Kiyotaki and Moore (1997)
 ECON 70428: Advanced Macro: Financial Frictions

Eric Sims
University of Notre Dame

Spring 2021

Credit Cycles

Kiyotaki and Moore (1997, JPE) is the seminal paper on incorporating financial frictions via the so-called "limited enforcement" approach

Basic idea:

- Debt contracts are not perfectly enforceable - if borrower defaults, lender cannot force borrower to continue to work, have negative consumption, etc.
- The lender may be able to recover some of the borrower's assets, but because of limited enforceability, these assets are worth less to the lender than to the borrower
- The lender will restrict the amount of credit a borrower can access
- So we have a collateral constraint - amount borrower can borrow is a function of value of its assets

Financial Accelerator

With this kind of structure, durable assets play a dual role factors of production and collateral on loans

Credit limits are affected by the price of collateralizable assets
Shocks which raise asset prices ease credit constraints, resulting in more investment and output, and further increases in prices

A similar "virtuous" cycle to the famed financial accelerator story of Bernanke, Gertler, and Gilchrist (1999)

Difference relative to CSV approach: there is no default/bankruptcy in equilibrium, and hence no risk spread

Basic Model

Two types of agents: farmers and gatherers (denoted with a I)
Farmers are impatient relative to gatherers $\left(\beta<\beta^{\prime}\right)$
Farmer population is normalized to one, gatherers to m
Both are risk-neutral
One non-reproducible asset called land in fixed supply, \bar{K}. Land must be split between the two agents:

$$
k_{t}+m k_{t}^{\prime}=\bar{K}
$$

Land trades in a competitive spot market at price q_{t}

Farmer: Preferences and Budget Constraint

Preferences are linear over consumption, x_{t+s}, and the future is discounted at β

Flow budget constraint:

$$
q_{t}\left(k_{t}-k_{t-1}\right)+R_{t-1} b_{t-1}+x_{t}=(a+c) k_{t-1}+b_{t}
$$

Output is:

$$
y_{t}=(a+c) k_{t-1}
$$

$c k_{t-1}$ is non-tradeable: farmer has to consume it. $a k_{t-1}$ is tradeable

Borrowing Constraint

Can only borrow up to what lender can claim in default:

$$
R_{t} b_{t} \leq q_{t+1} k_{t}
$$

When farmer borrows b_{t}, owes $R_{t} b_{t}$ back to lender
If farmer repudiates debt, lender can seize his land, which is worth $q_{t+1} k_{t}$, but can't force him to produce

If farmer owes more than the value of his land, $R_{t} b_{t}>q_{t+1} k_{t}$, he'd be better off not paying back

So lender will not allow debt obligations (inclusive of interest) to exceed the value of the his land

Farmer Problem

$$
\max _{x_{t+s}, k_{t+s}, b_{t+s}} \sum_{s=0}^{\infty} \beta^{s} x_{t+s}
$$

s.t.

$$
\begin{gathered}
q_{t}\left(k_{t}-k_{t-1}\right)+R_{t-1} b_{t-1}+x_{t}=(a+c) k_{t-1}+b_{t} \\
R_{t} b_{t} \leq q_{t+1} k_{t} \\
x_{t} \geq c k_{t-1}
\end{gathered}
$$

Farmer Optimality Conditions

Let μ_{t} be the Lagrange multiplier on the borrowing constraint, and φ_{t} be the multiplier on the constraint that consumption must weakly exceed non-tradeable output

The FOC are:

$$
\begin{aligned}
1+\varphi_{t} & =\left[\beta\left(1+\varphi_{t+1}\right)+\mu_{t}\right] R_{t} \\
q_{t}\left(1+\varphi_{t}\right)+c \beta \varphi_{t+1} & =\beta\left(1+\varphi_{t+1}\right)\left[a+c+q_{t+1}\right]+\mu_{t} q_{t+1}
\end{aligned}
$$

Gatherer

Produces output according to:

$$
y_{t}^{\prime}=G\left(k_{t}^{\prime}\right)
$$

Where $G^{\prime}(\cdot)>0, G^{\prime \prime}(\cdot)<0$, and $G^{\prime}(0)>0$
Budget constraint is:

$$
q_{t}\left(k_{t}^{\prime}-k_{t-1}^{\prime}\right)+R_{t-1} b_{t-1}^{\prime}+x_{t}^{\prime}=G\left(k_{t-1}^{\prime}\right)+b_{t}^{\prime}
$$

Gatherer Optimality Conditions

FOC are standard asset pricing conditions:

$$
\begin{gathered}
1=\beta^{\prime} R_{t} \\
q_{t}=\beta^{\prime}\left[G^{\prime}\left(k_{t}^{\prime}\right)+q_{t+1}\right]
\end{gathered}
$$

Because of risk neutrality, gross interest rate will be constant at $R=1 / \beta^{\prime}$

Equilibrium

Market-clearing:

$$
\begin{aligned}
& b_{t}+m b_{t}^{\prime}=0 \\
& k_{t}+m k_{t}^{\prime}=\bar{K}
\end{aligned}
$$

Farmer budget constraint:

$$
q_{t}\left(k_{t}-k_{t-1}\right)+\frac{1}{\beta^{\prime}} b_{t-1}+x_{t}=(a+c) k_{t-1}+b_{t}
$$

Aggregate resource constraint (from combining the two budget constraints plus market-clearing):

$$
x_{t}+m x_{t}^{\prime}=(a+c) k_{t-1}+m G\left(k_{t-1}^{\prime}\right)=Y_{t}
$$

Functional Form and Steady State

Assume:

$$
G\left(k_{t}^{\prime}\right)=\left(z+k_{t}^{\prime}\right)^{\alpha}
$$

Need z sufficiently small so that condition (5) of the paper holds (which ensures both farmers and gatherers produce in region of the steady state)

Will have $\mu>0$ so long as $\beta^{\prime}>\beta$ (borrowing constraint binds in steady state)

Will have $\varphi>0$ so long as $\beta c>(1-\beta) a$ (ensures farmer only consumes non-tradeable output)

Efficient Allocation

A planner would choose k_{t} and k_{t}^{\prime} to maximize $t+1$ output (can't determine split of consumption across types given linearity of preferences):

$$
\max _{k_{t}^{e}}(a+c) k_{t}^{e}+m G\left(\frac{\bar{K}-k_{t}^{e}}{m}\right)
$$

FOC equates MPKs between farmers and gatherers:

$$
a+c=G^{\prime}\left(\frac{\bar{K}-k_{t}^{e}}{m}\right)
$$

Also: optimal k_{t}^{e} is constant (even if we added a productivity shock) \Rightarrow no interesting dynamics in planner's solution

Calibration and Productivity Shock

Introduce iid and mean-zero productivity shock to both farmers and gatherers:

$$
\begin{aligned}
y_{t} & =\left(1+\varepsilon_{t}\right)(a+c) k_{t-1} \\
y_{t}^{\prime} & =\left(1+\varepsilon_{t}\right) G\left(k_{t-1}^{\prime}\right)
\end{aligned}
$$

Parameterize model: $\beta=0.98, \beta^{\prime}=0.99, m=0.5, \bar{K}=1$, $a=0.7, c=0.3, \alpha=1 / 3, z=0.01$

Note with this parameterization, steady state capital allocated to farmers is $k=0.84$, but planner's allocation would be $k^{e}=0.91$

Because of borrowing constraint, too little capital is allocated to farmer

Impulse Responses to ε_{t}

Intuition

Increase in ε_{t} raises value of land, q_{t}
But this eases the borrowing constraint faced by the farmer
This allows them to purchase more land from the gatherers (i.e. get closer to efficient solution)
Them having more land in $t+1$ further increases price of land
Even though the productivity shock is "gone" by $t+1$, the fact they have more land in $t+1$ further eases the constraint and the shock persists
Borrowing constraint generates persistence through a reallocation channel - more land gets temporarily allocated to the higher marginal product agents
Would see no persistence in the efficient allocation

