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Abstract

This paper studies the state-dependent effects of shocks to tax rates. We begin with a stylized

model in which clean analytical expressions are available. The model predicts that a tax rate

cut is most stimulative for output in periods in which output is relatively high. The model is

also used to discuss some conceptual issues related to the construction of tax multipliers. We

then consider a medium-scale DSGE model with tax rates on labor and capital income and on

consumption. The model is solved via a third order perturbation. Consonant with the intuition

from the analytical model, tax multipliers for all three types of tax rates vary significantly across

states, and are most stimulative for output in states in which output is high. To evaluate the

normative desirability of tax cuts as a tool to combat recessions, we also study the properties

of the tax cut welfare multiplier, which measures the change in aggregate welfare conditional

on a tax rate change. In contrast to output multipliers, welfare multipliers are found to be

countercyclical. A number of extensions and modifications are considered and our conclusions

are generally robust.
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1 Introduction

Recent events have sparked a renewed interest in the macroeconomic effects of fiscal policy.

This revival has been fueled by the confluence of sluggish labor markets, large public debts, and

inadequately accommodative monetary policy in many countries in the wake of the Great Recession.

This paper studies the macroeconomic effects of cuts to tax rates. We seek to provide answers to

the following questions. How stimulative are tax cuts for output? How much do these effects vary

over the business cycle? Are tax cuts more or less effective at stimulating output during periods of

recession? From a normative perspective, is it desirable to cut tax rates during periods in which

output is low?

We ultimately wish to provide quantitative answers to the questions posed in the paragraph

above, but we begin in Section 3 by studying a highly stylized model. The model is static and

features a tax rate on labor income. Other than the tax rate, the model is frictionless. The simplified

nature of the model allows us to derive analytical expressions for the output effects of a cut in the

tax rate. Under some common assumptions about preferences, we show that tax cuts should have

large effects on output in periods in which output is relatively high. Put differently, the stimulative

nature of tax cuts ought to be procylical. This is perhaps surprising given widespread belief and

some empirical evidence suggesting that the effectiveness of fiscal stimulus (i.e. spending increases

or tax cuts) is countercyclical. We also use the stylized model to highlight some conceptual issues

involving the measurement of fiscal multipliers. It is common to quantify the output effects of tax

rate changes using a “tax multiplier” defined as the change in output for a change in tax revenue,

i.e. dYt
dTRt

. We show that defining a multiplier in this way could give misleading results concerning

the stimulative nature of tax cuts at different points of the business cycle. In addition, we point out

some potential pitfalls involving the construction of tax multipliers in a state-dependent context by

first measuring the elasticity of output with respect to tax revenue, i.e. d lnYt
d lnTRt

.

Building off the insights of the stylized model, in Section 4 we incorporate a detailed fiscal block

into an otherwise conventional medium-scale dynamic stochastic general equilibrium (DSGE) model

along the lines of Christiano, Eichenbaum and Evans (2005) or Smets and Wouters (2007). The

model features a number of real and nominal frictions and several shocks. There are three different

types of distortionary taxes – tax rates on capital and labor income and a tax rate on consumption.

The model is fit to U.S. data by estimating a subset of its parameters using Bayesian methods and

conventional calibration methods for those parameters which remain.

In Section 5 we solve the model via a third order perturbation. Our principal quantitative

exercise involves first simulating state vectors from the model. We then shock the economy with cuts

to each tax rate (one at a time in isolation) starting from each simulated vector of state variables.

Because the model is solved via a perturbation higher than order one, how the change in tax rate

impacts output and other endogenous variables will in general vary across different realizations of

the state vector. We measure tax multipliers as the negative of the ratio of the output response to a

tax rate cut divided by the tax revenue response to the same tax rate cut.1 The output response

1Here and throughout the remainder of the paper, tax multipliers are defined to be positive numbers. In our
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is measured at different points in the state space, while the tax revenue response is evaluated in

the non-stochastic steady state. This is motivated by our analysis in Section 3, where we show

that scaling the output response to a tax rate cut in a particular realization of the state by the tax

revenue response in that same state could give a misleading sense of how the stimulative nature of

tax rate cuts changes over time. Scaling the output response by the tax revenue response evaluated

in the steady state gives our multipliers the same scale as traditionally defined tax multipliers, but

correctly captures any state-dependence in the output response to a tax rate change. We focus

on multipliers at two horizons: on “impact” (the period of the change in the tax rate) and the

“maximum” response (the maximum change in output following a change in a tax rate). These

definitions follow Barro and Redlick (2011) and Mertens and Ravn (2012, 2014a). Because the

maximum output response to a tax rate changes typically occurs several periods after impact, it is

common to focus on the “maximum” multiplier (e.g. Chahrour, Schmitt-Grohé and Uribe 2012),

and we follow suit throughout most of the paper.

The average values of consumption, labor, and capital tax cut (maximum) multipliers are 0.58,

0.97, and 1.51, respectively. That is, a change in the capital tax rate which would lower tax revenue

by one (real) dollar in the steady state stimulates output by an average of 1.5 (real) dollars. We find

that there is significant variation in the magnitudes of the multipliers across states. For example,

the capital tax cut multiplier ranges from a low 1.09 to a high of 1.91, with a standard deviation of

0.15. The min-max range for the labor tax cut multiplier is 0.69-1.25 and it is 0.51-0.64 for the

consumption tax cut multiplier. Tax cut multipliers for all three types of tax rates are strongly

positively correlated with the simulated level of log output. This procyclicality is consistent with

the intuition developed in Section 3. We quantitatively show that scaling the output response to

a tax rate change by the tax revenue response in that same state can give misleading results. In

particular, tax multipliers constructed in this manner are less volatile across states and are mildly

countercyclical in comparison to multipliers constructed according to our baseline definition.

In our quantitative model tax cuts are least stimulative for output in periods in which output is

low. Does this imply that countercyclical tax cuts are undesirable? To address this question, we

construct what we call a “tax cut welfare multiplier.” Rather than measuring the output response to

a tax rate cut, this multiplier measures the consumption equivalent change in a measure of aggregate

welfare in relation to the response of tax revenue. Welfare multipliers are large and positive in an

average sense. This is unsurprising given that the equilibrium of the model is on average distorted

compared to an efficient allocation. We find that the welfare multipliers for each type of tax rate

are countercyclical in spite of the fact that output multipliers are positively correlated with the

simulated level of output. The intuition for this result is that the economy is countercyclically

distorted on average. Cutting a tax rate, which eases a policy-imposed distortion, is naturally most

valuable in periods in which other distortions are relatively high. Nevertheless, there are some

important nuances to our normative results. While welfare multipliers are robustly countercyclical

model, the economy is always to the left of the peak of the “Laffer Curve,” meaning that tax rate changes which
cause output to rise always cause tax revenue to fall. Multiplying the ratio of these changes by negative one results in
positive multipliers.
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in an unconditional sense, the cyclicality can flip signs depending on which shocks are driving

fluctuations.

Section 6 considers several different extensions to our medium-scale model. These extensions

include alternative methods of fiscal finance, anticipation in tax rate changes, a rule-of-thumb

household population, and the interaction between tax cuts and the stance of monetary policy.

All of these extensions to the baseline model have been shown in other contexts to matter both

quantitatively and qualitatively for the magnitudes of tax cut multipliers. They do so in our

framework as well. While we find that average values of tax cut multipliers are impacted by these

extensions, our basic results concerning volatility across states and co-movement with the business

cycle as measured by the level of output are generally unaffected.

2 Related Literature

There is a voluminous and growing literature on the macroeconomic effects of fiscal policy more

generally and on the economic consequences of tax changes more specifically. Our objective is not

to thoroughly review this literature. Rather, in this section we highlight a few papers which are

highly relevant to ours and discuss the dimensions along which our paper builds upon, extends, and

in some cases reaches different conclusions from existing work.

There is an extensive literature on the economic effects of tax shocks. Early contributions

include Friedman (1948), Ando and Brown (1963), Hall (1971), Barro (1979), Braun (1994), and

McGrattan (1994). Much of the recent literature is empirical in nature and seeks to measure tax

multipliers using reduced form empirical techniques – see, for example, Blanchard and Perotti

(2002), Romer and Romer (2010), Barro and Redlick (2011), and Mertens and Ravn (2012, 2014a).

These papers produce a wide range of multipliers. Much of this literature centers on conflicting

results from identifications based on recursive identifications in VARs (which tend to find relatively

low multipliers, e.g. Blanchard and Perotti 2002) and narrative identifications (which tend to find

much higher multipliers, e.g. Romer and Romer 2010). Our analysis does not directly speak to this

empirical debate, since it is based on a quantitative study of a fully-specified DSGE model. In that

sense, our paper is closer to recent work by Mertens and Ravn (2011), Chahrour, Schmitt-Grohé

and Uribe (2012), and Leeper, Walker and Yang (2013), all of which are based on similar DSGE

models.2 These papers solve their models using linear approximations, and hence cannot directly

speak to state-dependence. Our paper builds off this work by studying variation in magnitudes

of multipliers across states in a higher order approximation and also in studying the normative

implications of tax rate changes.

There is also a growing literature studying state-dependent effects of fiscal shocks. This literature

2Much of the DSGE-based literature focuses on issues related to anticipation (e.g. Steigerwald and Stuart 1997;
Yang 2005; House and Shapiro 2008; Perotti 2012; Mertens and Ravn 2012; Leeper, Richter and Walker 2012;
and Leeper, Walker and Yang 2013); the method of fiscal finance (e.g. Christ 1968; Leeper and Yang 2008; and
Leeper, Plante and Traum 2010); the role of credit market imperfections (e.g. Agarwal, Liu and Souleles 2007; Gaĺı,
López-Salido and Vallés 2007; and McKay and Reis 2016); and the stance of monetary policy (e.g. Eggertsson 2011
and Mertens and Ravn 2014b). We consider all of these issues in Section 6.
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is primarily empirical in nature, relying on reduced-form VARs and related time series models. The

majority of this literature focuses on measuring state-dependent government spending multipliers –

see, for example, Auerbach and Gorodnichenko (2012), Bachmann and Sims (2012), Mittnik and

Semmler (2012), and Ramey and Zubairy (2017), among others. There are a few papers which study

state-dependent tax multipliers in reduced-form time series models. These include Candelon and

Lieb (2013) and Arin, Koray and Spagnolo (2015), the latter of whom report that tax cut multipliers

are largest in periods in which output is highest. This is consistent with our quantitative results.

Candelon and Lieb (2013) find tax cut multipliers which are either higher or lower in a period of

high output depending on the horizon over which the multiplier is measured. Hussain and Malik

(2016) study whether increases and decreases in tax rates have differential effects. Dependence on

the sign of tax shocks is not something on which we focus in this paper.

Our work expands upon the literature on fiscal multipliers in several ways. We provide the

first analysis (of which we are aware) of tax multiplier state-dependence in a fully-specified DSGE

framework. Most DSGE models used for fiscal policy analysis are solved using a linear approximation,

and those which are not (e.g. Boneva, Braun and Waki 2016) do not focus on how multipliers vary

across different states of the business cycle. Most of the rest of the work on state-dependence is

based on reduced-form time series models. Our paper provides a natural bridge between these

literatures, though we do not try to explicitly write down a model to match any empirical findings

from the time series literature.

The definition and construction of tax multipliers are issues which are generally overlooked in the

literature but which we highlight in this paper. Tax cut multipliers are typically expressed as ratios

of output responses to a tax rate change divided by the total tax revenue response. Dividing by

total tax revenue is a normalization meant to facilitate comparison to the literature on government

spending multipliers. In a non-linear model in which state-dependence is present, scaling by tax

revenue could give a misleading sense of how the output effects of tax rate cuts change across states.

This is because tax revenue is endogenous to the business cycle, which is typically not the case for

government spending where most models assume an exogenous spending process. An important

contribution of our paper is to show how one scales tax cut multipliers can have an important

effect on inferences one might draw about how multipliers vary across states. In this respect our

paper is similar to Ramey and Zubairy (2017), who argue that the common practice of converting

elasticities into multipliers in the government spending literature is potentially problematic in models

of state-dependence.

This paper shares some similarities with Sims and Wolff (2018), who study the state-dependence

of government spending multipliers in a medium-scale DSGE model. Aside from its focus on tax

multipliers instead of spending multipliers, the present paper expands upon our earlier work in a

few important ways. First, we provide clean analytical intuition which suggests that tax multipliers

might vary more across states than do spending multipliers. The analytical intuition is borne out in

our quantitative analysis, where we find that tax cut multipliers vary substantially across states,

whereas spending multipliers do not. Second, though we borrow the terminology “welfare multiplier”
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to study the normative desirability of tax rate changes across the business cycle, our findings for

tax rates are different than for government spending. Whereas Sims and Wolff (2018) argue that

welfare multipliers for government spending are procyclical, we find that tax cut welfare multipliers

are countercyclical in an unconditional sense. From a policy perspective, tax cuts during a recession

are therefore more desirable than countercyclical spending increases, at least viewed through the

lens of our model. This normative result concerning tax cut welfare multipliers is all the more

interesting because we find the opposite pattern for output multipliers, where tax cuts are generally

least stimulative for output during periods of recession.

3 Intuition in a Simple Model

In this section we present a stylized model. The purpose of doing so is to build some intuition

for how and why changes in tax rates might impact output differentially over the business cycle. We

also use the model to highlight some conceptual difficulties in how tax multipliers are defined and

how traditional definitions from the literature might give a misleading sense of how the stimulative

nature of tax rate changes might vary across the business cycle. We also use the model to provide

some intuition for why tax cut multipliers might vary more across states than does the government

spending multiplier. The simple model is not meant to provide any definitive answers, but rather

serves as intuition and motivation for the quantitative analysis which follows.

The model features a representative household, a representative firm, and a government. The

household receives a utility flow from consumption and disutility from labor. The firm produces

output using a linear technology in labor subject to an exogenous productivity variable. The

government imposes a distortionary tax rate on labor income and consumes an exogenous fraction

of output. Other than the distortionary tax rate on labor income, there are no frictions. The model

features no endogenous state variables. As such, the model can be thought of as static.

Flow utility for the household is given by:

U = u(Ct) − h(Nt) (1)

Ct is consumption and Nt is labor. We assume that u′(⋅) > 0, u′′(⋅) < 0, h′(⋅) > 0, and h′′(⋅) ≥ 0.

Let wt be the real wage and τt be the tax rate on labor income. The optimality condition for the

household is:

h′(Nt) = u′(Ct)(1 − τt)wt (2)

The firm produces output according to a linear technology in labor and an exogenous productivity

variable, At:

Yt = AtNt (3)

Optimizing behavior by the firm implies the labor demand condition:
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wt = At (4)

Each period, the government consumes an exogenous fraction of output, Gt = φtYt, where Gt is

government spending and φt is the exogenous share of government spending in output (and is hence

restricted to lie between zero and one). Tax revenue collected in period t is:

TRt = τtwtNt (5)

Any difference between revenue and spending in period t is met by the issuance of one period

government bonds. We implicitly assume that lump sum taxes adjust at some future date so that a

no-Ponzi condition for the government holds. Because the model can be thought of as static, it does

not matter when this adjustment occurs.

Market-clearing for this economy requires that (1 − φt)Yt = Ct. The market-clearing condition

along with the household optimality condition, (2), production technology, (3), and labor demand

function, (4), together implicitly determine Yt as a function of exogenous variables:

h′ ( Yt
At

) = u′ ((1 − φt)Yt) (1 − τt)At (6)

Totally differentiate (6) about a point, where dYt = Yt − Y . Variables without time subscripts

denote the point of approximation (note the point of approximation is not necessarily the steady

state). Holding productivity and the government spending share of output fixed allows one to derive

an expression for the “tax rate multiplier”:

dYt
dτt

= −u′(⋅)A2

h′′(⋅) − u′′(⋅)(1 − φ)(1 − τ)A2
(7)

Given our assumptions on preferences, this tax rate multiplier is negative – i.e. increases in the

tax rate on labor income result in output falling. As a signing convention, here and throughout the

remainder of the paper we wish to focus on how output reacts to tax rate cuts, so we define the tax

rate cut multiplier as the negative of this expression (which means that the tax rate cut multiplier

is positive):

(dYt
dτt

)
c

= u′(⋅)A2

h′′(⋅) − u′′(⋅)(1 − φ)(1 − τ)A2
(8)

Without further assumptions, it is not particularly straightforward to use (8) to build intuition

for how the effects of tax cuts on output might vary across states (the state variables are A, φ, and

τ). Some additional assumptions, however, permit a much cleaner expression. In particular, assume

that disutility from labor is linear, so that h′′(⋅) = 0. This would be consistent, for example, with

a model in which labor is indivisible (Hansen 1985). Furthermore, assume that flow utility over

consumption is of the constant relative risk aversion form, so that σ = −Cu′′(C)
u′(C) is constant. Since

C = (1 − φ)Y , under these assumptions (8) reduces to:
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(dYt
dτt

)
c

= Y

(1 − τ)σ (9)

The simplified tax rate cut multiplier in (9) reveals three important points. First, the multiplier

should not be constant. The multiplier will vary to the extent to which output, Y , and the tax rate,

τ , vary.3 Second, the effectiveness of tax cuts in stimulating output ought to be procyclical – in

states where output is relatively high, the tax rate cut multiplier will be relatively high as well.

Finally, the household’s risk aversion parameter can amplify or mute the volatility of the multiplier

across states.

It is most common to define a tax multiplier as a derivative of output with respect to total

tax revenue, not a particular tax rate (see e.g. Blanchard and Perotti 2002 or Barro and Redlick

2011). In this simple model, tax revenue is simply proportional to output, TRt = τtYt, and hence

dτt = 1
Y dTRt−

τ
Y dYt, where again variables without time subscripts denote the point of approximation.

We can therefore transform (9) into the traditional definition of a tax multiplier, which yields the

following expression:

( dYt
dTRt

)
c

= 1

(1 − τ)σ + τ (10)

The traditional definition of a tax multiplier might give a misleading impression concerning how

the effectiveness of tax cuts varies across states. In (9) we observe that the stimulative effect of a

tax cut is positively related to the level of output. In (10), in contrast, the level of output is not

directly relevant for the multiplier. The multiplier defined as in (10) only varies to the extent to

which the tax rate itself varies across states. How variation in the tax rate across states impacts

the multiplier is in turn impacted by the value of σ. For σ = 1, for example (i.e. log utility), the

traditionally defined tax multiplier would be constant at 1. This is an issue which is relevant for

existing empirical work. Arin, Koray and Spagnolo (2015), for example, estimate time-varying

tax multipliers in a regime-switching VAR model. They find that tax cut are most stimulative for

output in periods in which output is high. Because both numerator and denominator (i.e. dYt and

dTRt, respectively) can be sources of state-dependence, if anything our analysis would suggest that

they are understating the procyclical nature of tax cuts on output.

For the quantitative work which follows, we wish to adopt a definition of the tax rate cut

multiplier which is as close as possible to the standard definition of a multiplier (i.e. (10)), but

which nevertheless captures the state-dependence of the output response to tax cuts embodied in

(9). We therefore define a modified definition of the tax rate cut multiplier as the ratio of the output

response in a particular state to the response of a tax revenue evaluated in the non-stochastic steady

state. In particular, we define dTR∗ = dτtY ∗ + τ∗dY ∗ (i.e. we consider the same absolute change in

the tax rate as above, but evaluate the change in revenue relative to the non-stochastic steady state).

Continuing with our maintained assumptions, our modified tax rate cut multiplier can be written:

3Output, Y , is not a state variable, but depends on the values of the states A, τ , and φ. Writing the expression in
terms of output rather than the states is cleaner and facilitates building intuition.
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( dYt
dTR∗

)
c

= Y

Y ∗

1

(1 − τ)σ + τ∗ (11)

Evaluated in the non-stochastic steady state, (11) is exactly the same as (10). But unlike the

expression in (10), the modified multiplier in (11) will vary with Y in exactly the same way as

(9). In other words, our modified multiplier will have the same scale (in an average sense) as the

traditional definition of a tax multiplier, which facilitates comparison with other work. But it will

capture the state-dependence associated with (9), which the traditionally defined multiplier would

potentially miss.

Before concluding this section we wish to make two additional points. The first concerns the

construction of multipliers by first measuring elasticities. In the empirical literature, it is common

to not directly estimate multipliers but rather to first estimate the elasticity of output with respect

to tax revenue, i.e. d lnYt
d lnTRt

, and then transform this by multiplying by the inverse of the average tax

revenue share of output (see, for example, Blanchard and Perotti 2002 and Mountford and Uhlig

2009). Let variables with a superscript ∗ denote non-stochastic steady state values. Then the tax

cut multiplier so-defined in our model would be:

( d lnYt
d lnTRt

Y ∗

TR∗
)
c

= τ

τ∗
1

(1 − τ)σ + τ (12)

Evaluated in the non-stochastic steady state (12) would be identical to (10). But away from the

steady state, the multiplier measured in this way could give misleading results. To see this clearly,

suppose that σ = 1. Then (12) reduces to τ
τ∗ . This would not be constant across states (unlike (10)

with σ = 1), but would not move across states in the way that (9) or (11) do – in particular, the

multiplier constructed by converting an elasticity would not directly vary with Y (whereas (9) and

(11) co-vary positively with Y ). The point that care must be taken when converting elasticities into

multipliers echoes a similar criticism raised by Ramey and Zubairy (2017) applied to the empirical

literature on state-dependent government spending multipliers. The conversion of an elasticity into

a multiplier is what is done in Candelon and Lieb (2013), who estimate a regime-switching VECM

model to empirically study the state-dependent effects of tax shocks. Our analytical results suggest

that this approach could significantly bias results concerning how tax multipliers vary across states.

The second point we wish to make before closing this section concerns a comparison between

the tax rate cut multiplier and the government spending multiplier. Setting dτt = 0 and instead

allowing government spending to change (where dGt = Y dφt +φdYt), we get the following expression

for the government spending multiplier:

dYt
dGt

= −u′′(⋅)(1 − τ)A2

h′′(⋅) − u′′(⋅)(1 − τ)A2
(13)

This looks similar to (9) with two exceptions: (i) (1 − τ) appears in the numerator here, and

(ii) the numerator in (13) depends on the second derivative of the utility function with respect

to consumption instead of the first. A similar analytical expression for the government spending
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multiplier can be found in Woodford (2011). Given standard assumptions on preferences, the

government spending multiplier is positive and must lie between zero and one. If we again assume

that utility with respect to leisure is linear, the government spending multiplier reduces to:

dYt
dGt

= 1 (14)

In other words, the government spending multiplier is constant across states under exactly

the same assumptions under which the tax rate cut multiplier varies across states. One would

be tempted to conclude from this exercise that there ought to be more state-dependence in tax

cut multipliers than in government spending multipliers. While this is in fact consistent with our

quantitative results to follow, we wish to emphasize that we do not have a formal proof of this under

more general assumptions; this result obtains in a stylized model and under somewhat restrictive

assumptions about preferences. More generally, while we think that the simple model laid out in

this section is useful for developing intuition and for pointing out some potential pitfalls in the

measurement and construction of multipliers, to conclude much with confidence we need a more

detailed theoretical model with a number of frictions parameterized to fit observed data. We turn

to this exercise next.

4 A Medium Scale DSGE model

Although the simple framework from Section 3 is useful for building intuition, we wish to study a

more detailed theoretical framework in order to produce plausible quantitative conclusions concerning

the magnitudes and cyclicalities of tax multipliers. To that end, we consider a reasonably standard

medium scale DSGE model along the lines of Christiano, Eichenbaum and Evans (2005), Schmitt-

Grohé and Uribe (2005), Smets and Wouters (2007), and Justiniano, Primiceri and Tambalotti

(2010, 2011). The model features both nominal frictions (price and wage stickiness) as well as real

frictions (investment adjustment costs, habit formation, and variable capital utilization). The model

also features a number of exogenous disturbances, including shocks to neutral productivity, the

marginal efficiency of investment, preferences, and price and wage markups. In addition there are

several distortionary tax rates. Monetary policy is characterized by a Taylor rule. Details of the

firm and household blocks of the model can be found in Appendix A. In the text we focus only on

the fiscal block of the model.

Fiscal policy in the model is governed by a system of spending, tax, and budget rules. The

government chooses an exogenous sequence of spending, Gt. It can finance this spending and interest

payments on debt with distortionary taxes on consumption, labor income, and capital income, as

well as a lump sum tax. Any flow discrepancy between revenue and expenditure is settled via

the issuance of new one period, non-state contingent bonds, Bg,t. The government’s flow budget

constraint in real terms is given by:

Gt + it−1
Bg,t−1

Pt
= τc,tCt + τn,twtNt + τk,trkt K̃t + Tt +

Bg,t −Bg,t−1

Pt
(15)
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In (15), it is the nominal interest rate and Pt is the nominal price of the final output good. rkt is

the rental rate on capital services, K̂t (the product of physical capital and utilization). τc,t, τn,t,

and τk,t are tax rates on consumption, labor income, and capital income. Tt is a lump sum tax.

Government spending, Gt, is assumed to follow a stationary AR(1) process in the natural log:

lnGt = (1 − ρg) lnG∗ + ρg lnGt−1 + sgεg,t, 0 ≤ ρg < 1 (16)

The shock εg,t is drawn from a standard normal distribution and sg is the standard deviation of

the shock. Here and going forward variables with ∗ superscripts denote non-stochastic steady state

values.

We assume that the distortionary tax rates obey exogenous AR(1) processes. The shocks are

drawn from standard normal distributions with standard deviations of sj for j = c, n, k:

τj,t = (1 − ρj)τ∗j + ρjτj,t−1 + sjεj,t, 0 ≤ ρj < 1, for j = c, n, k (17)

The lump sum tax obeys the following process:

Tt = (1 − ρT )T ∗ + ρTTt−1 + (1 − ρT )γbT (Bg,t−1 −B∗

g ) + sT εT,t, 0 ≤ ρT < 1, γbT > 0 (18)

The lump sum tax follows an AR(1) process with non-stochastic steady state value of T ∗ and

shock drawn from a standard normal distribution with standard deviation sT . The lump sum tax

reacts to deviations of government debt, Bg,t−1, from an exogenous steady state target, B∗

g . The

reaction is governed by the parameter γbT . Because we assume that the distortionary tax rates

follow purely exogenous processes, the exact value of γbT is only important insofar that it renders

the path of government debt non-explosive. In Section 6, we will consider alternative specifications

in which lump sum taxes are unavailable and distortionary tax rates must adjust so as to produce a

non-explosive path of government debt.

The model as laid out in the Appendix A features a number of parameters. Some of these are

calibrated to match long run targets or to conventional values in the literature, while the remaining

are estimated via Bayesian methods.4 Values of calibrated parameters are listed in Table 1. These

parameters include the discount factor, exponent on capital services in the production function, the

depreciation rate, the trend inflation rate, and terms related to the capital utilization cost function.

Steady state government spending is chosen so that the steady state share of government spending in

output is 20 percent. We also calibrate steady state values of the three distortionary tax rates. We

construct historical tax rate series using data from the national income and product accounts (NIPA)

following Leeper, Plante and Traum (2010).5 This results in steady state values of τ∗c = 0.0169,

4To estimate the model, we employ Bayesian methods using a first order approximation of the model. While
estimating the non-linear version of the model is desirable, estimating a non-linear model with the number of state
variables specified above is computationally challenging. Parameters estimated using the linear approximation of the
model are then used to solve the model via higher order perturbation.

5We direct the reader to the Appendix accompanying Leeper, Plante and Traum (2010) for detailed instructions
to construct these series.
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τ∗n = 0.2104, and τ∗k = 0.1975. These values are similar to House and Shapiro (2006), Leeper and

Yang (2008), Uhlig (2010), and Leeper, Plante and Traum (2010), though small differences result

from different sample periods. The steady state value of the lump sum tax, T ∗, is chosen to be

consistent with a steady state government debt-gdp ratio of 50 percent. The parameter γTb = 0.05

results in non-explosive debt dynamics.

Other parameters of the model are estimated via Bayesian methods. Estimation results are

presented in Table 2. Descriptions and assumed prior distributions for each parameter are listed

in the left columns of the table. Means and 95 percent confidence intervals for each estimated

parameter appear under the column heading “Baseline.” Remaining columns of the table pertain to

estimation exercises for different extensions to be considered in Section 6. Parameters not estimated

in the baseline analysis are indicated by a “-” marker.

Our estimation strategy employs U.S. data covering the period 1984q1 through 2008q4. The

beginning date is chosen because of the structural break in aggregate output volatility in the

mid-1980s, while the end date of the sample is chosen so as to exclude the zero lower bound period.

We use eleven observable aggregate series in the estimation, corresponding to the number of shocks in

the model to be estimated. We follow Leeper, Plante and Traum (2010) in the choice of observables.

These series include the growth rates of consumption, investment, labor, government spending, and

government debt as well as the levels of inflation, the nominal interest rate, and the growth rates of

tax revenue from lump sum, consumption, labor, and capital taxes. Where applicable, series are from

the BEA’s national income and product accounts. Consumption is defined as the sum of personal

consumption expenditures on nondurable goods and services. Investment is the sum of personal

consumption expenditures on durable goods and gross private fixed investment. Hours worked

is constructed as the product of average weekly hours in the non-farm business sector with total

civilian employment aged sixteen and over. The nominal interest rate is the three month Treasury

Bill rate. Inflation is the growth rate of the price index for personal consumption expenditures.

Nominal series are converted to real by deflating by this price index and, where relevant, series are

converted to per-capita terms by dividing by the civilian non-institutional population aged sixteen

and over.

Table 2 displays the results of our estimation. The estimated parameters are largely in-line with

existing parameter estimates in the literature.6 The estimated price and wage rigidity parameters

imply mean durations between price and wage changes of about 3.6 and 2 quarters, respectively.

We find modest amounts of price and wage indexation. The estimated habit formation parameter

is b = 0.75, which is quite standard. Our estimated values for the parameters governing curvature

in preferences are γ = 0.24 and σ = 2.40. These are similar to the assumed values in Christiano,

Eichenbaum and Rebelo (2011). Our baseline estimate of the investment adjustment cost parameter

is κ = 4.11, also a relatively standard value in the literature. The estimated Taylor rule features a

smoothing component ρi = 0.75, a strong reaction to inflation (φπ = 1.63), and a modest reaction to

6We henceforth engage in a minor abuse of terminology and consider the mean of the posterior distribution of
parameters as “the” estimated parameter values.
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output growth (φy = 0.13). Remaining persistence parameters and standard deviations of shocks are

found in the second section of Table 2.

Overall, the model solved at the mean of the estimated parameters fits the data well. The

estimated volatility of output growth is about 0.5 percent (close to its value in the data), consumption

growth is about 60 percent as volatile as output, and investment growth is about 3 times more

volatile than output. The growth rates of output, consumption, and investment are all significantly

autocorrelated, as in the data. Productivity and marginal efficiency of investment shocks account for

approximately 30 percent of the unconditional variance of output growth. Likewise, price markup

shocks count for approximately 35 percent of output’s variance. The next most important sources

of output volatility are preference shocks, monetary policy shocks, and government spending shocks,

which explain nearly 30 percent of the output growth’s volatility. Wage markup shocks and the

different tax shocks account for the remaining 9 percent.

5 Quantitative Results

In this section, we simulate the model outlined and parameterized in the previous section and

Appendix A to quantify the effects of tax cuts on output over the state space. We also examine the

movements of what we call the “welfare multiplier” for tax cuts over the business cycle. We begin

by briefly outlining the solution and simulation methodology. We then provide formal definitions of

the tax rate cut multipliers, based on the analysis from Section 3. We then present and discuss

results.

5.1 Solution Methodology and Multiplier Definitions

We solve the model at the mean of the posterior distribution of the parameters via third order

perturbation.7 Solving the model via a perturbation of order higher than one is necessary to examine

state-dependence. To construct tax multipliers, we first generate impulse response functions to each

tax shock. The impulse response function of the vector of endogenous variables, Xt, to a shock to

tax rate j, is defined as follows:

IRF(h) = {EtXt+h −Et−1 Xt+h ∣ εj,t = −1,St−1} (19)

The impulse response function at forecast horizon h is the difference between forecasts of the

endogenous variables at time t (the period of the shock) and t − 1, conditional on the realization

of a negative shock in period t.8 In a higher order perturbation, the impulse response function in

principle depends upon the initial realization of the state, St−1, in which a shock hits. It may also

depend on the size and sign of the shock, though we do not focus on these elements at this time.

7Our results are quite similar if we instead use a second order perturbation.
8Recall that the shocks are drawn from a standard normal distribution and then are scaled by the sj , so this

corresponds to a one standard deviation negative shock to a tax rate.
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Given our non-linear solution methodology, these impulse responses are computed via simulation.

First, we start with an initial realization of the state, St−1 (e.g. the non-stochastic steady state).

Then we draw shocks from standard normal distributions and simulate data out to horizon H, where

we take H = 20. This process is repeated N = 150 times. Averaging across the N different simulations

out to horizon H yields Et−1 Xt+h, for h = 0, . . . ,H. We then repeat this process, but subtract 1

from the realization of the jth shock in the first period of each simulation.9 Averaging across the N

simulations with the shock in the first period yields EtXt+h ∣ εj,t = −1. The difference between these

two constructs is the impulse response function. Computing these impulse response functions for

different initial values of the state, St−1, is the means by which we examine state-dependence. The

states themselves (other than the non-stochastic steady state) are generated via simulation.

We define the “output multiplier” for a cut in a distortionary tax rate as the ratio of the change

in output to a change in tax revenue following a tax shock, multiplied by negative one. Multiplying

by negative one makes the multipliers positive. As discussed at length in Section 3, we scale the

output response (at a particular realization of the state, St−1), by the tax revenue response to a

tax rate cut evaluated in the non-stochastic steady state. This ensures that any movements in the

multiplier over the state space come from differences in the output response to a tax cut across

states, not differences in the tax revenue response to a tax rate cut. We define output multipliers

for h = 0, . . . ,H forecast horizons where H = 20. Formally, the output multiplier to tax shock j at

forecast horizon h is defined as:

YMj(h)c = −
dYt+h
dTR∗

∣εj,t = −1,St−1 for j = c, n, or k (20)

The presentation of our results focuses on two multiplier horizons: the “impact” multiplier,

which sets h = 0, and the “max” multiplier, which is defined as the ratio of the maximum output

response to the steady state revenue response.10 As it is based on the impulse response function of

output, the multiplier explicitly depends upon the state in which a shock occurs.

For the purposes of quantitatively illustrating some pitfalls involving construction of the multi-

pliers, we also consider an alternative definition of the tax cut multiplier which scales the output

response by the tax revenue response evaluated in that same state (instead of the non-stochastic

steady state). Formally:

Ŷ M j(h)c = −
dYt+h
dTRt

∣εj,t = −1,St−1 for j = c, n, or k (21)

For our baseline multiplier, (20), any state-dependence in the multiplier must come from state-

dependence in the output response to a tax rate cut, dYt+h. In contrast, when using (21), both the

numerator and denominator (dTRt) can be sources of state-dependence. As we argue on the basis

of a stylized model in Section 3, the multiplier constructed as in (21) can give a misleading sense of

9Since we are studying the effects of tax cuts, we consider negative shocks to tax rates.
10The maximum output response to any of the three tax shocks typically occurs at horizons between h = 5 and

h = 10. The maximum tax revenue response is generally on impact.
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how the effectiveness of tax cuts in stimulating output varies across states.

5.2 Baseline Results

For our benchmark exercise, we simulate 1,100 periods of data from the model starting from the

non-stochastic steady state and discard the first 100 periods as a burn-in. From each remaining

1,000 simulated state vectors, we compute impulse responses to the three negative distortionary tax

shocks. Each shock is considered individually and represents a cut to a single tax rate. In our initial

simulation of states, we set the standard deviations of the tax rate shocks to zero; this ensures that

any state-dependence of the tax multipliers arises for reasons other than tax rates being abnormally

high or low. Our results are not sensitive to doing this.

Table 3 presents some summary statistics from these simulations. Multipliers are defined

according to (20). For each of the three types of distortionary tax shocks, we present statistics on

impact and maximum output multipliers. Recall that the multipliers are multiplied by negative one

so that numbers presented are positive. We present statistics on the mean, minimum, and maximum

values of each type of multiplier for each type of tax across the 1,000 simulated state vectors. We

also present the standard deviations of each multiplier over the 1,000 different states to provide a

measure of volatility for each multiplier. Finally, we show the correlation of each type of multiplier

with the simulated level of log output to get a sense of the cyclicality of the tax rate cut multipliers.

Focusing on the maximum output multipliers, the average consumption tax multiplier across

states is 0.58, the average labor tax multiplier is 0.97, and the average capital tax multiplier is 1.51.

To take the capital tax as an example, this means that a cut in the capital tax rate which generates

a one (real) dollar change in tax revenue at the non-stochastic steady state on average raises output

by about 1.5 (real) dollars. The average magnitudes of the tax cut multipliers are comparable to

recent quantitative studies (Leeper and Yang 2008 and Uhlig 2010), but considerably lower than

recent empirical studies by Mertens and Ravn (2012, 2014a), who find multipliers of up to 2 on

impact and up to 3 after six quarters.11 For all three types of taxes, the average impact multiplier

is smaller than the average max multiplier, suggesting that the peak effect of tax changes on output

occurs after several periods. To visualize this point, Figure 1 presents impulse responses of output

from each of the 1,000 simulated states for each of the tax shocks. The impulse responses are scaled

by the impact response of tax revenue evaluated in the non-stochastic steady state, giving the units

a multiplier interpretation. The 1,000 unique impulse responses are presented in gray while an

average response at each horizon is presented in black. We find that tax shocks generally have their

largest effect after approximately 5-7 quarters.12

Each tax cut multiplier varies considerably across states. The rank ordering of multiplier

volatilities across states is the same as the ranking of average magnitudes across type of tax. The

11Many empirical studies of tax multipliers often group revenue from all taxes together and do not distinguish
between changes in different types of tax rates. Comparisons against other specified-DSGE models are therefore
cleaner.

12This pattern is common across tax studies. See, for example, Mountford and Uhlig (2009), Leeper, Plante and
Traum (2010), or Mertens and Ravn (2014a).
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standard deviation of the max capital tax multiplier is 0.15, with a min-max range of 0.8. The

standard deviations of the max labor and consumption tax multipliers are 0.09 and 0.02, respectively.

These volatilities across states are significantly larger than the standard deviation of the government

spending multiplier across states. In particular, in a similar quantitative exercise on the basis of a

medium scale DSGE model with many of the same features, Sims and Wolff (2018) report that the

standard deviation of the government spending multiplier is about 0.02 with a min-max range of

only about 0.1. That tax cut multipliers appear to exhibit significantly more state-dependence than

do spending multipliers is consistent with the intuition from the stylized model laid out in Section 3.

Figure 2 plots time series of multipliers across the 1,000 simulated states. Solid lines (as measured

on the left vertical axes) are the tax rate cut multipliers as defined in (20). Dashed blue lines

(as measured on the right vertical axes) are simulated values of log output. Gray shaded regions

demarcate periods in which simulated output is in its lowest 20th percentile; one can think of such

episodes as being recessions. It is visually apparent that all three types of tax rate cut multipliers

strongly co-move with output. Multipliers tend to be low in periods identified as recessions and high

in periods of expansion. These visual impressions are confirmed in Table 3, which shows that tax

rate cut multipliers for all three types of taxes are strongly procyclical (correlations with simulated

output of 0.7-0.9). Although the medium scale DSGE mode is substantially more complicated and

features many more frictions compared to the stylized model of Section 3, the strong procyclicality

of tax rate cut multipliers is consistent with our analytical results from that model.

We also present summary statistics on multipliers constructed dividing the output response to

a tax rate cut by the tax revenue response in that same state (i.e. Ŷ M j(h)c instead of YMj(h)c

from (20)-(21)). These results are presented in Table 4. The average multipliers for each kind of

tax are similar to what is presented in Table 3. But a couple of important things are apparent

in Table 4. First, scaling the output response by the tax revenue response in each state reduces

the standard deviations of all of the tax cut multipliers across states. Second, scaling the output

responses in this way results in the multipliers being negatively correlated with simulated output,

rather than positively correlated as in Table 3. These results are again consistent with our discussion

in Section 3, which shows that under certain assumptions scaling the output response to a tax

rate cut in a particular state by the tax revenue response in that same state will result in the

measured multipliers being less volatile and less procyclical than the output response to a tax rate

cut. The intuition for this finding is that the response of tax revenue to a tax rate change depends

on the size of the tax base. When the tax base is low (i.e. the economy is in a recession), a tax cut

has a comparatively small effect on tax revenue. This comparatively small effect on tax revenue

counteracts the comparatively small output response to a tax rate cut in a recession, making the

multiplier appear less procyclical (and indeed even countercyclical). This underscores the need to

think carefully about how to measure tax rate cut multipliers in a state-dependent context.

Some additional quantitative exercises are considered and results presented and discussed in

Appendix C. In particular, we show correlations between multipliers and output over different

quantiles of the distribution of output (Table C1) and present summary statistics when states are

15



generated conditional on one shock at a time (Table C2).

5.3 Are Tax Cuts in a Recession Desirable?

Our results from the previous section are consistent with the intuition from the frictionless

analytical model in Section 3. In particular, tax rate cuts have relatively small effects on output in

periods in which output is low (i.e. in recessions). Does this mean that tax rate cuts in recessions

are undesirable in a normative sense compared to periods of expansion?

Before presenting some quantitative results, we briefly return to the analytical model from

Section 3. We use the model to think not about how a tax cut impacts output, but rather how it

impacts flow utility. Totally differentiating (1) about a point and using some of the equilibrium

conditions of the static model allows one to derive an expression for the “utility tax rate cut

multiplier”:

(dU
dτt

)
c

= u′((1 − φ)Y )(τ − φ) (dYt
dτt

)
c

(22)

In terms of thinking about how ( dUdτt )
c

varies across states, there are competing influences.

On the one hand, when output is low the marginal utility of consumption, u′(C), ought to be

comparatively high. This means that the household would particularly value extra resources freed

up from a tax cut in a time in which resources are dear. On the other hand, as discussed in Section

3, (dYtdτt
)
c

might be low in a recession, which would work in the opposite direction. Finally, even

though the model in Section 3 is frictionless other than the distortionary labor income tax, one

could think of τ as measuring distortions potentially arising from monopolistic competition and

staggered price and wage-setting more generally. To the extent to which distortions are high in

periods in which output is low, this would work to make ( dUdτt )
c

comparatively big in such periods.

To simplify (22), we make the same assumptions as in Section 3 (namely, that disutility from

labor is linear and that utility from consumption is of the constant relative risk aversion form).

Then (22) can be written:

(dU
dτt

)
c

= (τ − φ) (1 − φ
1 − τ )

σ

Y 1−σ (23)

Even though it is based on admittedly strict assumptions, (23) nevertheless permits some clean

inferences. First, consider the case when σ = 1. Then the term relating to Y drops out. The tax cut

utility multiplier would vary positively with τ . This simply means that when distortions are high,

the value of reducing distortions is larger than normal. Consider next the case in which σ > 1. Here

the utility tax cut multiplier would vary inversely with Y in spite of the fact that the output tax

cut multiplier would co-vary positively with Y . This is because if σ is sufficiently big, the household

values extra resources in periods when output is low by more than enough to make up for the fact

that tax cuts are relatively ineffective at stimulating output when output is low.

Intuition from the simple analytical model therefore suggests that the utility benefits of tax
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cuts could be higher in a downturn compared to an expansion, which is the opposite pattern of

what we find for the output response to tax cuts. Because the model is highly stylized, however, it

remains an open quantitative question as to whether tax cuts during a downturn are normatively

desirable. To investigate this matter further, we adopt terminology from Sims and Wolff (2018) and

introduce what we call the “tax rate cut welfare multiplier.” In our medium scale model as laid out

in Appendix A there is a representative household. We therefore define aggregate welfare, Vt, as

the present discounted value of flow utility of that household, which can be written recursively as

follows:13

Vt = u(Ct − bCt−1,1 −Nt) + β Et Vt+1 (24)

We are interested in the response of welfare, dVt, to a tax rate cut and how it varies across states.

To facilitate comparison with the output multiplier, we scale this by the tax revenue response to a

tax rate cut evaluated in the non-stochastic steady state, dTR∗, and we multiply it by negative one

so that it is positive on average. To give the multiplier meaningful units, we divide by the steady

state marginal utility of consumption, µ∗, which gives the multiplier a consumption-equivalent

interpretation. Formally:

(VMj)c = −
dVt
dTR∗

1

µ∗
∣εj,t = −1,St−1 for j = c, n, or k (25)

(25) evaluates the change in household welfare, Vt, per one (real) dollar change in tax revenue

(evaluated in the steady state). One can think about this multiplier as measuring how many units

of consumption a household would need to receive or have taken away in a single period to achieve

the same lifetime utility benefit generated by a cut in a distortionary tax rate. Like the output

multiplier, the magnitude of the welfare multiplier depends explicitly on the state in which the tax

rate change occurs.

Table 5 is constructed similarly to Table 3 but instead shows results for tax welfare multipliers.

The welfare multipliers are on average positive and large for all three types of tax rates. The sign of

these multipliers reflects the fact that the economy is on average distorted – this distortion arises

because of monopolistic competition in goods and labor markets and positive average tax rates.

Lowering tax rates eases distortions and is therefore naturally welfare-improving. The interpretation

of the magnitude of these welfare multipliers is as follows. Taking the labor tax rate as an example,

a welfare multiplier of 9.3 means that the cut in the labor tax rate resulting in a one dollar decline

in tax revenue leads to an increase in welfare equivalent to a one period increase in consumption of

13The specific flow utility function we assume in the paper takes the form u(Ct − bCt−1,1 − Nt) =
((Ct−bCt−1)γ(1−Nt)1−γ)

1−σ−1
1−σ . The parameter b is a measure of internal habit formation and σ and γ are curvature

parameters.
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about nine.14

Welfare multipliers tend to be much more volatile across states than are the corresponding

output multipliers. Importantly, one also observes from Table 5 that welfare multipliers are strongly

countercyclical in an unconditional sense. The correlations of the tax rate cut welfare multipliers

for the consumption, labor, and capital tax rates with simulated output are -0.75, -0.59, and -0.51,

respectively. Consistent with the intuition from the simple analytical model, periods of low output

are in fact the most desirable periods in which to cut tax rates (the reverse would hold true for tax

rate increases). This is in spite of the fact that output responds relatively less to tax rate cuts in

periods in which output is low.

To gain some quantitative intuition for these results, we simulate data from our model and

measure the so-called “labor wedge” (Chari, Kehoe and McGrattan 2007). The simulated labor

wedge in the model is strongly countercyclical, with a correlation with simulated output of -0.76.15

This is similar to the correlation between a measured labor wedge and output in actual data.16

Figure 3 shows scatter plots of tax rate cut welfare multipliers with the simulated labor wedge.

Welfare multipliers are strongly positively correlated with the labor wedge. This visually confirms

the commonsense intuition laid out above that the welfare value of easing distortions is highest

when the economy is most highly distorted. Since periods of high distortion correspond to periods of

low output on average, this accounts for the strong negative correlation between welfare multipliers

and simulated output.17

Appendix C contains some additional quantitative results concerning properties of the welfare

multipliers conditional on particular shocks. These results are summarized in Table C3. Though

welfare multipliers are strongly countercyclical in an unconditional sense, cyclicalities depend in

important ways on the particular shocks driving fluctuations. In some cases (i.e. conditional on

14While this number might seem high, note that it is a one period consumption equivalent corresponding to a
persistent change in a tax rate. Were we to compute the amount of consumption a household would need to be given
in every period going forward to generate an equivalent change in welfare, the welfare multipliers would be about
one-hundredth of the values presented in the Table.

15The labor wedge is defined implicitly as: uL(⋅)
uC(⋅) = (1−τ

l
t)(1−α)

Yt
Nd,t

. In other words, the labor wedge, τ lt , measures

the discrepancy between the marginal rate of substitution between leisure and consumption and the marginal product
of labor. The variable τ lt could be interpreted as a labor tax in a “prototype” economy with no other frictions, but in
actuality other frictions (such as time-varying markups) will map into the wedge. We define the labor wedge as the
net tax rate in a “prototype” economy, not the gross rate (see also the discussion in the following footnote).

16Chari, Kehoe and McGrattan (2007) report that the labor wedge is positively correlated with HP filtered output
with a correlation of 0.71. They define the labor wedge as the gross labor tax rate in a “prototype” economy, 1 − τ lt ,
whereas we define the labor wedge as the net tax rate, τ lt . Hence, our negative correlation is consistent with their
positive correlation. See also the previous footnote.

17It should be noted that output multipliers for each of the three types of tax rates are negatively correlated with
simulated labor wedges. This would appear consistent with a conclusion that the overall level of distortion in the
economy is a major driving factor of the state-dependence in output multipliers. This result would not square well
with the results to follow in Table 6, where we show that the state-dependent properties of output multipliers are
largely unaffected by parameters relating to nominal frictions in the model. We find that the partial correlations
of the output multipliers with the labor wedge, conditioning on the level of simulated output, are all close to zero.
In contrast, the partial correlations of the welfare multipliers with the labor wedge are similar to the unconditional
correlations. These findings are consistent with our other results, where the level of output itself seems to drive the
state-dependent properties of output multipliers, not the level and time-variation in overall distortions, while the
opposite is true for the welfare multipliers.
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preference or investment shocks, for example), welfare multipliers tend to be procyclical. Overall,

while welfare multipliers are quite countercyclical in an unconditional sense, these results suggest

that some care needs to be taken in interpreting our normative results, because the type of shock

driving fluctuations is potentially important.

5.4 Sources of State-Dependence

Our analytical intuition immediately above and earlier in Section 3 is based on a simple,

frictionless model. Our medium scale model, in contrast, features a number of frictions. To

investigate the relative importance of different frictions in driving our results, Table 6 shows selected

summary statistics from our simulations with key parameters changed so as to neutralize a particular

friction. The column labeled “Baseline” simply repeats entries from Tables 3 and 5 and is included

to facilitate comparison. In the first inner column, labeled θp = 0.01, we make prices effectively

perfectly flexible. This results in average output multipliers for each type of tax being slightly higher

than in our baseline. The same is true for average welfare multipliers. Price flexibility makes the

output multiplier somewhat less volatile across states (i.e. lower standard deviations), but does not

have much effect on cyclicalities of the output multipliers. There is, however, an important effect of

price stickiness on the cyclicality of the welfare multipliers. In particular, when prices are flexible,

welfare multipliers are significantly less countercyclical. In the case of the labor and capital taxes,

the welfare multipliers become positively correlated with output when prices are (nearly) flexible.

The intuition for this finding is reasonably straightforward. When prices are flexible, in our model

the economy is not, on average, countercyclically distorted. This means that there are not unusually

large gains from easing distortions when the economy is in a recession, and the cyclicalities of the

welfare multipliers consequently looks more in-line with the cyclicality of the output multipliers. In

comparison to assuming (near) price flexibility, making wages (nearly) flexible (second inner column,

labeled θw = 0.01) does not have very discernible effects on the properties of either type of multiplier

across states.

The remaining columns of Table 6 consider the role of real frictions in generating our quantitative

results. The column labeled ψ1 = 1,000 penalizes variable capital utilization to an extreme degree,

resulting in capital utilization in effect being fixed. This results in significant reductions in the mean

values of both output and welfare multipliers for all types of tax rates. It also results in significant

reductions in standard deviations of multipliers across states. It does not have much noticeable

effect on the correlations of output or welfare multipliers with simulated output. The column labeled

κ = 1,000 considers making the investment adjustment cost very large. For all three types of tax

cuts, this tends to reduce volatility of the output multipliers across states. It also lowers the average

value of each multiplier, albeit not as much as shutting off variable capital utilization. We finally

consider the effects of reducing habit formation in consumption (i.e. in setting the parameter b low).

Doing so tends to raise average values of output multipliers for all three types of tax cuts and also

makes these multipliers more variable across states. Welfare multipliers, in contrast, are slightly

lower on average. There is not much effect on cyclicalities of output or welfare multipliers from
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eliminating habit formation.

The following conclusions can be gleaned from the results in Table 6. First, output multipliers

for all three tax rates are strongly positively correlated with simulated output regardless of which

nominal or real frictions are weakened or strengthened. This suggests that the co-movements of

output multipliers across states are to a large extent driven by the frictionless backbone of the

model as laid out in a simple form in Section 3. Second, average output multipliers for all three

tax rates tend to move in the expected direction with the level of distortions – when prices are

flexible or real frictions (e.g. variable capital utilization) are weaker, output multipliers are larger on

average. Third, with the exception of the degree of price stickiness, welfare multipliers are robustly

countercyclical.

6 Extensions

In this section we consider the robustness of our baseline results to several alternative modeling

assumptions. The extensions we consider include: (i) anticipation in tax processes, (ii) alternative

fiscal financing rules, (iii) the addition of a rule-of-thumb consumer population, and (iv) a passive

monetary policy regime in the spirit of the recent zero lower bound episode.

6.1 Anticipation Lags

Given inherent delays in the legislative process, a number of authors have recently taken seriously

the idea that agents become aware of tax rate changes before those changes go into effect. For

example, Leeper, Walker and Yang (2013) estimate a DSGE model which explicitly accounts for

implementation lags and phase-in periods. We therefore consider a modification in which tax rate

shocks are observed by agents Q periods in advance of taking effect. In particular, we assume that:

τj,t = (1 − ρj)τ∗j + ρjτj,t−1 + sjεj,t−Q, Q ≥ 0, for j = c, n, k (26)

To facilitate comparison with our baseline results, we do not re-estimate the model parameters

under anticipation. We consider anticipation horizons of Q = 2, . . . ,6. Calculation of multipliers is

complicated by the presence of anticipation. Output (and welfare) will react immediately to an

announced change in tax rates, but tax revenue will only react indirectly through the tax base.

Scaling output responses by the impact revenue response would therefore muddy any comparison

with our earlier results. We therefore adopt the following strategy. We scale the output (or welfare)

response to an anticipated tax rate change in a particular state by the tax revenue response to an

unanticipated tax rate change evaluated in the non-stochastic steady state. This ensures that any

differences relative to our baseline results are driven by differences in how output (or welfare) react

to an anticipated tax rate change, not how tax revenue reacts.

Table 7 displays the results of this alternative modeling assumption. The table contains three

distinct panels, separated according to the type of tax cut implemented. We find that given more

time to adjust in anticipation of a tax change, the maximum output response increases monotonically
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while the impact response decreases monotonically. This pattern is made clear by the impulse

response functions shown in Figure 4. This figure shows average responses of each of the three tax

rates and output under the five alternative anticipation assumptions. The intuition is straightforward;

agents facing real frictions are better able to respond to tax cuts when they have the opportunity to

adjust slowly. In comparison with the multipliers presented in Table 3, however, the volatility of

each multiplier across states is relatively unchanged and the comovements with output are virtually

identical.

Similar to output multipliers, welfare multipliers for each kind of tax also tend to be larger

with longer anticipation horizons. Interestingly, the welfare multipliers experience increases in

volatility across states and become increasingly countercyclical in the presence of anticipation. For

instance, the standard deviation of the labor tax welfare multiplier increases from 0.54 to 0.67 with

six quarters of anticipation and the comovement with output decreases from -0.60 to -0.70. The

normative case for countercyclical tax stimulus is thus made stronger by the presence of anticipation.

6.2 Alternative Fiscal Financing

In our baseline model, we assume that tax rate cuts are financed via lump sum tax increases.

This offers an especially clean interpretation of our exercises in that we avoid trading smaller current

distortions for higher future distortions. However this may not be particularly realistic. As noted by

Christ (1968), Yang (2005), Leeper and Yang (2008), Mountford and Uhlig (2009), Leeper, Plante

and Traum (2010), and others, the means by which the government finances tax rate changes can

impact how stimulative tax cuts are when agents are forward looking.

In this section we consider a modification of our assumed processes for tax rates. The process

for the lump sum tax is the same as earlier with the exception that we allow for an “automatic

stabilizer” component wherein the lump sum tax reacts to deviations of output growth relative to

trend:

Tt = (1 − ρT )T ∗ + ρTTt−1 + (1 − ρT ) [γbT (Bg,t−1 −B∗

g ) + γbT (lnYt − lnYt−1)] + sT εT,t, γ
b
T > 0 (27)

Individual tax rates obey a similar process:

τj,t = (1 − ρj)τ∗j + ρjτj,t−1 + (1 − ρj) [γbj (Bg,t−1 −B∗

g ) + γyj (lnYt − lnYt−1)] + sjεj,t, for j = c, n, k (28)

In (27) and (28), the parameters γbj govern how individual taxes react to deviations of government

debt from target. The parameters γyj measure the strength of the automatic stabilizer mechanism. In

our baseline analysis from Section 5, we assume that γbj = 0 for j = c, n, k and γyj = 0 for j = T, c, n, k.

Similarly to Leeper, Plante and Traum (2010), we re-estimate the model under four different

assumptions about how taxes react to debt and output. These four regimes are: (i) all taxes are

allowed to respond to both debt and output growth; (ii) only distortionary taxes react to debt and

output growth (i.e. the lump sum tax is fixed at its steady state value); (iii) labor and capital
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taxes react to debt and output (i.e. lump sum and consumption taxes are fixed); and (iv) only

labor income taxes react to debt and output (i.e. lump sum, consumption, and capital taxes

are fixed). Columns seven through ten of Table 2 present estimation results for these alternative

specifications. We find parameters unrelated to the tax processes are relatively consistent across

different specifications. In the specification in which all taxes can react to debt and output, we find

that all four kinds of taxes respond positively to debt. We also estimate reasonably strong built-in

“automatic stabilizer” features in which taxes react positively to output growth. The results for

non-restricted tax policy parameters are reasonably consistent across (i)-(iv).

Multiplier summary statistics for simulations using these alternative parameters are presented

in Table 8. For most exercises and most types of tax shocks, the average multipliers are smaller

when distortionary taxes are used to stabilize debt. An exception is when future labor tax increases

finance present tax cuts. In this scenario, the average labor tax multiplier increases by as much as

50 percent. This is the natural result of intertemporal substitution in labor supply – if future labor

taxes are expected to rise, it makes sense to increase labor by more in the present in response to a

tax cut than otherwise. For each financing regime, there is still considerable state-dependence in

each tax multiplier, with standard deviations across states generally close to what we find in our

baseline simulations. The output multipliers tend to be more strongly positively correlated with

simulated output in comparison to Table 3.

The most noteworthy differences relative to our baseline exercise concern welfare multipliers.

When debt deviations from steady state are financed solely via lump sum taxes (i.e., the baseline

exercise), the welfare multipliers from tax cuts are unambiguously positive. This is not necessarily

the case when distortionary taxes must adjust so as to stabilize debt. In Table 8, we see that the

average welfare multipliers are in some cases negative suggesting that the household would be better

off without incurring the fiscal deficit to cut present taxes. Most of the tax welfare multipliers

remain negatively correlated with simulated output in the different financing regimes. An exception

is the consumption tax welfare multiplier, which turns procyclical when only distortionary taxes are

used to finance debt. The capital tax welfare multiplier also turns mildly procyclical (correlation

with simulated output of 0.13) when only the labor income tax adjusts to stabilize debt.

6.3 Rule-of-Thumb Households

In our baseline model, the representative household is unrestricted in its ability to transfer

resources intertemporally by accumulating capital or bonds. In this section, we consider a modifi-

cation of the model in which a portion of the population does not have access to capital or credit

markets. Households of this type consume all of their flow income in a period and supply labor at

the market wage. These households comprise a fraction λ ∈ (0,1) of the population, where λ is a

fixed parameter. Constrained households such as this have been called “fist-to-mouth” by Campbell

and Mankiw (1990) or “rule-of-thumb” by Gaĺı, López-Salido and Vallés (2007) and McKay and

Reis (2016).

A detailed description of how the model with rule-of-thumb households differs from the baseline
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model can be found in Appendix B. We consider different values of the share parameter λ and keep

all other parameters at the mean of their estimated posterior distribution from the baseline model.

Results are presented in Table 9. The table considers three different values of λ: 0.05, 0.25, and

0.45. These are considered in different rows. For each type of tax, we present properties of both

output and welfare multipliers across simulated states.18

We find that average output multipliers are monotonically increasing in the rule-of-thumb

population. The differences are most noticeable for the consumption tax multiplier, which increases

by 18 percent as the rule-of-thumb population share increases from 5 to 45 percent. The average

output multiplier for the labor tax increases by 13 percent for the same population share change,

while the capital tax output multiplier increases by 6 percent. In addition, we find that output

multipliers for all three types of tax rates are more volatile across states the larger is the rule-of-

thumb population share. Regardless of the fraction of rule-of-thumb households, we find that output

multipliers for all three types of tax rates are strongly procyclical.

We find that the average welfare multipliers are always positive for all three kinds of tax rates

regardless of the rule-of-thumb population. The average aggregate welfare multipliers are increasing

in the rule-of-thumb population size for the consumption and labor taxes, but the population-

weighted average welfare multiplier for the capital tax is decreasing in the rule-of-thumb population.

This is to be expected, as rule-of-thumb households do not directly benefit from lower capital taxes.

For all three types of tax rates, we find that the welfare multipliers are significantly negatively

correlated with simulated output in magnitude similar to what we find in our baseline model.

6.4 Passive Monetary Policy

Much of the renewed interest in fiscal policy is the result of the recent period of passive monetary

policy. We therefore consider an alternative specification of the baseline model in which tax shocks

occur during periods characterized by unresponsive monetary policy. In particular, we assume that

the nominal interest rate is (in expectation) pegged at its most recent value for a known duration,

after which time policy reverts to following a Taylor rule. One can think of this approach as a

tractable way of approximating the effects of a binding zero lower bound (in which the nominal

interest rate is unresponsive to shocks).

Following Laseen and Svensson (2011), we assume that monetary policy is characterized as

follows:

Etit+h =
⎧⎪⎪⎨⎪⎪⎩

it−1 if h ≤ Q
(1 − ρi)i + ρiit+h−1 + (1 − ρi) (φπ(πt+h − π) + φy(lnYt+h − lnYt+h−1)) if h > Q

(29)

In (29), it is assumed that the nominal interest rate is (in expectation) pegged at its most recent

18With two different household types, it is not obvious how to measure aggregate welfare. As described in Appendix
B, we define aggregate welfare to be the present discounted value of a population-weighted share of flow utilities for
each household type.
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value for the subsequent Q ≥ 0 periods, after which time policy is expected to obey the standard

Taylor rule as presented in (A.23) of Appendix A. To implement this specification we augment the

model’s Taylor rule with a series of “forward guidance” shocks in the spirit of Del Negro, Giannoni

and Patterson (2012). These shocks are fully observed by agents and have the flavor of “news”

shocks. Their magnitudes are chosen so that the nominal interest rate does not react to a shock for

the desired number of periods. It is important to note that our model does not explicitly incorporate

a zero lower bound constraint and thus faces no endogenous likelihood of exiting or re-entering the

passive policy regime. Rather, passive policy in our framework is fully exogenously determined with

a duration known to all agents. We consider exactly the same set of simulated state vectors as in

our baseline exercises above (in particular, we revert to assuming that only lump sum taxes are used

to finance government debt). But the policy functions for endogenous variables are generated with

this alternative monetary rule as opposed to the standard Taylor rule. Multipliers are constructed

based on the impulse responses to tax rate cuts when the nominal interest rate is pegged.

Table 10 presents multipliers for each tax rate for peg durations Q = 1,2,3 and 4. We find that

for each tax rate, multipliers monotonically decrease in the length of the passive policy regime.

Labor and capital tax multipliers experience the largest decrease. This pattern is confirmed in

Figure 5, which displays the average nominal interest rate and output responses to a tax rate shock

with varying durations of the passive policy regime. As the peg length increases, we find a monotonic

decrease in both the impact response of output as well as the maximum response. The same is also

true for multiplier state-dependence, with standard deviations across states declining in the length

of the period of passive policy. Average welfare multipliers for each type of tax become smaller

as the duration of passive monetary policy increases. Output multipliers become more positively

correlated with simulated output as the length of the period of passive policy increases, while

welfare multipliers generally become less countercyclical as the peg length increases (an exception is

the consumption welfare multiplier, whose correlation with simulated output is unaffected by the

duration of the passive policy regime).

Intuition for these results follows from the inflation response to tax shocks. As the nominal

interest rate is held fixed over the regime, all changes in expected inflation translate into opposite-

signed movements in the short term real interest rate. In the model, negative tax shocks push

current and expected inflation down. With nominal interest rates fixed, the real interest rate rises,

which works to dampen economic activity. As the peg duration increases, so too does the decline in

expected inflation, which serves to amplify the increase in the real interest rate and the dampening

effect on economic activity. This is exactly the opposite pattern for government spending increases,

where passive policy tends to both raise the magnitude of the spending multiplier (Christiano,

Eichenbaum and Rebelo 2011) as well as its volatility across states (Sims and Wolff 2017).
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7 Conclusion

In this paper we have studied the effects of shocks to tax rates across states of the business

cycle. Beginning with a highly stylized model, we produced analytical expressions which suggest

that tax cuts should not have constant effects on output over time. Rather, the model suggests that

tax cuts ought to be least stimulative for output in periods in which output is low (i.e. in periods

of recession). We also used the model to highlight some conceptual issues for the measurement

and construction of tax multipliers, findings which may be of particular relevance for researchers

interested in studying time-varying multipliers.

We then solved and simulated an otherwise standard medium scale DSGE model with a detailed

fiscal block. Tax multipliers vary considerably across states for all three types of tax rates considered.

Consonant with the intuition from the stylized model, tax multipliers are generally largest in periods

in which output is relatively high. We then studied the properties of a welfare multiplier for tax

cuts. In our quantitative simulations the tax cut welfare multiplier is countercyclical for all three

kinds of taxes. This suggests that tax cuts are in fact most desirable in a normative sense during

periods of recession, in spite of the fact that tax cuts are comparatively less stimulative for output

in such periods. We considered a number of extensions to our baseline quantitative framework and

our basic conclusions are generally robust.
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Table 1: Calibrated Parameters

Parameter Value or Target Description

β 0.99 Discount factor
α 1/3 Capital’s share
π∗ 0 Trend Inflation
εp 11 Intermediate goods elasticity
εw 11 Labor elasticity
δ 0.025 Depreciation rate
ψ0 u∗ = 1 Linear term utilization cost
ψ1 0.01 Quadratic term utilization cost

G∗ G∗

Y ∗ = 0.2 Steady state government spending
τ∗c 0.0169 Consumption tax rate
τ∗n 0.2104 Labor tax rate
τ∗k 0.1975 Capital tax rate

T ∗
B∗

g

Y ∗ = 0.5 Steady state lump sum tax

γTb 0.05 Lump sum tax response to debt

Note: This table lists the values of calibrated parameters or the target used in the calibration.

Table 2: Estimated Parameters

Prior Mean (95th Percentile) of Posterior Distribution

All Distortionary Labor and Labor
Parameter Description Dist. Mean SD Baseline Adjust Taxes Adjusts Capital Adjust Adjust

b Habit formation B 0.700 0.100 0.7463 0.7076 0.6955 0.6999 0.7120
(0.70, 0.79) (0.65, 0.77) (0.64, 0.75) (0.64, 0.76) (0.65, 0.77)

φy TR output growth N 0.125 0.025 0.1311 0.1346 0.1353 0.1363 0.1340
(0.09, 0.17) (0.09, 0.17) (0.10, 0.18) (0.10, 0.18) (0.09, 0.17)

φπ TR inflation N 1.500 0.100 1.6258 1.6244 1.6304 1.6186 1.6104
(1.49, 1.77) (1.48, 1.77) (1.47, 1.76) (1.46, 1.76) (1.46, 1.75)

σ Utility curvature N 2.000 0.250 2.4017 2.4714 2.5077 2.4727 2.4720
(2.05, 2.75) (2.09, 2.81) (2.15, 2.80) (2.12, 2.80) (2.14, 2.80)

γ Utility curvature B 0.300 0.050 0.2429 0.2484 0.2529 0.2423 0.2540
(0.23, 0.25) (0.22, 0.28) (0.24, 0.26) (0.23, 0.25) (0.24, 0.26)

κ Inv. adj. cost N 4.000 0.500 4.1141 4.0539 4.0462 4.1259 4.2207
(3.30, 4.90) (3.32, 4.75) (3.21, 4.83) (3.42, 4.94) (3.51, 4.99)

ζw Wage indexation B 0.500 0.050 0.4966 0.4976 0.4951 0.4918 0.4929
(0.42, 0.57) (0.41, 0.58) (0.41, 0.58) (0.40, 0.57) (0.41, 0.58)

ζp Price indexation B 0.500 0.050 0.4740 0.4864 0.4782 0.4795 0.4728
(0.39, 0.56) (0.41, 0.57) (0.39, 0.57) (0.40, 0.56) (0.39, 0.55)

θw Wage stickiness B 0.500 0.050 0.5111 0.5061 0.5036 0.5039 0.5023
(0.43, 0.59) (0.43, 0.58) (0.41, 0.58) (0.42, 0.58) (0.43, 0.59)

θp Price stickiness B 0.500 0.050 0.7228 0.7294 0.7336 0.7375 0.7359
(0.68, 0.77) (0.69, 0.77) (0.70, 0.77) (0.70, 0.78) (0.70, 0.78)

γcb Consumption tax debt B 0.500 0.200 - 0.1479 0.1073 - -
- (0.07, 0.23) (0.05, 0.16) - -

γkb Capital tax debt B 0.500 0.200 - 0.0993 0.0805 0.1140 -
- (0.04, 0.16) (0.02, 0.13) (0.04, 0.18) -

γnb Labor tax debt B 0.500 0.200 - 0.1206 0.0822 0.1112 0.1461
- (0.05, 0.19) (0.03, 0.13) (0.05, 0.17) (0.06, 0.24)

γTb Lump sum tax debt B 0.500 0.200 - 0.1795 - - -
- (0.10, 0.27) - - -

γcy Cons. tax output B 0.500 0.200 - 0.2879 0.2802 - -

- (0.10, 0.50) (0.08, 0.47) - -

γky Capital tax output B 0.500 0.200 - 0.7600 0.8060 0.7699 -

- (0.47, 1.02) (0.51, 1.07) (0.51, 1.03) -
γny Labor tax output B 0.500 0.200 - 0.4404 0.4957 0.5006 0.5503

- (0.16, 0.70) (0.17, 0.79) (0.24, 0.80) (0.26, 0.82)

γTy Lump sum tax output B 0.500 0.200 - 0.7770 - - -

- (0.49, 1.07) - - -
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Prior Mean (95th Percentile) of Posterior Distribution

All Distortionary Labor and Labor
Parameter Description Dist. Mean SD Baseline Adjust Taxes Adjusts Capital Adjust Adjust

ρi TR AR(1) B 0.700 0.100 0.7527 0.7886 0.7954 0.7802 0.7662
(0.70, 0.80) (0.75, 0.83) (0.76, 0.83) (0.74, 0.82) (0.72, 0.81)

ρa Productivity AR(1) B 0.700 0.100 0.9429 0.9476 0.9462 0.9453 0.9418
(0.92, 0.96) (0.93, 0.97) (0.92, 0.97) (0.92, 0.97) (0.92, 0.96)

ρz MEI AR(1) B 0.700 0.100 0.8258 0.7894 0.7974 0.7910 0.8084
(0.74, 0.90) (0.71, 0.88) (0.70, 0.88) (0.72, 0.87) (0.72, 0.90)

ρν Preference AR(1) B 0.700 0.100 0.6241 0.6875 0.6887 0.6807 0.6620
(0.51, 0.73) (0.59, 0.79) (0.60, 0.78) (0.59, 0.77) (0.57, 0.75)

ρuw Wage markup AR(1) B 0.700 0.100 0.6926 0.6910 0.6898 0.6748 0.6901
(0.52, 0.86) (0.55, 0.87) (0.53, 0.85) (0.52, 0.94) (0.52, 0.85)

ρup Price markup AR(1) B 0.700 0.100 0.9417 0.9417 0.9346 0.9340 0.9401
(0.92, 0.97) (0.91, 0.97) (0.90, 0.97) (0.90, 0.97) (0.91, 0.97)

ρg Gov. spending AR(1) B 0.700 0.100 0.9493 0.9570 0.9545 0.9553 0.9517
(0.93, 0.97) (0.94, 0.97) (0.94, 0.97) (0.94, 0.97) (0.94, 0.97)

ρT Lump sum tax AR(1) B 0.700 0.100 0.9485 0.9379 0.9387 0.9474 0.9515
(0.92, 0.97) (0.91, 0.96) (0.91, 0.97) (0.92, 0.97) (0.93, 0.98)

ρτc Cons. tax AR(1) B 0.700 0.100 0.9543 0.9542 0.9527 0.9314 0.9426
(0.93, 0.98) (0.92, 0.99) (0.92, 0.98) (0.90, 0.96) (0.92, 0.97)

ρτk Capital tax AR(1) B 0.700 0.100 0.8985 0.9288 0.9193 0.9241 0.8972
(0.86, 0.94) (0.88, 0.97) (0.88, 0.96) (0.88, 0.96) (0.85, 0.94)

ρτn Labor tax AR(1) B 0.700 0.100 0.9016 0.9328 0.9396 0.9440 0.9557
(0.86, 0.95) (0.89, 0.98) (0.90, 0.98) (0.91, 0.98) (0.92, 0.99)

100 × sa SD productivity shock IG 0.400 0.200 0.7900 0.7100 0.6800 0.7100 0.7500
(0.70, 0.88) (0.62, 0.79) (0.60, 0.76) (0.63, 0.79) (0.66, 0.83)

100 × sz SD MEI shock IG 0.400 0.200 3.0200 3.2100 3.1900 3.2600 3.1400
(2.20, 3.80) (2.50, 4.10) (2.30, 4.00) (2.50, 4.90) (2.30, 4.00)

100 × si SD TR shock IG 0.400 0.200 0.2600 0.2200 0.2000 0.2300 0.2500
(0.23, 0.30) (0.19, 0.25) (0.18, 0.23) (0.19, 0.26) (0.21, 0.28)

100 × sν SD preference shock IG 0.400 0.200 1.7400 1.5700 1.5000 1.5200 1.5600
(1.20, 2.20) (1.10, 2.00) (1.10, 1.90) (1.10, 1.90) (1.20, 2.00)

100 × suw SD wage markup shock IG 0.400 0.200 0.3600 0.3900 0.4000 0.5300 0.3800
(0.19, 0.54) (0.18, 0.62) (0.19, 0.61) (0.02, 1.20) (0.18, 0.59)

100 × sup SD price markup shock IG 0.400 0.200 0.4500 0.4100 0.3900 0.3900 0.4200
(0.36, 0.54) (0.33, 0.49) (0.31, 0.47) (0.32, 0.46) (0.33, 0.50)

100 × sg SD gov. spending shock IG 0.400 0.200 2.5900 2.5500 2.5800 2.5800 2.5500
(2.20, 2.90) (2.30, 2.90) (2.30, 2.90) (2.30, 2.90) (2.20, 2.80)

100 × sτc SD cons. tax shock IG 0.200 0.200 0.1800 0.2600 0.2600 0.4100 0.2800
(0.14, 0.22) (0.15, 0.37) (0.15, 0.37) (0.32, 0.51) (0.21, 0.35)

100 × sτk SD capital tax shock IG 0.200 0.200 1.0600 0.5800 0.6000 0.5500 1.2200
(0.90, 1.20) (0.37, 0.79) (0.44, 0.79) (0.37, 0.73) (1.0, 1.4)

100 × sτn SD labor tax shock IG 0.200 0.200 0.5000 0.4600 0.4300 0.4100 0.3700
(0.44, 0.57) (0.32, 0.57) (0.35, 0.52) (0.31, 0.49) (0.29, 0.46)

100 × sT SD lump sum tax shock IG 0.200 0.200 0.5200 0.4900 0.5400 0.5000 0.5200
(0.46, 0.58) (0.42, 0.57) (0.47, 0.62) (0.44, 0.57) (0.46, 0.58)

Note: B stands for beta distribution, N for normal distribution, and IG stands for inverse gamma. The posterior is generated
with 20,000 random walk Metropolis Hastings draws with an acceptance rate of approximately 25 percent. Observable variables
used in the estimation are described in the text. Under posterior means, the ranges in parentheses give 95 percent confidence
intervals. The column labeled “Baseline” lists posterior estimates in our baseline estimation. Non-estimated parameters are
indicated with a “−” marker. Remaining columns consider alternative estimations taken up in Section 6.
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Table 3: Properties of Output Multipliers

Multiplier
Min Max Mean Std Dev corr(ln Yt)

Consumption
Impact 0.1540 0.2028 0.1788 0.0085 0.7028
Max 0.5085 0.6447 0.5825 0.0234 0.7901

Labor
Impact 0.1508 0.2910 0.2052 0.0246 0.5427
Max 0.6880 1.2460 0.9685 0.0921 0.8379

Capital
Impact 0.7845 1.3373 1.0407 0.1055 0.9336
Max 1.0841 1.9188 1.5061 0.1467 0.8941

Notes: This table provides summary statistics concerning properties of simulated output multipliers for three different types
of tax rate cuts (denoted in bold). Both impact and maximum multipliers are presented. Construction of multipliers is as
described in the text.

Table 4: Properties of Output Multipliers
State Dependent Tax Revenue Response

Multiplier
Min Max Mean Std Dev corr(ln Yt)

Consumption
Impact 0.1663 0.1908 0.1783 0.0046 -0.0777
Max 0.5416 0.6228 0.5809 0.0137 -0.1599

Labor
Impact 0.1422 0.2918 0.1987 0.0261 -0.2960
Max 0.7484 1.1691 0.9353 0.0726 -0.3138

Capital
Impact 0.8892 1.2143 1.0172 0.0553 -0.0454
Max 1.2490 1.7986 1.4734 0.0940 -0.1542

Note: This table is constructed similarly to Table 3, but multipliers are constructed by scaling the output response to a tax
rate cut in a particular realization of the state by the tax revenue response in that same realization of the state (as opposed to
the tax revenue response evaluated in the non-stochastic steady state).

Table 5: Properties of Welfare Multipliers

Multiplier
Min Max Mean Std Dev corr(ln Yt)

Consumption
Welfare 9.9382 12.2570 11.0794 0.4191 -0.7549

Labor
Welfare 7.8361 10.5577 9.3551 0.4885 -0.5866

Capital
Welfare 10.9431 15.0482 13.1810 0.6954 -0.5011

Note: This table is similar to Table 3 but presents properties of simulated welfare multipliers instead of output multipliers.
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Table 6: Sources of Volatility

Baseline θp = 0.01 θw = 0.01 ψ1 = 1,000 κ = 1,000 b = 0.01

Consumption
Mean Output Mult 0.5825 0.6074 0.5698 0.4291 0.5558 1.0323

St. Dev. 0.0234 0.0157 0.0222 0.0165 0.0172 0.0571
Corr w/ Output 0.7901 0.7071 0.7888 0.9333 0.7898 0.8150

Mean Welfare Mult 11.0794 11.4357 10.7587 8.5787 11.0394 9.9201
St. Dev. 0.4191 0.1003 0.4178 0.3278 0.3779 0.4298
Corr w/ Output -0.7549 -0.2217 -0.7500 -0.7202 -0.7302 -0.7956

Labor
Mean Output Mult 0.9685 1.1436 0.8591 0.6273 0.4467 1.1631

St. Dev. 0.0921 0.0765 0.0798 0.0338 0.0167 0.1011
Corr w/ Output 0.8379 0.7852 0.8334 0.9196 0.7537 0.8044

Mean Welfare Mult 9.3551 10.8781 8.1704 9.1591 5.8829 7.1019
St. Dev. 0.4885 0.1579 0.4495 0.4135 0.3626 0.4107
Corr w/ Output -0.5866 0.4775 -0.5794 -0.6159 -0.7684 -0.6968

Capital
Mean Output Mult 1.5061 2.1468 1.4602 0.2195 0.9638 1.8193

St. Dev. 0.1467 0.1354 0.1404 0.0180 0.0562 0.1599
Corr w/ Output 0.8941 0.8216 0.8967 0.7162 0.8455 0.8677

Mean Welfare Mult 13.1810 17.8018 12.9075 3.6129 9.2959 9.4822
St. Dev. 0.6954 0.3205 0.6570 0.1613 0.6079 0.5352
Corr w/ Output -0.5011 0.5468 -0.5040 -0.5716 -0.6642 -0.6338

Note: This table shows summary statistics for both output and welfare multipliers under different parameterizations of the
baseline model. All but the listed parameter in each column are set to their baseline values.

Table 7: Properties of Output and Welfare Multipliers
Anticipated Tax Shocks

Multiplier
Anticipation Min Max Mean Std Dev corr(ln Yt)

C
o
n
su

m
p
ti
o
n

2 Quarters 0.5274 0.6689 0.6038 0.0239 0.7909
Output Mult. 4 Quarters 0.5523 0.6997 0.6318 0.0242 0.7943

6 Quarters 0.5683 0.7126 0.6467 0.0239 0.7976

2 Quarters 10.2820 12.6414 11.4445 0.4278 -0.7546
Welfare Mult. 4 Quarters 10.7110 13.0369 11.8625 0.4259 -0.7547

6 Quarters 10.9405 13.1681 12.0486 0.4120 -0.7553

L
a
b
o
r

2 Quarters 0.7423 1.3371 1.0398 0.0970 0.8345
Output Mult. 4 Quarters 0.8149 1.4196 1.1174 0.0948 0.8218

6 Quarters 0.8548 1.4231 1.1396 0.0877 0.8086

2 Quarters 8.5624 11.5861 10.2295 0.5370 -0.5968
Welfare Mult. 4 Quarters 9.6431 13.1626 11.5216 0.6227 -0.6406

6 Quarters 10.2955 14.0355 12.2316 0.6748 -0.6932

C
a
p
it
a
l

2 Quarters 1.1775 2.0701 1.6293 0.1565 0.8967
Output Mult. 4 Quarters 1.3025 2.2464 1.7844 0.1597 0.8979

6 Quarters 1.3689 2.2850 1.8454 0.1476 0.8905

2 Quarters 11.7058 15.9555 14.0452 0.7333 -0.5189
Welfare Mult. 4 Quarters 12.8336 17.2857 15.2595 0.7801 -0.5738

6 Quarters 13.5112 18.0229 15.9013 0.8024 -0.6334

Note: This table shows output and welfare multiplier summary statistics generated by simulations of the model with anticipation in
tax processes presented in Section 6. The length of anticipation is indicated in the third column.
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Table 8: Properties of Output and Welfare Multipliers
Alternative Estimations

Multiplier
Min Max Mean Std Dev corr(ln Yt)

A
ll

τc 0.3221 0.4398 0.3733 0.0233 0.8354
Output Mult. τn 0.6020 0.8710 0.7228 0.0480 0.8183

τk 1.0944 1.7969 1.4057 0.1331 0.9390

τc 3.3693 5.7726 4.6451 0.4952 -0.8783
Welfare Mult. τn 6.8732 13.7862 10.0885 1.3188 -0.8856

τk 15.2833 20.5106 18.1124 0.8511 -0.4154

D
is
to

rt
io
n
a
ry

τc 0.3326 0.4830 0.3886 0.0347 0.8247
Output Mult. τn 0.6325 0.8894 0.7412 0.0464 0.8628

τk 0.9415 1.4912 1.1596 0.1061 0.9520

τc -13.6464 -7.2891 -10.3236 1.1022 0.4585
Welfare Mult. τn -2.5736 3.9616 0.6883 1.4868 -0.8552

τk 3.7647 6.0523 4.7925 0.4551 -0.1183

L
a
b
o
r/

C
a
p
it
a
l τc 0.3157 0.4695 0.3607 0.0379 0.9409

Output Mult. τn 0.6860 1.0065 0.7982 0.0651 0.9033
τk 0.9358 1.5651 1.1418 0.1328 0.9680

τc -24.8026 -8.7817 -17.8810 3.7100 0.8513
Welfare Mult. τn -7.3458 4.5418 -1.4411 2.6513 -0.9151

τk -0.6581 7.6664 3.9704 1.8155 -0.8400

L
a
b
o
r

τc 0.4635 0.6842 0.5381 0.0481 0.9077
Output Mult. τn 0.9685 1.3983 1.1690 0.0764 0.6606

τk 0.9688 1.6842 1.2076 0.1550 0.9524

τc -18.9918 -6.2815 -12.9327 2.7139 0.6560
Welfare Mult. τn -5.0761 10.2708 3.6279 3.3805 -0.8330

τk -0.0560 4.7214 2.3159 0.7109 0.1308

Note: This table shows properties of simulated and output welfare multipliers. Before simulation the model is re-estimated under four
different scenarios about how taxes adjust to stabilize debt and react to output growth. These scenarios are described in the left most
column, and correspond to (i) all taxes can react to debt and output, (ii) only distortionary taxes may react (i.e. the lump sum tax is
fixed), (iii) only labor and capital tax rates may react (i.e. the lump sum tax and consumption tax rate are fixed), and (iv) only the labor
income tax may react (i.e. all other tax rates are fixed). Estimated parameters under different scenarios can be found in the different
columns of Table 2. The third column indicates which tax rate is being shocked – τc for consumption, τn for labor, and τk for capital.
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Table 9: Properties of Output and Welfare Multipliers
Rule-of-Thumb Households

Multiplier
Min Max Mean Std Dev corr(ln Yt)

λ
=

0
.0

5
τc 0.5176 0.6594 0.5955 0.0242 0.7953

Output Mult. τn 0.7003 1.2648 0.9843 0.0933 0.8372
τk 1.0928 1.9361 1.5187 0.1484 0.8915

τc 10.3621 12.8124 11.5624 0.4427 -0.7599
Welfare Mult. τn 7.8732 10.5819 9.3855 0.4863 -0.5930

τk 10.2930 14.1115 12.3808 0.6480 -0.5004

λ
=

0
.2

5

τc 0.5569 0.7245 0.6476 0.0294 0.8166
Output Mult. τn 0.7477 1.3383 1.0468 0.0984 0.8367

τk 1.1262 2.0043 1.5671 0.1551 0.8819

τc 11.8466 14.9110 13.3517 0.5583 -0.7794
Welfare Mult. τn 9.0013 12.2506 10.7865 0.5813 -0.6383

τk 8.3424 11.3594 10.0297 0.5243 -0.5128

λ
=

0
.4

5

τc 0.5993 0.7995 0.7052 0.0367 0.8307
Output Mult. τn 0.7957 1.4196 1.1104 0.1057 0.8400

τk 1.1575 2.0701 1.6113 0.1621 0.8741

τc 12.9004 16.7207 14.8144 0.7113 -0.7962
Welfare Mult. τn 9.9332 14.0681 12.1558 0.7456 -0.6931

τk 6.1099 8.4266 7.4032 0.4060 -0.5480

Note: This table shows output and welfare multiplier summary statistics generated by simulations of the baseline model augmented
with a rule-of-thumb household type whose population share is measured by the parameter λ. A full description of the model is
available in Appendix B. The third column indicates which tax rate is being shocked – τc for consumption, τn for labor, and τk for
capital.

Table 10: Properties of Output and Welfare Multipliers
Passive Policy Regime

Multiplier
Duration Min Max Mean Std Dev corr(ln Yt)

C
o
n
s.

Output 2 Quarters 0.5303 0.6421 0.5847 0.0232 0.7963
4 Quarters 0.5255 0.6328 0.5768 0.0215 0.8021

Welfare 2 Quarters 9.9044 11.9586 10.9082 0.3645 -0.6973
4 Quarters 9.8502 11.8790 10.8335 0.3627 -0.6979

L
a
b
o
r

Output 2 Quarters 0.7302 1.1704 0.9472 0.0879 0.8451
4 Quarters 0.6509 1.0293 0.8358 0.0731 0.8435

Welfare 2 Quarters 7.5111 10.0198 8.7719 0.4360 -0.4720
4 Quarters 5.9495 8.5382 7.2264 0.4802 -0.3921

C
a
p
it
a
l

Output 2 Quarters 1.1242 1.8241 1.4566 0.1337 0.9052
4 Quarters 0.9748 1.5962 1.2657 0.1120 0.9070

Welfare 2 Quarters 10.4226 14.3724 12.5056 0.6307 -0.3749
4 Quarters 9.3428 13.1139 11.1567 0.6316 -0.2851

Note: This table shows summary statistics for output and welfare multipliers when the nominal interest rate is pegged for the
duration indicated in the third column.
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Figure 1: Output Impulse Responses
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Note: This figure plots impulse response functions of output to shocks to distortionary consumption, labor, and capital tax
rates. Gray lines correspond to different impulse responses for 1,000 different initial starting state vectors. The response
averaged across states at each horizon is depicted by a solid black line. Impulse responses are scaled by the response of tax
revenue (evaluated in the non-stochastic steady state).
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Figure 2: Multiplier Simulations
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Note: This figure plots output multipliers for consumption, labor, and capital tax shocks over the simulated state space.
Gray shaded regions represent periods in which simulated output is in the bottom 20th percentile.
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Figure 3: Multipliers and the Labor Wedge
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Note: This figure displays scatter plots of welfare multipliers for each type of tax rate on the vertical axes against simulated labor
wedges (measured relative to the non-stochastic steady state) on the horizontal axes. Each dot represents a multiplier-labor
wedge pair at a particular point in the simulated state space. The solid lines show best-fitting linear regression lines.
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Figure 4: Anticipation Impulse Response Functions
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Note: This figure plots the steady state response of tax rates and output to fully anticipated shocks in each of the respective
tax rates. Five unique anticipation horizons are presented with anticipation horizons ranging from 2 to 6 quarters.
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Figure 5: Passive Monetary Policy Impulse Response Functions
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Note: This figure plots the steady state responses of the nominal interest rate and output to tax shocks when monetary
policy is characterized by passive interest rate responses. Four unique passive policy regimes are presented with peg durations
ranging from 1 to 4 quarters. In each scenario, the tax shock occurs in the first period.
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A Medium Scale Model

This appendix lays out the details of the medium scale DSGE model used for quantitative

analysis in the paper. With the exception of a more detailed fiscal block, the model is similar to

Christiano, Eichenbaum and Evans (2005), Schmitt-Grohé and Uribe (2005), Smets and Wouters

(2007), and Justiniano, Primiceri and Tambalotti (2010, 2011). Hence the presentation is kept brief.

The key actors in the economy are a competitive final good firm, a continuum of intermediate goods

firms, a representative household, and a government. The subsections below discuss the problems

and optimality conditions of each kind of agent. We then conclude the appendix with a definition of

market-clearing and a concept of equilibrium.

A.1 Final Good Firm

A single, perfectly competitive final good firm bundles the output of each of the j ∈ (0,1)
intermediate goods firms into a single product for consumption and investment by the household.

The technology used in transforming these intermediate goods into a final good is given by the

following CES aggregator:

Yt = (∫
1

0
Yt(j)

εp−1
εp dj)

εp
εp−1

(A.1)

The output of this final good firm is denoted by Yt while the output of intermediate goods producer

j is denote by Yt(j). The elasticity of substitution between intermediates is measured by εp > 1 and

the prices of each intermediate good j, Pt(j), are taken as given by the final good producer. The

final good firm’s profit maximization problem results in the following demand schedule for each

intermediate goods firm j:

Yt(j) = (Pt(j)
Pt

)
−εp

Yt ∀ j (A.2)

Using (A.1) and (A.2), as well as the firm’s zero profit condition, the aggregate price index is

given by:

Pt = (∫
1

0
Pt(j)1−εpdj)

1
1−εp

(A.3)

A.2 Intermediate Goods Firms

Intermediate goods firms produce output using labor, Nd,t(j), and capital services, K̃t(j),
according to the production function:

Yt(j) = AtK̃t(j)αNd,t(j)1−α (A.4)

The exogenous variable At is a neutral productivity shock common to all intermediate goods firms.

Capital services (the product of physical capital and utilization) are rented on a period-by-period
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basis from the household at the real rental rate rkt . Labor employed by firm j, Nd,t(j), is paid a

real wage wt. Cost minimization by intermediate goods firm j results in the following optimality

conditions:

mct =
w1−α
t (rkt )α
At

(1 − α)α−1α−α (A.5)

K̃t(j)
Nd,t(j)

= α

1 − α
wt

rkt
∀ j (A.6)

Real marginal cost is defined as mct and is given by (A.5). All intermediate firms face common

factor prices. This, coupled with the assumption that all firms face a common productivity shock,

implies that intermediate goods firms will choose capital services and labor in the same ratio.

Each period, a fraction (1 − θp) of randomly chosen firms have the opportunity to update

their price, where θp ∈ [0,1). The opportunity to update price is independent of pricing history.

Non-updating firms have the opportunity to index their price to lagged inflation with indexation

parameter ζp ∈ [0, 1]. Prices are set to maximize the present discounted value of real profit returned

to the household, where discounting is via the household’s stochastic discount factor as well as the

likelihood of the chosen price remaining in place multiple periods. Given a common real marginal

cost, all updating firms select a common reset price which we denote by P#
t . To stationarize the

model, we define inflation as πt = Pt/Pt−1−1 and reset price inflation as π#
t ≡ P#

t /Pt−1−1. Employing

these new variables, the optimal reset price for each firm can be written recursively as:

1 + π#
t = εp

εp − 1
(1 + πt)

X1,t

X2,t
up,t (A.7)

X1,t =mctµtYt + θpβ(1 + πt)−ζpεpEt(1 + πt+1)εpX1,t+1 (A.8)

X2,t = µtYt + θpβ(1 + πt)ζp(1−εp)Et(1 + πt+1)εp−1X2,t+1 (A.9)

The variable µt is the household’s marginal utility of income. Equations (A.5)-(A.9) characterize

the optimal behavior of the production side of the economy. The exogenous variable up,t is a

reduced-form price markup shock as in Smets and Wouters (2007). While we do not model its

microfoundations, it could be motivated as a time-varying elasticity of substitution (see, e.g.,

Justiniano, Primiceri and Tambalotti 2010).

A.3 Representative Household

We follow Schmitt-Grohé and Uribe (2005) in populating the economy with a single representative

household. The household supplies labor to a continuum of labor markets of measure one, indexed

by h ∈ (0,1). The demand for labor in each market is given by:

Nt(h) = (wt(h)
wt

)
−εw

Nd,t, ∀ h (A.10)
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The real wage charged in market h is given by wt(h), Nd,t is aggregate labor demand from

intermediate goods firms, and εw > 1 is the elasticity of substitution among labor in different markets.

Wage stickiness is introduced à la Calvo (1983) – each period, the household can adjust the wage in

a randomly chosen fraction θw of labor markets, where θw ∈ [0,1). Nominal wages in non-updated

markets can be indexed to lagged inflation at rate ζw ∈ [0, 1]. Total labor supplied by the household

is Nt, which must satisfy Nt = ∫ 1
0 Nt(h)dh. Combining this condition with (A.10), we get:

Nt = Nd,t∫
1

0
(wt(h)

wt
)
−εw

dh (A.11)

The term inside the integral in (A.11) is a measure of wage dispersion, to be discussed below.

Household welfare is defined as the present discounted value of flow utility from consumption, Ct,

and leisure, Lt = 1 −Nt:

V0 = E0

∞

∑
t=0

βtνtU (Ct − bCt−1,1 −Nt) (A.12)

The period utility function is increasing and concave in each argument and allows for non-separability

between consumption and leisure. The parameter 0 ≤ b < 1 measures the degree of internal habit

formation in consumption and 0 < β < 1 is a discount factor. The exogenous variable νt is an

exogenous preference shock.

Physical capital, Kt, accumulates according to:

Kt+1 = Zt (1 − S ( It
It−1

)) It + (1 − δ)Kt (A.13)

Investment in new physical capital is denoted by It and 0 < δ < 1 is the depreciation rate. As

in Christiano, Eichenbaum and Evans (2005), S(⋅) measures an investment adjustment cost and

satisfies S(1) = S′(1) = 0, and S′′(1) = κ ≥ 0. The exogenous variable Zt is a shock to the marginal

efficiency of investment as in Justiniano, Primiceri and Tambalotti (2010).

The flow budget constraint faced by the representative household is:

(1 + τc,t)Ct + It + Γ(ut)Kt +
Bt
Pt

≤

(1 − τn,t)∫
1

0
wt(h)Nt(h)dh + (1 − τk,t)rkt utKt + (1 + it−1)

Bt−1

Pt
+Πt − Tt (A.14)

The nominal price of goods is denoted by Pt. Distortionary tax rates on consumption, labor income,

and capital income are denoted by τc,t, τn,t, and τk,t, respectively. The stock of nominal bonds with

which the household enters the period is denoted by Bt−1. The nominal interest rate on bonds taken

into period t+ 1 is it. The household pays a lump sum tax to the government, Tt. Distributed profit

from firms is given by Πt. Utilization of physical capital is given by ut. Utilization incurs a resource

cost measured in units of physical capital given by the function Γ(⋅). It has the following properties:

Γ(1) = 0, Γ′(1) = ψ0 > 0 and Γ′′(1) = ψ1 ≥ 0.

The following conditions characterize optimal behavior by the household:
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(1 + τc,t)µt = νtUC(Ct − bCt−1,1 −Nt) − βbEtνt+1UC(Ct+1 − bCt,1 −Nt+1) (A.15)

µt = βEtµt+1(1 + it)(1 + πt+1)−1 (A.16)

(1 − τk,t)rkt = Γ
′(ut) (A.17)

1 = qtZt [1 − S ( It
It−1

) − S′ ( It
It−1

) It
It−1

] + βEt
µt+1

µt
qt+1Zt+1S

′ (It+1

It
)(It+1

It
)

2

(A.18)

qt = βEt
µt+1

µt
[(1 − τk,t+1)rkt+1ut+1 − Γ(ut+1) + (1 − δ)qt+1] (A.19)

w#
t = εw

εw − 1

F1,t

F2,t
uw,t (A.20)

F1,t = νtUL(Ct − bCt−1,1 −Nt)wεwt Nd,t + θwβEt(1 + πt)−εwζw(1 + πt+1)εwF1,t+1 (A.21)

F2,t = µt(1 − τn,t)wεwt Nd,t + θwβEt(1 + πt)ζw(1−εw)(1 + πt+1)εw−1F2,t+1 (A.22)

In these conditions µt is the Lagrange multiplier on the flow budget constraint; qt is the ratio of

the multiplier on the accumulation equation and the flow budget constraint. The optimal real reset

wage, w#
t , can be written recursively and is the same across all markets. If wages are flexible (i.e.

θw = 0), then optimality conditions related to the labor market reduce to setting the real wage equal

to a markup over the marginal rate of substitution between consumption and leisure. Similarly

to the price-setting problem of intermediate goods producers, uw,t is an exogenous reduced form

wage markup shock. It could alternatively be interpreted as a time-varying intratemporal preference

shock (Chari, Kehoe and McGrattan 2009).

A.4 Government

The fiscal block of the model is as described in the main text. Monetary policy is governed by

a Taylor interest rate feedback rule which responds to deviations of inflation from a steady state

target, π∗, as well as to output growth:

it = (1 − ρi)i∗ + ρiit−1 + (1 − ρi)[φπ(πt − π∗) + φy(lnYt − lnYt−1)] + siεi,t (A.23)

The monetary policy rule is subject to an exogenous shock, εi,t, which is drawn from a standard

normal distribution with standard deviation si. We restrict the parameters of the policy rule to the

region consistent with a determinate rational expectations equilibrium.
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A.5 Exogenous Processes and Market-Clearing

In addition to the processes for the distortionary tax rates, monetary policy rule, and government

spending process, the model features five other exogenous processes. These are the neutral produc-

tivity variable, At, the marginal efficiency of investment, Zt, the intertemporal flow utility shock,

νt, and the price and wage markup shocks, up,t and uw,t. Each of these follow mean zero AR(1)

processes in the log with shocks drawn from standard normal distributions. These distributions

have time invariant standard deviations of sa, sz, sν , sup , and suw , respectively.

lnAt = ρa lnAt−1 + saεa,t, 0 ≤ ρa < 1 (A.24)

lnZt = ρz lnZt−1 + szεz,t, 0 ≤ ρz < 1 (A.25)

lnνt = ρν lnνt−1 + sνεν,t, 0 ≤ ρν < 1 (A.26)

lnup,t = ρup lnup,t−1 + supεp,t, 0 ≤ ρup < 1 (A.27)

lnuw,t = ρuw lnuw,t−1 + suwεw,t, 0 ≤ ρuw < 1 (A.28)

Integrating across demand functions for intermediate goods, making use of the fact that all firms

hire capital services and labor in the same ratio, and imposing market-clearing for labor yields the

following aggregate production function:

Yt =
AtK̃

α
t N

1−α
d,t

vpt
(A.29)

The term vpt is a measure of price dispersion arising from staggered price-setting. It can be expressed

as:

vpt = (1 + πt)εp [(1 − θp)(1 + π#
t )−εp + θp(1 + πt−1)−εpζpvpt−1] (A.30)

Setting aggregate labor supply from the household to demand from firms yields:

Nt = Nd,tv
w
t (A.31)

The variable vwt = ∫ 1
0 (wt(h)wt

)
−εw

dh is a measure of wage dispersion and drives a wedge between

aggregate labor demand and labor supply. Similarly to price dispersion, it can be written recursively

as:

vwt = (1 − θw)(
w#
t

wt
)
−εw

+ θw(
wt−1

wt
)
−εw

((1 + πt−1)ζw
(1 + πt)

)
−εw

vwt−1 (A.32)
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Aggregate inflation evolves according to:

(1 + πt)1−εp = (1 − θp)(1 + π#
t )1−εp + θp(1 + πt−1)ζp(1−εp) (A.33)

Similarly, the aggregate real wage obeys:

w1−εw
t = (1 − θw) (w#

t )
1−εw + θww1−εw

t−1 (1 + πt−1)ζw(1−εw)(1 + πt)εw−1 (A.34)

Imposing that the household holds the government’s debt at all times and that the flow budget

constraints for the household and government both hold with equality yields the aggregate resource

constraint:

Yt = Ct + It +Gt + Γ(ut)Kt (A.35)

When studying properties of the welfare multiplier, we include as an equilibrium condition a

recursive representation of the household’s value function. In writing this, we write labor supply in

terms of labor demand using (A.31):

Vt = νtU(Ct − bCt−1,1 −Nd,tv
w
t ) + βEtVt+1 (A.36)

A.6 Functional Forms

We assume that period utility from consumption and leisure takes the following form:

U(Ct − bCt−1,1 −Nt) =
((Ct − bCt−1)γ(1 −Nt)1−γ)1−σ − 1

1 − σ , σ > 0, 0 < γ < 1 (A.37)

This functional form is consistent with balanced growth while also allowing for non-separability

in consumption and leisure. For the special case in which σ = 1, the utility function assumes the

log-log form of γ lnCt + (1 − γ) ln(1 −Nt) in which the marginal utilities of consumption and leisure

are independent of one another.

The capital utilization and investment adjustment cost functions, respectively, take the following

forms:

Γ(ut) = (ψ0(ut − 1) + ψ1

2
(ut − 1)2) (A.38)

S ( It
It−1

) = κ
2
( It
It−1

− 1)
2

(A.39)
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B Incorporating Rule-of-Thumb Households into the Model

Except where otherwise noted, the model with rule-of-thumb (ROT) households is the same

as the medium scale model detailed in Appendix A. A ROT household faces taxes and wages

that are identical to the optimizing household. Variables with r superscripts correspond to the

ROT population. The preference specification of ROT households is the same as for optimizing

households, with the exception that we do not include habit formation for the ROT population.

The optimization problem faced by a ROT household is:

max
Crt ,N

r
t

νtU(Crt ,1 −N r
t )

s.t.

(1 + τ ct )Crt = (1 − τnt )WtN
r
t − T rt (B.1)

The following condition characterizes optimal behavior by the ROT household:

UL(Crt ,1 −N r
t )

UC(Crt ,1 −N r
t )

= 1 − τnt
1 + τ ct

wt (B.2)

Integrating over labor supplied by each household type, aggregate labor, N̂t, is:

N̂t = (1 − λ)Nt + λN r
t (B.3)

Similarly, we can define aggregate consumption:.

Ĉt = (1 − λ)Ct + λCrt (B.4)

Optimizing households able to acquire capital will choose a common level of utilization and

investment. This implies that (1 − λ) households in the economy rent capital of K̃t. As a result of

this population shift, we define K̂t to be total capital services available for rent in period t:

K̂t = (1 − λ)K̃t (B.5)

Government revenue from taxes will also change with the addition of a second household type,

as will our definition of aggregate welfare. Aggregate lump sum tax revenue is defined as follows.

T̂t = (1 − λ)Tt + λT rt (B.6)

Households of each type pay a share of lump sum taxes proportional to population shares, with

total lump sum tax collection following (18). For these exercises, we assume that distortionary

tax rates do not respond to debt or output growth. Lastly, we define aggregate welfare to be a

population weighted average of present discounted flow utility to both household types:

Vt = (1 − λ)U(Ct − bCt−1,1 −Nt) + λU(Crt ,1 −N r
t ) + βVt+1 (B.7)
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C Additional Quantitative Results

The correlations of output multipliers with simulated output presented in Table 3 are based on

sample correlations taken over the full simulated vector of state variables. To investigate whether

there are more interesting patterns of co-movement between multipliers and output at different parts

of the state vector, Table C1 presents correlations between output multipliers and log output for

different quantiles of the distribution of simulated log output. To construct this table, we pick out

observations in which simulated log output is below the xth qauntile and compute the correlations

between the tax multipliers and output over this sample of simulated data. For each type of tax

rate, the output multipliers are positively correlated with output for each considered quantile.19

Interestingly, the correlations are larger the more of the distribution of output is included in the

sample. For example, focusing on the capital tax rate cut multiplier, the procyclicality is weakest

when focusing on the bottom 10th percentile (0.64); is a bit larger when restricting the sample over

which the correlation is taken to states in which output is below median (0.74); and is largest when

all simulated periods are included (0.89). Qualitatively similar patterns hold for the consumption

and labor tax rates as well.

Table C1: Quantile Correlations

10th 25th 50th 75th 90th Full
Percentile Percentile Percentile Percentile Percentile Sample

Consumption 0.4890 0.5440 0.6150 0.7138 0.7402 0.7901
Labor 0.5969 0.6285 0.6788 0.7741 0.7923 0.8379
Capital 0.6425 0.6791 0.7482 0.8382 0.8597 0.8941

Note: This table shows correlation of (maximum) output multipliers for different types of tax cuts with simulated output across
different quantiles of the distribution of simulated output. Each column corresponds to an output quantile in our simulation.
As a result, the sample size neatly maps to 100, 250, 500, 750, 900, and 1,000 simulated observations.

The properties of tax rate cut multipliers presented in the text are unconditional in the sense

that multipliers are constructed by simulating states from the model with all shocks (other than

tax rate shocks themselves) turned on. We next investigate the extent to which the properties of

the multipliers are influenced by the particular shocks driving movements in the state variables.

Our quantitative exercise involves finding the magnitude of non-tax shocks which would in isolation

generate the same volatility of output growth as our baseline model with all shocks operative. That

is, we zero out all but one particular shock, and solve for the standard deviation of that shock

necessary to generate the same volatility of output growth as in our baseline estimated model. We

then generate states via simulation from the model with only one shock turned on. We then compute

tax rate cut multipliers from each simulated vector of states. Results are summarized in Table C2.

A couple of interesting results emerge. First, for all three types of tax rates, output multipliers are

19While the correlation seems to grow across quantiles, drawing one hundred states from our distribution at random
nearly always produces a correlation of simulated output and maximum tax multiplier approximately equal to average
correlations across the full sample.
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most variable across states conditional on neutral productivity and price markup shocks. When the

only sources of volatility are preference, wage markup, or monetary policy shocks, multipliers are

comparatively less volatile. Second, output multipliers are strongly procyclical in a conditional sense

with the exception of the preference shock. Conditional on the preference shock, labor and capital

tax rate shocks are mildly countercylical. This is consistent with our baseline results above because

in the estimated model preference shocks are a relatively unimportant source of output volatility.

Table C2: Properties of Output Multipliers, Shock-Specific

Neutral Investment Saving/ Price Wage Monetary
Productivity Efficiency Preference Markup Markup Policy

Consumption
Mean 0.5698 0.5756 0.5778 0.5839 0.5786 0.5776
St. Dev. 0.0515 0.0155 0.0049 0.0400 0.0100 0.0025
Corr w/ Output 0.8441 0.3935 0.4683 0.8846 0.5861 0.6246

Labor
Mean 0.9120 0.9096 0.9427 0.9457 0.9364 0.9376
St. Dev. 0.1821 0.0826 0.0261 0.1443 0.0446 0.0123
Corr w/ Output 0.9003 0.8203 -0.4195 0.9317 0.7221 0.5453

Capital
Mean 1.4464 1.4384 1.4899 1.4993 1.4829 1.4891
St. Dev. 0.2554 0.1308 0.0447 0.2442 0.0945 0.0159
Corr w/ Output 0.9203 0.8716 -0.4367 0.9541 0.8210 0.5538

Note: This table presents properties of output multipliers for the three different types of tax rate cuts when states are simulated
with only the shock listed in the columns operative. The numerical exercise used to construct this table is described in the text.

As we did for output multipliers, we also investigate the extent to which the properties of

welfare multipliers depend on the shocks driving fluctuations. Table C3 is constructed similarly

to Table C2 but focuses on welfare multipliers. The underlying numerical exercise is identical.

Welfare multipliers are very strongly countercyclical conditional on price markup shocks. This is

not particularly surprising – when output is low because of these shocks, the economy is very highly

distorted, making the value of easing distortions particularly high. The results conditional on other

shocks are more nuanced. Conditional on preference shocks, for example, welfare multipliers are

strongly procyclical. This result should not be surprising either. When output is low because of

preference shocks, the household places a small utility weight on additional consumption. Easing

distortions by cutting taxes in such periods is not going to be particularly valuable, and is instead

going to be more valuable in periods in which output is high. Welfare multipliers for all three types

of tax rates are also procyclical conditional on marginal efficiency of investment shocks. Cuts in tax

rates generally stimulate investment, and the welfare benefit to stimulating investment will not be

particularly high in periods in which the efficiency of investment is low. Welfare multipliers are

either acyclical or countercyclical conditional on neutral productivity and wage markup shocks, and

procylical conditional on monetary shocks. Overall, while welfare multipliers are quite countercylical

in an unconditional sense, these results suggest that some care needs to be taken in interpreting our

normative results, because the type of shock driving fluctuations is potentially important, much

more so than for the cyclicality of output multipliers.
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Table C3: Properties of Welfare Multipliers, Shock-Specific

Neutral Investment Saving/ Price Wage Monetary
Productivity Efficiency Preference Markup Markup Policy

Consumption
Mean 11.0971 11.1165 10.9726 11.0078 10.1095 11.0466
St. Dev. 0.2869 0.1244 0.1147 0.8035 0.2615 0.0285
Corr w/ Output -0.6460 0.0717 0.8298 -0.9229 -0.1707 0.1596

Labor
Mean 9.0701 8.9550 9.2031 8.8234 8.9210 9.0625
St. Dev. 0.3261 0.2827 0.1954 0.8956 0.8002 0.2060
Corr w/ Output -0.0026 0.7942 0.4414 -0.8873 0.3104 0.5109

Capital
Mean Welfare Mult 13.1070 12.9403 13.0086 12.6866 12.6899 13.0849
St. Dev. 0.5177 0.4978 0.2303 1.2768 0.3927 0.1535
Corr w/ Output 0.0291 0.8204 0.9251 -0.8410 -0.2191 0.9168

Note: This table is similar to Table C2, but focuses on properties of welfare multipliers rather than output multipliers.
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