, on to t +H). Columns correspond to the k
different exogenous shocks.

(iii) Given the assumed initial state vector, the draw of shocks, and the coefficients of the approxi-
mated policy function, compute values of ỹt+h for h = 0, . . .H.

(iv) Repeat step (ii)-(iii) N times. Average ỹt+h, for each h = 0, . . . ,H, over the N different
replications. This yields E [ỹt+h ∣ s̃t−1].

(v) Repeat steps (ii)-(iv), using the same draw of shocks, but add si to the first observation of the
ith shock at each iteration. This yields E [ỹt+h ∣ s̃t−1, εt(i) = si]

(vi) The impulse response is then the difference between E [ỹt+h ∣ s̃t−1, εt(i) = si] and E [ỹt+h ∣ s̃t−1].

The numerical procedure outlined above is based on Koop, Pesaran and Potter (1996). There
will be a different impulse response function for each different value of s̃t−1. We first compute
impulse responses where the initial state vector is the non-stochastic steady state, so s̃t−1 = 0. To
examine state-dependence more generally, we proceed as follows:

(a) Draw one large vector of exogenous shocks of dimension nk×T . The different columns correspond
to different time periods – the first column is period t, the second t + 1, the jth column is t + j,
on to t + T − 1.

(b) Assume an initial value of the state vector of the non-stochastic steady state, s̃t−1 = 0. Use the
simulated shocks and coefficients of the policy function (2) to create simulated values of the full
vector of endogenous variables, ỹt+j , j = 0, . . . , T .

(c) Drop the first b periods as a burn-in to limit the influence of the assumed initial position. Collect
the simulated values of the state vector for remaining periods, s̃t+b+j , j = 0, . . . , T − b.

(d) Use each of the remaining simulated state vectors as starting values for the states, and then
repeat steps (i)-(vi) at each simulated state. This produces a distribution of impulse responses
across different states
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The fiscal multiplier is defined as the impact response of output divided by the impact response
to government spending. From (d) above, we therefore obtain a distribution of fiscal multipliers.
Statistics from these distributions are presented in the tables of the paper. For the calculations in
the paper, we use H = 0 (since we focus on multipliers on impact, we need only to calculate impulse
responses on impact), N = 150, T = 10,100, and b = 100 when monetary policy is characterized
by a Taylor rule. To speed up our computations, we reduce N = 20 when considering the pegged
interest rates. Our results are not very sensitive to the value of N . When doing the interest rate
peg responses, we have to increase H to include the number of periods over which the interest rate
is to be pegged.

2 Second vs. Third Order Approximation

In the paper, we solve both variants of the NK model using a third order approximation. In
this section, we present results similar to those presented in Table 2 of the paper for a second order
solution to both the Calvo and Rotemberg variants of the model. Results are summarized in Table
1.

Table 1: State-Dependence of Multipliers, Second Order Approximation

Calvo Rotemberg

Steady State 0.8408 0.8423
Mean 0.8410 0.8434
Standard Deviation 0.0049 0.0186
Minimum 0.8228 0.7728
Maximum 0.8597 0.9161
First Order Approx 0.8399 0.8399

Note: This table shows statistics for the multipliers in both the Calvo and Rotemberg variants of the NK model solved under
a second order approximation.

There is little discernible difference between the results presented above and those shown under
a third order approximation in Table 2 of the paper. What differences do exist are intuitive. As
one might expect, the differences between the multipliers evaluated in steady state, as well as the
mean multipliers across simulations, are smaller across the Calvo and Rotemberg models in a second
order approximation compared to the third order approximation. Moreover, the standard deviations
of multipliers across simulations are slightly smaller in the second order approximation for both
versions of the model compared to the third order approximation. Nevertheless, these differences
are very small.

3 Alternative Monetary Policy Rule Specifications

The assumed monetary policy rule in the paper is:

it = (1 − ρi)i∗ + ρiit−1 + (1 − ρi)[φπ (πt − π∗) + φy (lnYt − lnY f
t ) ] + siεi,t (4)

As a baseline, we set ρi = 0.8, φπ = 1.5, and φy = 0. In this section, we show results (for both
variants of the model) for three alternative parameterizations of the policy rule: (1) no smoothing
and no response to the output gap (ρi = 0, φπ = 1.5, and φy = 0; (2) no smoothing and a positive

2



response to the output gap (ρi = 0, φπ = 1.5, and φy = 0.5); and (3) smoothing with a positive
response to the output gap (ρi = 0.8, φπ = 1.5, and φy = 0.5).

Table 2: State-Dependence of Multipliers, Alternative Policy Rule Parameterizations

Calvo Rotemberg

(1) ρi = 0, φπ = 1.5, φy = 0
Steady State 0.7532 0.7555
Mean 0.7534 0.7587
Standard Deviation 0.0088 0.0268
Minimum 0.7164 0.6912
Maximum 0.7826 0.8869
First Order Approx 0.7526 0.7526

(2) ρi = 0, φπ = 1.5, φy = 0.5
Steady State 0.7382 0.7373
Mean 0.7385 0.7371
Standard Deviation 0.0046 0.0127
Minimum 0.7217 0.6822
Maximum 0.7544 0.7786
First Order Approx 0.7393 0.7393

(2) ρi = 0.8, φπ = 1.5, φy = 0.5
Steady State 0.7960 0.7936
Mean 0.7957 0.7950
Standard Deviation 0.0025 0.0099
Minimum 0.7852 0.7571
Maximum 0.8042 0.8270
First Order Approx 0.7949 0.7949

Note: This table shows statistics for the multipliers in both the Calvo and Rotemberg variants of the NK model. Monetary
policy is characterized by the different parameterizations of the Taylor rule as indicated in the left column.

Results are summarized in Table 2. Focusing on mean multipliers, the results are fairly intuitive.
In both variants of the model, the mean multipliers are larger the more interest rate smoothing
there is and are smaller when policy reacts to the output gap in addition to inflation. Multipliers
are more volatile across states when there is no interest smoothing, and are less volatile the larger
is the response to the output gap. In all specifications the multiplier in the Rotemberg model is
significantly more volatile across states in comparison to the Calvo model – the ratio of standard
deviations of multipliers in the Rotemberg model to the Calvo model is between 3 and 4 (compared
to a relative standard deviation of about 4 in our baseline parameterization).
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