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1 Introduction

This note describes some basic facts about US business cycles and then examines how well the

basic RBC model can fit those facts.

2 Stylized US Business Cycle Facts

The convention within the literature is to look at HP detrended data to examine the business cycle.

We focus on deviations from the smooth HP trend. There are, of course, alternative ways in which

one can look at the cyclical component of the data (e.g. first differences, the Band Pass filter, linear

detrending, etc.).

“Business cycle moments” focus primarily on a variety of second moments. In particular, the

standard deviation of an HP filtered series is referred to as its volatility. We are also interested in

looking at a series’ cyclicality, which is defined as its contemporaneous correlation with GDP. We

call the first order autocorrelation of a series a measure of its persistence, and we also look at how

strongly a series is correlated with output led or lagged a number of periods, so as to say something

about which series are “lagging indicators” and which series are “leading indicators”.

The series we are most interested in looking at are the same endogenous variables that come

out of a simple real business cycle model – output, consumption, investment, total hours worked,

the real wage, and the real interest rate. In addition, we will look at average labor productivity

(the ratio of output to total hours worked), the price level, and total factor productivity (TFP).

The price level is not in the model as we have thus far specified it, but can easily by added. TFP

is the empirical counterpart of the driving force At in the model. We measure it as output minus

share weighted inputs:

ln Ât = lnYt − α lnKt − (1− α) lnNt (1)
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Constructing this series requires an empirical measure of the capital stock. In practice, this is

hard to measure and most existing capital stock series are only available at an annual frequency.

Typically the way in which people measure the capital stock is by using the “perpetual inventory”

method. This method essentially takes data on investment, an initial capital stock, and an estimate

of the rate of depreciation δ and constructs a series using the accumulation equation for capital:

Kt+1 = It + (1− δ)Kt.

All series (with the exception of TFP, the price level, and the interest rate) are expressed in per

capita terms after dividing by the civilian non-institutionalized population aged 16 and over. All

series are also in real terms (except the price level) and in logs (with the exception of the interest

rate). The measure of GDP is the real GDP from the BEA accounts. The measure of consumption

is the sum of non-durable and services consumption, also from the BEA accounts. Investment

is measured as total private fixed investment plus consumption expenditures on durable goods

(durable goods should be thought of as investment because they provide benefits in the future, just

like new physical capital does). Consumption and investment data are from the BEA. Total hours

is measured as total hours in the non-farm business sector, available from the BLS. Productivity is

output per hour in the non-farm business sector, also from the BLS. Wages are measured as real

compensation per hour in the non-farm business sector, from the BLS. The price level is measured

as the implicit price deflator for GDP, from the BEA. The nominal interest rate is measured as

the three month Treasury Bill rate. The real interest rate is approximately rt = it − Etπt+1. I

construct a measure of the ex-post real interest rate using the measured T-bill rate at time t and

actual inflation from t to t+ 1, where inflation is measured from the GDP deflator. This is ex-post

because actual will not equal expected inflation in general.

All series are HP filtered. The data are from 1948 quarter 1 to 2010 quarter 3. The selected

moments are shown below.

Series Std. Dev. Rel. Std. Dev. Corr w/ yt Autocorr Corr w/ Yt−4 Corr w/ Yt+4

Output 0.017 1 1.00 0.85 0.07 0.11

Consumption 0.009 0.53 0.76 0.79 0.07 0.22

Investment 0.047 2.76 0.79 0.87 -0.10 0.26

Hours 0.019 1.12 0.88 0.90 0.29 -0.03

Productivity 0.011 0.65 0.42 0.72 -0.50 0.35

Wage 0.009 0.53 0.10 0.73 -0.10 0.10

1 + Interest Rate 0.004 0.24 0.00 0.42 0.27 -0.25

Price Level 0.009 0.53 -0.13 0.91 0.09 -0.41

TFP 0.012 0.71 0.76 0.75 -0.34 0.34

The first column with numbers gives the standard deviation; the second column gives the

standard deviation relative to the standard deviation of output. This can be interpreted as a
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measure of relative volatility. We observe that consumption is significantly “smoother” than output;

in contrast investment is more than 2.5 times more volatile than output. Hours are about as a

volatile as output. Productivity, the real interest rate, and real wages are significantly smoother

than output. TFP is about two-thirds as volatile as output.

The next column gives the contemporaneous correlation with output. We observe that con-

sumption, investment, hours, and TFP are all strongly correlated with output (and indeed also

with each other). Productivity is somewhat more weakly correlated with output; and indeed this

correlation masks a large sign shift in the correlations from strongly positive prior to the mid-1980s

to weakly negative thereafter. Real wages are weakly correlated with GDP; although this probably

significantly understates the true cyclicality of wages because of a selection bias.1 The real inter-

est rate is essentially acyclical (that correlation will typically go slightly negative if I use ex-ante

expectations of inflation as opposed to ex-post inflation). The price level is mildly countercyclical.

We see that almost all series are strongly persistent in the sense of having a large first order

autocorrelation coefficient. The least persistent series is the real interest rate, but this autocorre-

lation is still 0.42. We observe that hours are a lagging indicator in the sense that the correlation

with output lagged one year is quite positive. The real interest rate is negatively correlated with

output led four quarters.

3 The Basic RBC Model and Calibration

The basic RBC model can be characterized by the first order conditions of the decentralized model,

as described in class. These first order conditions are:

u′(Ct) = βEt
(
u′(Ct+1)(At+1FK(Kt+1, Nt+1) + (1− δ)

)
(2)

v′(1−Nt) = u′(Ct)AtFN (Kt, Nt) (3)

Kt+1 = AtF (Kt, Nt)− Ct + (1− δ)Kt (4)

lnAt = ρ lnAt−1 + εt (5)

Yt = AtF (Kt, Nt) (6)

Yt = Ct + It (7)

u′(Ct) = βEtu
′(Ct+1)(1 + rt) (8)

wt = AtFN (Kt, Nt) (9)

Rt = AtFK(Kt, Nt) (10)

I use the functional form assumptions that u(Ct) = lnCt, v(1 − Nt) = θ ln(1 − Nt), and

1Aggregate measures of wages are essentially averages of wages across workers. In a recession, job loss is mostly
concentrated among low wage workers. Through a composition effect this tends to work to make the average wage
rise when output is low because the composition of workers is shifting towards relatively more high wage earners. If
one attempts a correction for this composition bias real wages actually look significantly more procyclical.
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F (Kt, Nt) = Kα
t N

1−α
t . These first order conditions can then be re-written imposing these function

forms to get:

1

Ct
= βEt

(
1

Ct+1

(
αAt+1K

α−1
t+1 N

1−α
t+1 + (1− δ)

))
(11)

θ

1−Nt
=

1

Ct
(1− α)AtK

α
t N
−α
t (12)

Kt+1 = AtK
α
t N

1−α
t − Ct + (1− δ)Kt (13)

lnAt = ρ lnAt−1 + εt (14)

Yt = AtK
α
t N

1−α
t (15)

Yt = Ct + It (16)

1

Ct
= βEt

1

Ct+1
(1 + rt) (17)

wt = (1− α)AtK
α
t N
−α
t (18)

Rt = αAtK
α−1
t N1−α

t (19)

We can solve for the steady state of the model as we have before. In the non-stochastic steady

state we set At equal to its non-stochastic mean, which is 1 (0 in the log). Let variables without

time subscripts denote steady states. In macroeconomics “calibration” is a particular way to choose

parameter values. The gist of the calibration approach is to pick parameters so that the steady

state of the model matches certain long run (i.e. average) features of the data. One of the novelties

of the RBC approach (and with its calibration) was that it took a model that was (a) designed

to explain the “long run” and (b) pick parameters designed to explain the “long run” but then

(c) used that model and those parameters to explain the short run. You can think about the long

run properties of the data as “identifying” the parameters of the model while short run moments

are “overidentifying” restrictions which we can use to “test” the model. I put all these terms in

quotations marks because we are not formally doing any of these things, but loosely this is what

we are doing when we calibrate the model.

Let’s begin by coming up with a value for β. Go to (17), the Euler equation for risk free bonds.

Evaluated in steady state, it implies:

β =
1

1 + r
(20)

In the data the average real interest rate on riskless debt can be measures as r = i− π, where

i is a “safe” nominal interest rate and π is the inflation rate. This implies an average real interest

rate of something on the order of two percent (at an annual frequency). We can use that to back

out the required β to make the above hold. This implies a value of β = 0.995. I’m going to round

that down and set β = 0.99.

Given the function form assumptions, (18)-(19) yield:
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wN +RK = Y

In other words, total output/income is the sum of payments to factors. Using the expression for

the real wage, we get:

wN = (1− α)Y ⇒ wN

Y
= (1− α) (21)

In other words, we can measure α by looking at the fraction of total income that gets paid out

in the form of wages. Doing this yields a value of α = 0.33 or so.

Next, look at the accumulation equation for capital. This reveals that, in steady state:

I

N
= δ

K

N
(22)

Steady state output is:

Y

N
=

(
K

N

)α
(23)

Hence the steady state investment-output ratio can be written:

I

Y
= δ

(
K

N

)1−α
(24)

The steady state capital-labor ratio is:

K

N
=

(
α

1
β − (1− δ)

) 1
1−α

(25)

Hence, we can write the steady state investment-output ratio as:

I

Y
=

αδ
1
β − (1− δ)

(26)

The average investment-output ratio (depending on exactly how you measure things) is roughly

20%. I’ll round this up to 22.5%, which given my values of α and β gives me a value of δ = 0.02

give or take.

Using our values for α, β, and δ, this implies that the capital-labor ratio should be about 35.

Now solve the accumulation equation for steady state consumption per worker:

C

N
=

(
K

N

)α
− δK

N
(27)

Now solve the first order condition for labor supply for another expression for consumption to

labor:
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C

N
=

1

θ

1−N
N

(1− α)

(
K

N

)α
(28)

Equate these:

1

θ

1−N
N

(1− α)

(
K

N

)α
=

(
K

N

)α
− δK

N
(29)

Solve for θ, taking N as given:

θ =
1−N
N (1− α)

(
K
N

)α(
K
N

)α − δKN (30)

In the data, people work about one-third of their time endowment (this may be a bit of an

overstatement, but it’s simple enough). So set N = 0.33 and solve for θ. I get 1.75.

That is all the parameters of the model that do not govern the stochastic process for At, which

we turn to next.

4 How Well Can the Model Fit the Data?

We need a systematic way to calibrate the parameters governing the process for TFP. I begin by

linearly detrending my measure of log TFP. I need to linearly detrend because it is (implicitly)

assumed in the model that a linear, deterministic trend drives the observed trends in the actual

data (though we ignore the small variations to the first order conditions that are necessary to be

consistent with that).

As such, I regress my empirical measure of TFP on a constant and a linear time trend:

ln Ât = φ0 + φ1tt + ut (31)

I get the following estimates: φ0 = 0.147 and φ1 = 0.003. This basically can be interpreted

that TFP grows, on average, at about 0.012, or 1.2 percent, per year. Then I take the measured

residual, ût, which can be interpreted as the detrended TFP series, and estimate an AR(1) process:

ût = ρût−1 + et (32)

I get the following estimates: ρ = 0.974 and the standard deviation of the residual of 0.009.

I use these parameters to solve the model. Below is a table of moments from the model. These

moments are HP filtered to facilitate comparison with the moments from the data:

6



Series Std. Dev. Rel. Std. Dev. Corr w/ yt Autocorr Corr w/ Yt−4 Corr w/ Yt+4

Output 0.017 1.00 1.00 0.72 0.13 0.13

Consumption 0.006 0.35 0.95 0.78 0.34 -0.03

Investment 0.056 3.29 0.99 0.71 0.04 0.20

Hours 0.007 0.41 0.98 0.71 0.00 -0.23

Productivity 0.010 0.59 0.99 0.74 -0.50 0.06

Wage 0.010 0.59 0.99 0.74 0.74 0.06

1+Interest Rate 0.001 0.03 0.96 0.71 -0.05 0.26

TFP 0.012 0.69 0.99 0.72 0.11 0.15

Let’s take a moment to compare the numbers in this table (from model-generated data) to the

numbers from the US data. Let’s begin by focusing on areas where the model does well. We see

that the model does a pretty good job at matching the volatilities of output, consumption, and

investment – in particular, consumption is significantly smoother than output, and investment is

significantly more volatile than output. The model does a good job of matching the volatilities

of labor productivity and TFP. The model also does a good job at matching the own autocorre-

lations – the series are all persistent with first order autocorrelation coefficients typically in the

neighborhood of 0.75. Lastly, the model captures the fact that most quantity series (consumption,

investment, hours, productivity, and TFP) are quite procyclical (high contemporaneous correlations

with output), though these correlations are too high in the model relative to the data.

Now let’s move on to where the model does less well. Whereas it does pretty well with “quantity”

moments (see above), it does much less well with prices. In particular, the model does not generate

enough volatility of interest rates (relative standard deviation of 0.03 in model vs. 0.24 in the

data). Further, it generates wages and real interest rates that are far too procyclical relative to

the data. In the data, wages are very modestly procyclical and real interest rates are acyclical or

coutnercyclical, depending on how you measure them. There is some evidence that aggregate wage

date understates the procyclicality of wages due to a composition bias (Solon, Barsky, and Parker,

1994), so the wage cyclicality can potentially be reconciled. It’s much harder to deal with the

interest rate cyclicality. The model does not do great at the dynamic correlations. One particular

area of failure is the fact that real interest rates positively lead output in the model, whereas they

negatively lead output in the data (King and Watson, 1988). Finally, another failure of the model

is that it does not generate sufficient volatility of hours – in the data, hours are actually slightly

more volatile than output (this relative volatility has risen over time), but in the model hours are

about half as volatile as output.

Some of these deficiencies are easier to deal with than others. For example, we can employ a

version of Hansen (1985) and Rogerson (1988) “indivisible labor model” to get what essentially

amounts to infinitely elastic labor supply. This will work to raise the volatility of hours and lower

the cyclicality of wages. We could also add money to the model in a way that doesn’t change
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any of the above results, but which makes the model capable of matching the countercylicality

of the price level. In addition, we can add shocks to things other than technology – things like

government spending shocks or distortionary tax shocks (McGrattan, 1994). These can work to

lower the contemporaneous correlations with output, which are too high in the data.

At an even deeper level, people have criticized RBC models because they don’t seem particularly

realistic. To generate fluctuations that resemble those in the US, one needs large, high frequency

variation in At. No other shock (e.g. government spending, preferences, etc.), within the confines of

the model, can be the main driving force behind the data, although, as mentioned in the preceding

paragraph, adding other shocks can make the overall correlations with output “look better”. The

reason is because hours and consumption are highly positively correlated in the data (correlation

between HP filtered series of 0.78). Combine (3) with (9), and use our baseline functional form

assumptions. You get:

θ

1−Nt
=

1

Ct
(1− α)AtK

α
t N
−α
t

Let’s log-linearize this:

ln θ − ln(1−Nt) = − lnCt + ln(1− α) + lnAt + α lnKt − α lnNt(
N∗

1−N∗

)
Ñt = −C̃t + Ãt + αK̃t − αÑt

Again define γ = N∗

1−N∗ and we can write this as:

Ñt =

(
1

γ + α

)(
−C̃t + Ãt + αK̃t

)
If neither K nor A move, then it must be the case that N and C move in opposite directions.

Since shocks to K don’t seem like a very plausible explanation, we are left with shocks to A. These

shocks must be the main driving force behind the data, otherwise consumption and hours will not

be correlated strongly enough.

People have said that assuming business cycles result from exogenous technological progress (or

“worse”, regress) is unappealing (Summers, 1986). To generate recessions, once needs A to decline.

What does this even mean, especially for a modern economy? If A is moving around so much, why

don’t we read about it in newspapers? Rather, we typically read about output and employment

declining with some speculation as to why, but that speculation rarely if ever mentions fluctuations

in “technological possibilities” or something similar.

Hence, critics of the real business cycle model are uncomfortable with the facts that it is (a)

driven by technology “shocks” and that (b) these shocks must be large and sometimes negative.

Hence, much of business cycle research since the 1980s has been involved in modifying the basic

model to (a) allow other shocks to “matter” in a way that they can’t in the basic model (e.g.

monetary policy) and (b) generating better and more realistic mechanisms for the model to take
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“small” shocks (as opposed to large) and produce relatively large business cycles.

The real business cycle model has a fairly weak amplification mechanism and an even weaker

propagation mechanism. Amplification refers to a model’s ability to have output react by substan-

tially more than the exogenous shock – i.e. to take “small” shocks and produce “large” fluctuations.

The only amplification mechanism here is labor supply, and it is fairly weak. The volatility of out-

put in the model is only about 40 percent bigger than the volatility of TFP that is fed into the

model. This is not trivial, but it means that a substantial amount of output volatility is in essence

“assumed” by the shock – if output were simply equal to the productivity shock, we would generate

about 70 percent of the output volatility that the model does.

Propagation refers to a model’s ability to make shocks have persistent effects. The only propa-

gation mechanism in the model is capital accumulation, but this is weak as well. We can see this by

noting that output is only a little more persistent (as measured by the first order autocorrelation

coefficient) than is the assumed driving force, TFP. If I set ρ = 0.0 (so I assume no persistence)

I actually get both output and TFP being mildly negatively autocorrelated (-0.07 for both). The

bottom line is that you don’t get any more persistence in output than you assume in TFP in this

model.

Much of the rest of what we do in this class will involve adding amplification and propagation

mechanisms and re-tooling the model in other ways such that non-technology shocks (e.g. different

sources of “demand”) can have large real effects.

5 A Hidden Calibration: Labor Supply

In the preference specification I used above, the first order condition for labor supply can be written:

θ
1

1−Nt
=

1

Ct
wt (33)

Log-linearizing about the steady state yields:

γÑt = −C̃t + w̃t (34)

Here γ = N∗

1−N∗ . The Frisch labor supply elasticity is defined as the derivative of log hours

to the log wage, holding the marginal utility of wealth fixed (which is here equal to the marginal

utility of consumption). Since Ñt = lnNt − lnN∗, the Frisch elasticity can be seen to be 1
γ here:

dÑt

dw̃t
| λ̃t =

1

γ

If we want to target N∗ = 1/3, this implies that the Frisch labor supply elasticity is about 2.

This is much larger than most microeconomists would tell you that elasticity is. This elasticity is

important in the model, because it in essence governs how “flat” the labor supply curve is – the

flatter the labor supply curve is, the more fluctuations in labor demand (driven by productivity

shocks) affect labor hours and hence output.
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An alternative way to specify preferences is not over leisure but rather over labor. Consider the

following preference specification:

u(Ct)− v(Nt) = lnCt − θ
N1+χ
t

1 + χ

As long as χ ≥ 0, we have that utility is (i) increasing and (ii) concave in leisure (where leisure

is defined as Lt = 1−Nt. The first order condition for labor supply can now be written:

θNχ
t =

1

Ct
wt (35)

Log-linearizing about the steady state, we get:

χÑt = −C̃t + w̃t (36)

This means that the Frisch elasticity here is 1
χ . What’s nice about this is that the Frisch

elasticity here is controlled by this one parameter; in the case above, the Frisch elasticity depends

on N∗, which is in turn a function of many parameters. I can still calibrate θ to generate a target

level of N∗ here, but that will not affect the Frisch elasticity, which is solely governed by the

parameter χ. I can write the first order condition for labor supply with these preferences evaluated

in steady state as:

θN1+χ =
N

C
(1− α)

(
K

N

)α
Given that I know C

N , if I have a target level of N in steady state I can solve for θ to hit that

as:

θ =
1

N1+χ

(1− α)
(
K
N

)α(
K
N

)α − δKN (37)

Suppose I work with my existing calibration, but set χ = 1. I need a value of θ = 7.883 for this

to be consistent with steady state hours of 0.33. I re-solve the model and produce volatilities of

the main variables of interest.
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Series Std. Dev. Rel. Std. Dev.

Output 0.015 1.00

Consumption 0.006 0.40

Investment 0.049 3.26

Hours 0.005 0.33

Productivity 0.010 0.66

Wage 0.010 0.55

1+Interest Rate 0.001 0.03

TFP 0.012 0.80

In this specification of the model there is even less output volatility (0.015 instead of 0.017).

This means that there is less amplification. We also observe a worse relative volatility of hours to

output here than before (0.3 versus 0.4); both are still far too low relative to the data but now

things are worse. The other moments (correlations, autocorrelations) are not substantially affected

by this change.

There are two important take-aways here. First, functional form assumptions may contain

“hidden calibrations” – with the log-log utility specification, targeting steady state hours of 0.33

implied a relatively large Frisch labor supply elasticity without us really knowing it. Second,

a chief problem in the basic RBC model (and really, in almost all macro models) is generating

sufficiently volatility of labor input to output (which is equivalent to saying it’s difficult to get

much amplification). One way to get more amplification is to assume more elastic labor supply (in

this preference specification this could be accomplished via lower values of χ).
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