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1 Overview

This note describes Sims and Wu (2020): “Evaluating Central Banks’ Tool Kit: Past, Present, and

Future” (forthcoming in Journal of Monetary Economics).

The paper itself evaluates three unconditional policy tools: quantitative easing (QE), negative

interest rate policy (NIRP), and forward guidance (FG). For the purposes of this note, I am going

to focus solely on the QE part, which is where most of the paper’s quantitative results lie. When

studying quantitative easing, we will impose a zero lower bound (ZLB) on the short-term policy

rate, which is an interest rate on reserves. In the equilibrium of the model I describe here, the

interest rate on reserves equals the interest rate on short-term deposits. The ZLB is thus imposed

on both. To implement NIRP, Sims and Wu (2020) suppose that the (net) deposit rate is bound

from below by zero – i.e. households will not accept a negative nominal return (though the model

itself abstracts from cash, though the existence of cash forms the basis for the logic of the zero lower

bound in the first place, so assuming households will not accept a negative nominal return is a bit

of a reduced-form shortcut). But they allow the interest rate on reserves (the policy rate) to go

negative. They allow for negative policy rates by imposing a reserve requirement on banks – with a

negative nominal return, banks in the model would not want to hold reserves, so to implement such

a policy the central bank just requires the banks to hold the reserves at negative interest. In this

way, a negative rate works like a tax on banks, which in and of itself is contractionary because the

banks are balance sheet constrained, as we will see. But the expansionary effect of negative interest

rates comes through a forward guidance type channel. Because the notional (i.e. desired) policy

rate follows an inertial Taylor rule, moving the interest rate on reserves into negative territory –

even if the economically relevant short-term interest rate cannot go negative – nevertheless signals

lower future deposits rates once the ZLB period has ended. This is a stimulative forward guidance

channel. In principle NIRP can be expansionary (the FG channel dominates) or contractionary (the

“banking channel” dominates), but will be weaker the bigger is the central bank’s balance sheet

(because then the “tax” on banks is larger, and the contractionary channel is more important). In

terms of conventional forward guidance, Sims and Wu (2020) allow for a “credibility parameter”

that is a reduced-form way to capture the imperfect credibility associated with signaling future

policy rates.
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As I said, I’m going to focus on the QE part. The core parts of the model are sort of a hybrid

between Carlstrom, Fuerst, and Paustian (2017) and Gertler and Karadi (2011, 2013). Similarly to

Carlstrom, Fuerst, and Paustian (2017), firms are required to finance some of investment by issuing

long-term bonds. These long-term bonds take the form of perpetuities with decaying coupon

payments. Long-term bonds can only be held by intermediaries – markets are segmented in the

sense that household cannot directly hold these securities. Financial intermediaries take the form

in Gertler and Karadi (2013). Intermediaries stochastically die with some probability; this is

tantamount to making them extra impatient. They can hold long-term bonds issued by firms or

long-term bonds issued by the government. They can also hold interest-bearing reserves, which is a

feature not present in either of these previous papers. They fund themselves with deposits and net

worth. Net worth is accumulated by retained earnings, where given the existence of excess returns

it makes sense for intermediaries to not pay out dividends until they die. New intermediaries are

given a small amount of “startup funds.” Intermediaries face a limited enforcement constraint.

At the end of a period, they can default and abscond with some of their assets. We assume that

they can keep a fraction of private bonds, a smaller fraction of government bonds, and no reserves

(i.e. reserves are completely recoverable by creditors in the event of default). This balance sheet

constraint effectively limits how much leverage these intermediaries can take on, and results in

excess returns in equilibrium.

In the model, quantitative easing involves the central bank purchasing either private or govern-

ment long-term bonds, financed via the creation of reserves. The way to think about how QE works

in the model is that by changing the composition of assets intermediaries hold the central bank can

change the tightness of their balance sheet constraint. So think about a QE shock as the central

bank swapping out bonds (either public or private) in exchange for reserves. Because reserves are

perfectly recoverable in the event of default, but other assets are not, this asset swap eases the

balance sheet constraint facing the intermediaries. This allows them to buy more privately issued

bonds. This pushes up the bond price and lowers the excess return. This in turn makes firms more

willing to engage in capital investment, and thereby stimulates aggregate demand.

At the end of the day, the effects of exogenous QE shocks in Sims and Wu (2020) are fairly similar

to Carlstrom, Fuerst, and Paustian (2017) and Gertler and Karadi (2011, 2013). The real innovation

in the paper is to model endogenous QE as a substitute for conventional policy (adjustment of the

short-term policy rate) at the ZLB. Sims and Wu (2020) postulate a “Taylor rule” type version

of a QE rule that reacts to inflation and output, but only turns on when conventional policy is

unavailable due to a binding ZLB. They show that this simple rule can nearly perfectly recrate

the responses to a variety of different shocks without taking the ZLB into account. The broader

message is that QE may be a very effective substitute for conventional monetary policy. This has

implications for how costly the ZLB is (or isn’t) and whether policies should be undertaken to

reduce the frequency of future ZLB episodes (e.g. raising the inflation target).
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2 Model

There are several agents in the model – a representative household; a labor market that includes a

competitive labor packer that transforms differentiated labor from unions into labor available for

production, where unions in turn purchase labor from the household; a capital goods producing

firm; a representative wholesale firm; a continuum of retail firms, who purchase and repackage

wholesale output for sale to a final good firm; a fiscal authority; and a monetary authority. The

subsections below lay out the problems and optimality conditions for each type of agent.

2.1 Household

There is a representative household with preferences over consumption and labor given by:

U0 = E0

∞∑
t=0

βt

{
ln (Ct − bCt−1)− χ

L1+η
t

1 + η

}
Households consume and save through nominal deposits, Dt. They earn income from supply

labor to labor unions at nominal wage MRSt. They receive dividends from ownership in non-

financial firms as well as the equity leftover from remaining intermediaries. Each period, households

make a fixed real equity transfusion to newly born intermediaries. This is given by X. They also

pay a lump sum tax to the government. The flow budget constraint in nominal terms is:

PtCt +Dt ≤MRStLt +RDt−1Dt−1 +DIVt − PtX − PtTt (1)

A Lagrangian is:

L = E0

∞∑
t=0

βt

{
ln (Ct − bCt−1)− χ

L1+η
t

1 + η
+

λnt
[
MRStLt +RDt−1Dt−1 +DIVt − PtX − PtTt − PtCt −Dt

]}

The FOC are:

∂L
∂Ct

=
1

Ct − bCt−1
− λnt Pt − βbEt

1

Ct+1 − bCt
∂L
∂Lt

= −χLηt + λntMRSt

∂L
∂Dt

= −λnt + β Et λnt+1R
d
t

Define µt = Ptλ
n
t as the real marginal utility of consumption. Further define the real stochastic

discount factor as:
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Λt−1,t =
βµt
µt−1

(2)

Using this notation and setting the above to zero, we get:

µt =
1

Ct − bCt−1
− βbEt

1

Ct+1 − bCt
(3)

χLηt = µtmrst (4)

1 = Rdt Et Λt,t+1Π
−1
t+1 (5)

Where mrst = MRSt/Pt is the real wage relevant for the household and Πt = Pt/Pt−1 is the

gross inflation rate.

2.2 Labor Market

There are two layers to the labor market. There are a unit measure of labor unions, index by

h ∈ [0, 1], who purchase labor from households and repackage for resale to a labor packer at Wt(h).

Then a competitive labor packer combines union labor into a final labor input.

Work backwards. The labor packer transforms union labor, Ld,t(h), into final labor available

for production via a CES technology:

Ld,t =

(∫ 1

0
Ld,t(h)

εw−1
εw dh

) εw
εw−1

(6)

The labor packer sells final labor input, Ld,t, to production firms at nominal wage Wt. It

purchases union labor at Wt(h). The labor packer is competitive and earns no profit in equilibrium.

Its problem is to pick each Ld,t(h) to maximize:

max
Ld,t(h)

Wt

(∫ 1

0
Ld,t(h)

εw−1
εw dh

) εw
εw−1

−Wt(h)Ld,t(h)

Optimization gives rise to a standard downward-sloping demand curve for labor and an aggre-

gate wage index:

Ld,t(h) =

(
Wt(h)

Wt

)−εw
Ld,t (7)

W 1−εw
t =

∫ 1

0
Wt(h)1−εwdh (8)

The labor unions simply repackage labor purchases from households for sale to the labor packer:

Ld,t(h) = Lt(h). Labor is purchased from the household at MRSt and sold to the packer at Wt(h).

Nominal profit is:

DIVL,t(h) = Wt(h)Ld,t(h)−MRStLd,t(h)
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Unions are subject to a Calvo wage rigidity: each period, there is a 1 − φw probability they

can adjust a nominal wage. I’m going to abstract from indexation, which the paper allows for.

Plugging in the demand function, flow nominal dividends are:

DIVL,t(h) = Wt(h)1−εwW εw
t Ld,t −MRStWt(h)−εwW εw

t Ld,t

Divide by Pt to write this in real terms, and write the non-union specific terms in real terms as

well (i.e. wt = Wt/Pt and mrst = MRSt/Pt):

divL,t(h) = Wt(h)1−εwwεwt P
εw−1
t Ld,t −mrstP εwt Wt(h)−εwwεwt Ld,t

Consider the problem of a union getting to choose a new Wt(h) in period t. It chooses this to

maximize the PDV of real dividends, where discounting is by the real SDF of the household as well

as the probability a chosen wage is still relevant in the future:

max
W ∗
t

Et
∞∑
j=0

φjwΛt,t+j

{
Wt(h)1−εwwεwt+jP

εw−1
t+j Ld,t+j −mrst+jP εwt+jWt(h)−εwwεwt+jLd,t+j

}

The FOC is:

(1− εw)Wt(h)−εw Et
∞∑
j=0

φjwΛt,t+jw
εw
t+jP

εw−1
t+j Ld,t+j

+ εwWt(h)−εw−1 Et
∞∑
j=0

φjwΛt,t+jmrst+jP
εw
t+jw

εw
t+jLd,t+j = 0

Setting equal to zero, we have:

W#
t =

εw
εw − 1

Et
∞∑
j=0

φjwΛt,t+jmrst+jP
εw
t+jw

εw
t+jLd,t+j

Et
∞∑
j=0

φjwΛt,t+jw
εw
t+jP

εw−1
t+j Ld,t+j

I have replaced Wt(h) with W#
t because nothing on the right hand depends on h; all updating

unions choose the same wage regardless of history. We can write this recursively, defining the

numerator and denominator as:

F1,t = mrstP
εw
t wεwt Ld,t + φw Et Λt,t+1F1,t+1

F2,t = P εw−1t wεwt Ld,t + φw Et Λt,t+1F2,t+1

Define f1,t = F1,t/P
εw
t and f2,t = F2,t/P

εw−1
t . We get:
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f1,t = mrstw
εw
t Ld,t + φw Et Λt,t+1Π

εw
t+1f1,t+1 (9)

f2,t = wεwt Ld,t + φw Et Λt,t+1Π
εw−1
t+1 f2,t+1 (10)

Since F1,t/F2,t = (f1,t/f2,t)Pt, we can write the reset real wage, w#
t = W#

t /Pt, as:

w#
t =

εw
εw − 1

f1,t
f2,t

(11)

2.3 Investment Goods Producer

New capital, Ît, is produced using unconsumed output, It. It is sold to firms at PKt . The production

function is:

Ît =

[
1− S

(
It
It−1

)]
It (12)

S(·) is an investment adjustment cost as in Christiano, Eichenbaum, and Evans (2005). Nominal

profit is:

DIVk,t = P kt

[
1− S

(
It
It−1

)]
It − PtIt

Or, in real terms, with pkt = P kt /Pt:

divk,t = pkt

[
1− S

(
It
It−1

)]
It − It

The objective is to pick It to maximize the PDV of real profit, where discounting is by the

stochastic discount factor. The problem is:

max
It

Et
∞∑
j=0

Λt,t+1

{
pkt+j

[
1− S

(
It+j
It+j−1

)]
It+j − It+j

}
The FOC is:

pkt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
− 1 + Et Λt,t+1p

k
t+1S

′
(
It+1

It

)(
It+1

It

)2

= 0

Or:

1 = pkt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ Et Λt,t+1p

k
t+1S

′
(
It+1

It

)(
It+1

It

)2

(13)

2.4 Goods Production

There are three layers to production. A final good firm purchases retail outputs, where there are a

continuum of retailers indexed by f ∈ [0, 1], at Pt(f) and resells at Pt. The production technology
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is CES:

Yt =

(∫ 1

0
Yt(f)

εp−1

εp df

) εp
εp−1

The problem is:

max
Yt(f)

Pt

(∫ 1

0
Yt(f)

εp−1

εp df

) εp
εp−1

− Pt(f)Yt(f)

Optimization gives a standard downward-sloping demand for each retail output and an aggregate

price index.

Yt(f) =

(
Pt(f)

Pt

)−εp
Yt

P
1−εp
t =

∫ 1

0
Pt(f)1−εpdf

The final good firm earns no profit.

Retail firms purchase wholesale output at Pw,t. They simply repackage wholesale output:

Yt(f) = Yw,t(f), and then sell it to the final goods firm at Pt(f). This is analogous to the la-

bor union. Nominal profit for retailers is:

DIVR,t(f) = Pt(f)Yt(f)− Pw,tYw,t(f)

Plugging in the demand function:

DIVR,t(f) = Pt(f)1−εpP
εp
t Yt − Pw,tPt(f)−εpP

εp
t Yt

In real terms, where pw,t = Pw,t/Pt is the real wholesale price, we have:

divR,t(f) = Pt(f)1−εpP
εp−1
t Yt − pw,tPt(f)−εpP

εp
t Yt

Retailers can only adjust their price with probability 1 − φp. This makes their price-setting

problem dynamic. A retailer with the opportunity to adjust will choose Pt(f) to maximize the

PDV of real profits, where discounting is the by stochastic discount factor as well as the probability

that a price chosen today will remain in effect in the future. The problem is:

max
Pt(f)

Et
∞∑
j=0

φjpΛt,t+j

{
Pt(f)1−εpP

εp−1
t+j Yt+j − pw,t+jPt(f)−εpP

εp
t+jYt+j

}
The FOC is:
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(1− εp)Pt(f)−εp Et
∞∑
j=0

φjpΛt,t+jP
εp−1
t+j Yt+j + εpPt(f)−εp−1 Et

∞∑
j=0

φjpΛt,t+jpw,t+jP
εp
t+jYt+j = 0

Which may be written:

P#
t =

εp
εp − 1

Et
∞∑
j=0

φjpΛt,t+jpw,t+jP
εp
t+jYt+j

Et
∞∑
j=0

φjpΛt,t+jP
εp−1
t+j Yt+j

Since nothing on the RHS depends on f , we see that all updating retailers choose the same

price, P#
t . We can write the numerator and denominator recursively as:

X1,t = pw,tP
εp
t Yt + φp Et Λt,t+1X1,t+1

X2,t = P
εp−1
t Yt + φp Et Λt,t+1X2,t+1

Define x1,t = X1,t/P
εp
t and x2,t = X2,t/P

εp−1
t . We therefore have:

x1,t = pw,tYt + φp Et Λt,t+1Π
εp
t+1x1,t+1 (14)

x2,t = Yt + φp Et Λt,t+1Π
εp−1
t+1 x1,t+1 (15)

Since X1,t/X2,t = (x1,t/x2,t)Pt, we can define Π#
t as the relative reset price and write the pricing

condition:

Π#
t =

εp
εp − 1

x1,t
x2,t

(16)

There is a representative wholesale firm. It produces output using capital that it accumulates

and labor purchased from the labor packer. Its production function is:

Yw,t = At(utKt)
αL1−α

d,t (17)

ut is capital utilization. In nominal terms, the wholesaler’s profit is:

DIVw,t = Pw,tAt(utKt)
αL1−α

d,t −WtLd,t − P kt Ît − Fw,t−1 +Qt(Fw,t − κFw,t−1)

The wholesaler has outstanding coupon liabilities on long bonds of Fw,t−1. It can issue new

long bonds for Qt, where Qt(Fw,t − κFw,t−1) is the value of new bond issuance.

The wholesale firm is subject to a standard law of motion for physical capital:

Kt+1 = Ît + (1− δ(ut))Kt (18)
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δ(ut) = δ0 + δ1(ut − 1) + δ2
2 (ut − 1)2 is utilization adjustment cost. The wholesale firm is also

subject to an investment in advance constraint:

P kt Ît ≤ Qt(Fw,t − κFw,t−1) (19)

In other words, (19) says that nominal expenditure on new investment cannot exceed issuance

of new bonds.

Write dividends and the loan in advance constraint in real terms:

divw,t = pw,tAt(utKt)
αL1−α

d,t − wtLd,t − p
k
t Ît −

Fw,t−1
Pt

+Qt

(
Fw,t
Pt
− κFw,t−1

Pt

)
ψpkt Ît ≤ Qt

(
Fw,t
Pt
− κFw,t−1

Pt

)
ψ is a fraction of a investment that must be financed by debt; ψ = 1 would correspond to

Carlstrom, Fuerst, and Paustian (2017). Profits are discounted by the household’s real SDF. A

Lagrangina is:

Lt = E0

∞∑
t=0

Λ0,t

{
pw,tAt(utKt)

αL1−α
d,t − wtLd,t − p

k
t Ît −

Fw,t−1
Pt

+Qt

(
Fw,t
Pt
− κFw,t−1

Pt

)

+ ν1,t

(
Ît + (1− δ(ut))Kt −Kt+1

)
+ ν2,t

(
Qt

(
Fw,t
Pt
− κFw,t−1

Pt

)
− ψpkt Ît

)}

The derivatives of the Lagrangian are:

∂L
∂Ld,t

= (1− α)pw,tAt(utKt)
αL−αd,t − wt

∂L
∂ut

= αpw,tAt(utKt)
α−1KtL

1−α
d,t − ν1,tδ

′(ut)Kt

∂L
∂Ît

= −pkt + ν1,t − ν2,tψpkt

∂L
∂Kt+1

= −ν1,t + Et Λt,t+1

[
αpw,t+1At+1(ut+1Kt+1)

α−1ut+1L
1−α
d,t+1 + ν1,t+1(1− δ(ut+1))

]
∂L
∂Fw,t

=
Qt
Pt

+ ν2,t
Qt
Pt
− Et Λt,t+1

[
1

Pt+1
+ κ

Qt+1

Pt+1
+ ν2,t+1κ

Qt+1

Pt+1

]
Setting equal to zero, the first three become:

wt = (1− α)pw,tAt(utKt)
αL−αd,t (20)

ν1,tδ
′(ut) = αpw,tAt(utKt)

α−1L1−α
d,t (21)

(1 + ψν2,t)p
k
t = ν1,t (22)
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Then for the two dynamic Euler equations, we have:

ν1,t = Et Λt,t+1

[
αpw,t+1At+1(ut+1Kt+1)

α−1ut+1L
1−α
d,t+1 + ν1,t+1(1− δ(ut+1))

]
(23)

(1 + ν2,t)Qt = Et Λt,t+1Π
−1
t+1 [1 + (1 + ν2,t+1)κQt+1] (24)

Note that discounting in (23) is by the real stochastic discount factor, whereas discounting in

(24) is by the nominal stochastic discount factor, Λt,t+1Π
−1
t+1. This is because capital is a real asset

whereas long-bonds are nominal.

Introduce two auxiliary variables. Let M1,t = 1 + ν2,t and M2,t = 1 + ψν2,t. We can then write

the FOC for investment as:

ν1,t = pktM2,t (25)

We can then eliminate the multiplier in the utilization FOC:

pktM2,tδ
′(ut) = αpw,tAt(utKt)

α−1L1−α
d,t (26)

We can then also write the dynamic Euler equations as:

pktM2,t = Et Λt,t+1

[
αpw,t+1At+1(ut+1Kt+1)

α−1ut+1L
1−α
d,t+1 + (1− δ(ut+1))p

k
t+1M2,t+1

]
(27)

QtM1,t = Et Λt,t+1Π
−1
t+1 [1 + κQt+1M1,t+1] (28)

Where we have:

M1,t − 1

M2,t − 1
= ψ−1 (29)

Before proceeding, it is again useful to note the distortion we are introducing relative to a more

standard model. This distortion is captured by ν2,t, where ν2,t > 0 means M1,t > 1 and M2,t > 1,

and therefore distorts the FOC for utilization, the dynamic Euler equation for capital, and the

dynamic Euler equation for long bonds. Without this distortion, these FOC would look standard.

2.5 Monetary Policy

The central bank sets the notional or desired interest rate on reserves, Rtrt , according to a Taylor

rule:

lnRtrt = (1− ρr) lnRtr + ρr lnRtrt−1 + (1− ρr) [φπ(ln Πt − ln Π) + φy(lnYt − lnYt−1)] + srεr,t (30)

The actual interest rate on reserves is assumed be subject to a zero lower bound (I am not

considering negative interest rate policy, NIRP, as Sims and Wu do in the paper):
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Rret = max
{

1, Rtrt
}

(31)

The central bank has a balance sheet where the size is completely up to the central bank. We

assume that the central bank can hold either private investment bonds (loosely, think about these as

mortgage-backed securities, MBS) or long-term government bonds (loosely, long-term Treasuries).

It finances this with reserves (the model is cashless, so there is no currency in circulation).

QtFcb,t +QB,tBcb,t = REt (32)

We have to assume something about how various aspects of the balance sheet adjust. For now,

just assume that real bond holdings follow exogenous processes:

fcb,t = (1− ρf )fcb + ρffcb,t−1 + sfεf,t (33)

bcb,t = (1− ρb)bcb + ρbbcb,t−1 + sbεb,t (34)

The balance sheet constraint in real terms is:

Qtfcb,t +QB,tbcb,t = ret (35)

Given fcb,t and bcb,t, ret automatically adjusts to make the balance sheet hold.

The central bank earns income on its assets and pays interest on its liabilities (reserves). In

particular, it earns revenue:

PtTcb,t = (1 + κQt)Fcb,t−1 + (1 + κQB,t)Bcb,t−1 −Rret−1REt−1

This can be written:

PtTcb,t =
1 + κQt
Qt−1

Qt−1Fcb,t−1 +
1 + κQB,t
QB,t−1

QB,t−1Bcb,t−1 −Rret−1REt−1

But then using the balance sheet condition to sub out reserves, and defining RFt = 1+κQt
Qt−1

and

RBt =
1+κQB,t
QB,t−1

, we have:

PtTcb,t =
(
RFt −Rret−1

)
Qt−1Fcb,t−1 +

(
RBt −Rret−1

)
QB,t−1Bcb,t−1

Or, in real terms:

Tcb,t =
(
RFt −Rret−1

)
Π−1t Qt−1fcb,t−1 +

(
RBt −Rret−1

)
Π−1t QB,t−1bcb,t−1 (36)

In other words, the central bank earns spreads over the of cost funds on its asset holdings. This

is remitted to the government each period, so that the central bank maintains no equity.
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2.6 Fiscal Policy

The fiscal authority consumes, Gt, taxes the household, Tt, and issues debt, BG,t. It also receives

a lump sum transfer each period from the central bank, Tcb,t. Its flow budget constraint is:

PtGt +BG,t−1 = PtTt + PtTcb,t +QB,t(BG,t − κBG,t−1) (37)

Government debt has the same structure as private investment bonds, with coupon payouts

decaying at κ. Government bonds trade at QB,t, which is not necessarily equal to Qt (unlike in

Carlstrom, Fuerst, and Paustian 2017). In this model, Ricardian Equivalence does not hold. So

we have to make some assumptions on the path of government debt (i.e. it is not innocuous as in

a standard model). I am going to assume that real government debt, where bG,t = Bt
Pt

, follows an

exogenous AR(1) process. Lump sum taxes will then automatically adjust to make the government’s

budget constraint hold. We don’t need to keep track of it. We assume that government spending

itself follows an AR(1) in the log:

lnGt = (1− ρG) lnG+ ρG lnGt−1 + sGεG,t (38)

2.7 Financial Intermediaries

There are a fixed mass of intermediaries indexed by i. Intermediaries hold long-term private issued

bonds and government bonds as well as bank reserves; and they finance themselves with their own

equity as well as deposits. The balance sheet of a typical intermediary in nominal terms is:

QtFi,t +QB,tBi,t +REi,t = Di,t +Ni,t (39)

Each period, an exogenous fraction 1−σ of intermediaries stochastically die. Upon death, they

simply return their net worth to the household. The household replaces the dying intermediaries

with the same number of new intermediaries, given these new intermediaries start-up net worth of

X (distributed among all the new intermediaries evenly).

As long as it can earn excess returns (which it will given the constraints we shall introduce), it

behooves an intermediary to not pay any dividends – it just wants to accumulate net worth until

it stochastically exits. Net worth can be shown to evolve according to:

Ni,t =
(
RFt −Rdt−1

)
Qt−1Fi,t−1 +

(
RBt −Rdt−1

)
QB,t−1Bi,t−1 +

(
Rret−1 −Rdt−1

)
REi,t−1 +Rdt−1Ni,t−1 (40)

If the intermediary earned no excess returns (i.e. none of the spreads were greater than zero), net

worth would just grow at the cost of funds, the deposit rate. At this point the intermediary would

be indifferent about accumulating net worth or paying it back to its owners (i.e. the household).

But with excess returns, the intermediary is better off accumulating net worth to take advantage of

lending spreads. As we shall see, the stochastic death assumption effectively makes intermediaries
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extra impatient and prevents them from accumulating enough net worth to overcome the limited

enforcement constraint that we shall introduce below.

Consider an intermediary in period t. It needs to choose its balance sheet variables. Its objective

is to maximize the expected value of terminal net worth – as noted above, the intermediary is just

going to keep accumulating until it dies. Conditional on know it will survive from t into t+1, there

is 1− σ probability that it dies in t+ 1. There is a σ(1− σ) probability of exit in t+ 2 (i.e. a 1− σ
probability of surviving past t + 1, and a σ probability of exist in t + 2. And so on. Accordingly,

an intermediary’s value function is:

Vi,t = max (1− σ)Et
∞∑
j=1

σj−1Λt,t+jni,t+j (41)

Where Λt,t+j is the household’s stochastic discount factor and ni,t = Ni,t/Pt is real net worth.

At the end of period t, before t + 1, an intermediary can abscond with some of its assets and

default. In particular, an intermediary can take θtQtfi,t and θt∆QB,tbi,t, where 0 ≤ ∆ ≤ 1. θt

is also between zero and one, but is time-varying. We will consider this to be a credit shock.

Equivalently, depositors (i.e. the household) can recover 1 − θt of private bonds and 1 − θt∆ of

government bonds. This enforcement constraint is relatively “tighter” for private bonds – it is

“easier” for an intermediary to abscond with these relative to government bonds as long as ∆ < 1.

The intermediary cannot abscond with reserves; these are perfectly recoverable by creditors in the

event of default. The left hand side of (41) is the enterprise value of being an intermediary (i.e.

the value of continuing). This enforcement constraint can be written:

Vi,t ≥ θt(Qtfi,t + ∆QB,tbi,t) (42)

Constraint (42) says that creditors will only allow intermediaries to borrow up until the point

where it is not optimal for them to default.

Letting λi,t denote the multiplier on the enforcement constraint, we have a Lagrangian in the

recursive formulation of the value function:

L = (1 + λi,t)

[
(1− σ)Et Λt,t+1ni,t+1 + σ Et Λt,t+1Vi,t+1

]
− λi,tθt (Qtfi,t + ∆QB,tbi,t)

Plugging in the evolution of real net worth, (40) divided through by Pt and writing all quantities

in real terms, we have:

13



L = (1 + λi,t)Et

{
(1− σ)Λt,t+1

[ (
RFt+1 −Rdt

)
Π−1t+1Qtfi,t +

(
RBt+1 −Rdt

)
Π−1t+1QB,tbi,t+

(
Rret −Rdt

)
Π−1t+1rei,t +RdtΠ

−1
t+1ni,t

]
+ σ Et Λt,t+1Vi,t+1

}
− λi,tθt (Qtfi,t + ∆QB,tbi,t)

The derivatives of the Lagrangian are:

∂L
∂fi,t

= (1 + λi,t)

{
Et(1− σ)Λt,t+1

(
RFt+1 −Rdt

)
Π−1t+1Qt + σ Et Λt,t+1

∂Vi,t+1

∂ni,t+1

∂ni,t+1

∂fi,t

}
− λi,tθtQt

∂L
∂bi,t

= (1 + λi,t)

{
Et(1− σ)Λt,t+1

(
RBt+1 −Rdt

)
Π−1t+1Qt + σ Et Λt,t+1

∂Vi,t+1

∂ni,t+1

∂ni,t+1

∂bi,t

}
− λi,tθt∆QB,t

∂L
∂rei,t

= (1 + λi,t)

{
Et(1− σ)Λt,t+1

(
Rret −Rdt

)
Π−1t+1 + σ Et Λt,t+1

∂Vi,t+1

∂ni,t+1

∂ni,t+1

∂rei,t

}

Note that:

∂ni,t+1

∂fi,t
=
(
RFt+1 −Rdt

)
Π−1t+1Qt

∂ni,t+1

∂bi,t
=
(
RBt+1 −Rdt

)
Π−1t+1QB,t

∂ni,t+1

∂rei,t
=
(
Rret −Rdt

)
Π−1t+1

Plug these in and set to zero. We get:

(1+λi,t)Et

{
(1−σ)Λt,t+1

(
RFt+1 −Rdt

)
Π−1t+1Qt+σ Et Λt,t+1

∂Vi,t+1

∂ni,t+1

(
RFt+1 −Rdt

)
Π−1t+1Qt

}
= λi,tθtQt

(1+λi,t)Et

{
(1−σ)Λt,t+1

(
RBt+1 −Rdt

)
Π−1t+1QB,t+σ Et Λt,t+1

∂Vi,t+1

∂ni,t+1

(
RBt+1 −Rdt

)
Π−1t+1QB,t

}
= λi,tθt∆QB,t

(1 + λi,t)Et

{
(1− σ)Λt,t+1

(
Rret −Rdt

)
Π−1t+1 + σ Et Λt,t+1

∂Vi,t+1

∂ni,t+1

(
Rret −Rdt

)
Π−1t+1

}
= 0

Define:

14



Ωi,t+1 = 1− σ + σ
∂Vi,t+1

∂ni,t+1
(43)

We can then write these FOC as:

Et Λt,t+1

(
RFt+1 −Rdt

)
Π−1t+1Ωi,t+1 =

λi,t
1 + λi,t

θt

Et Λt,t+1

(
RBt+1 −Rdt

)
Π−1t+1Ωi,t+1 =

λi,t
1 + λi,t

∆θt

Et Λt,t+1

(
Rret −Rdt

)
Π−1t+1Ωi,t+1 = 0

Since Rret and Rdt are known at the time expectations are formed, we can pull them out of the

expectations operator and conclude:

Rret = Rdt (44)

For other part, we need to show that nothing depends on i for aggregation. Guess that the

value function is linear in net worth:

Vi,t = atni,t (45)

When the constraint binds, given this guess we have:

atni,t = θt (Qtfi,t + ∆QB,tbi,t)

Define φi,t as a modified leverage ratio:

φi,t =
Qtfi,t + ∆Qb,tbi,t

ni,t

But this would imply: at = θtφt. Since we are guessing at doesn’t vary with i, then neither can

φt. So we have:

at = φtθt

If this is the case, then:

Ωt = 1− σ + σφtθt (46)

Now write down the law of motion for net worth, led forward one period:

ni,t+1 = Π−1t+1

[(
RFt+1 −Rdt

)
Qtfi,t +

(
RBt+1 −Rdt

)
QB,tbi,t +

(
Rret −Rdt

)
rei,t +Rdtni,t

]
Multiply both sides by Λt,t+1Ωt+1:
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Λt,t+1Ωt+1ni,t+1 = Λt,t+1Ωt+1Π
−1
t+1

[(
RFt+1 −Rdt

)
Qtfi,t +

(
RBt+1 −Rdt

)
QB,tbi,t +

(
Rret −Rdt

)
rei,t +Rdtni,t

]
Now take expectations of both sides:

Et Λt,t+1Ωt+1ni,t+1 = Et Λt,t+1Ωt+1Π
−1
t+1

(
RFt+1 −Rdt

)
Qtfi,t+Et Λt,t+1Ωt+1Π

−1
t+1

(
RBt+1 −Rdt

)
QB,tbi,t

+ Et Λt,t+1Ωt+1Π
−1
t+1

(
Rret −Rdt

)
rei,t + Et Λt,t+1Π

−1
t+1Ωt+1R

d
tni,t

Now where is this getting us? From above, we have:

Et Λt,t+1

(
RBt+1 −Rdt

)
Π−1t+1Ωi,t+1 = ∆Et Λt,t+1Ωt+1Π

−1
t+1

(
RFt+1 −Rdt

)
So plug this in. We get:

Et Λt,t+1Ωt+1ni,t+1 = Et Λt,t+1Ωt+1Π
−1
t+1

(
RFt+1 −Rdt

)
Qtfi,t+Et Λt,t+1Ωt+1Π

−1
t+1

(
RFt+1 −Rdt

)
∆QB,tbi,t

+ Et Λt,t+1Ωt+1Π
−1
t+1

(
Rret −Rdt

)
rei,t + Et Λt,t+1Π

−1
t+1Ωt+1R

d
tni,t

We also know that Rret = Rdt from the FOC. Hence, we can write:

Et Λt,t+1Ωt+1ni,t+1 = Et Λt,t+1Ωt+1Π
−1
t+1

(
RFt+1 −Rdt

)
φtni,t + Et Λt,t+1Π

−1
t+1Ωt+1R

d
tni,t

Now go back to the value function. We have:

Vi,t = (1− σ)Et Λt,t+1ni,t+1 + σ Et Λt,t+1Vi,t+1

Now plug in our guess of the value function:

atni,t = (1− σ)Et Λt,t+1ni,t+1 + σ Et Λt,t+1atni,t+1

But this is:

atni,t = Et Λt,t+1ni,t+1(1− σ + σat+1)

Which is:

atni,t = Et Λt,t+1ni,t+1Ωt+1

But from above we know what Et Λt,t+1ni,t+1Ωt+1 is:
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atni,t = Et Λt,t+1Ωt+1Π
−1
t+1

(
RFt+1 −Rdt

)
φtni,t + Et Λt,t+1Ωt+1Π

−1
t+1R

d
tni,t

The ni,t cancel out:

at = Et Λt,t+1Ωt+1Π
−1
t+1

(
RFt+1 −Rdt

)
φt + Et Λt,t+1Π

−1
t+1Ωt+1R

d
t

But given our guess, we have at = φtθt. So we have:

φtθt = Et Λt,t+1Ωt+1Π
−1
t+1

(
RFt+1 −Rdt

)
φt + Et Λt,t+1Π

−1
t+1Ωt+1R

d
t

Therefore:

φt

[
θt − Et Λt,t+1Ωt+1Π

−1
t+1

(
RFt+1 −Rdt

)]
= Et Λt,t+1Π

−1
t+1Ωt+1R

d
t

So:

φt =
Et Λt,t+1Π

−1
t+1Ωt+1R

d
t

θt − Et Λt,t+1Ωt+1Π
−1
t+1

(
RFt+1 −Rdt

) (47)

(47) is consistent with our guess – φt does not depend on anything firm specific, and hence

neither does at. But then this means Ωt really does not depend on anything firm specific, which

then from the FOC means that λi,t = λt and is the same across firms. The FOC taking all this

into account may be written:

Et Λt,t+1

(
RFt+1 −Rdt

)
Π−1t+1Ωt+1 =

λt
1 + λt

θt (48)

Et Λt,t+1

(
RBt+1 −Rdt

)
Π−1t+1Ωt+1 =

λt
1 + λt

∆θt (49)

Et Λt,t+1

(
Rret −Rdt

)
Π−1t+1Ωt+1 = 0 (50)

Before proceeding, note that we can combine (48) with (47) to write:

φt =
Et Λt,t+1Π

−1
t+1Ωt+1R

d
t

θt − λt
1+λt

θt

But this is:

θtφt = (1 + λt)Et Λt,t+1R
d
tΠ
−1
t+1Ωt+1 (51)

Suppose that the enforcement constraint were never binding. Then we would have λt = 0. So

we could write (51) as:

θtφt = Et Λt,t+1Π
−1
t+1R

d
t (1− σ + σθt+1φt+1)
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But then we can guess and verify that θtφt = 1 is a solution at all times, because:

1 = Et Λt,t+1Π
−1
t+1R

d
t

Which is just the household’s first order condition for bonds. So, if λt = 0, then we have

at = φtθt = 1. This makes sense – if the intermediaries are not constrained, then there are no

excess returns to holding long bonds. Then net worth is just as valuable “inside” the firm as

outside of it, i.e.
∂Vi,t
∂ni,t

= 1. But if λt > 0, then we know that θtφt > 1 – i.e. net worth is worth

more inside the firm than outside of it, because only inside the FI can long bonds be held and

excess returns achieved.

2.8 Aggregation

Aggregate inflation evolves according to:

1 = (1− φp)
(

Π#
t

)1−εp
+ φpΠ

εp−1
t (52)

Similarly, the aggregate real wage obeys:

w1−εw
t = (1− φw)

(
w#
t

)1−εw
+ φwΠεw−1

t w1−εw
t−1 (53)

To get the aggregate production function, integrate across retailers:∫ 1

0
Yt(f)df = Yt

∫ 1

0

(
Pt(f)

Pt

)−εp
df

Recall that retailers just repackage wholesale output. Hence, aggregate demand for retail output,∫ 1
0 Yt(f)df , just equals wholesale output, Yw,t. So we have:

Yw,t = Ytv
p
t (54)

vpt =
∫ 1
0

(
Pt(f)
Pt

)−εp
df is a measure of price dispersion that may be written recursively using

properties of Calvo pricing:

vpt = (1− φp)
(

Π#
t

)−εp
+ φpΠ

εp
t v

p
t−1 (55)

Similarly, integrate demand the demand for union labor across unions:∫ 1

0
Ld,t(h)dh = Ld,t

∫ 1

0

(
wt(h)

wt

)−εw
dh

Unions purchase labor from the household. Aggregate union labor demand,
∫ 1
0 Ld,t(h)dh, equals

household labor supply, Lt. So we have:

Lt = Ld,tv
w
t (56)
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vwt =
∫ 1
0

(
wt(h)
wt

)−εw
dh is a measure of wage dispersion. It throws a wedge between household

labor supply and labor that gets used in production. Using properties of Calvo wage-setting, this

satisfies:

vwt = (1− φw)

(
w#
t

wt

)−εw
+

∫ 1

1−φw

(
Wt−1(h)

Wt

)−εw
dh

Note because it is a ratio, I can (and am intentionally) using either the real wage, wt or w#
t ,

and the nominal wage, Wt. But we can write:

vwt = (1− φw)

(
w#
t

wt

)−εw
+W εw

t W−εwt−1

∫ 1

1−φw

(
Wt−1(h)

Wt−1

)−εw
dh

But this can be written:

vwt = (1− φw)

(
w#
t

wt

)−εw
+

(
wt
wt−1

)εw
Πεw
t

∫ 1

1−φw

(
Wt−1(h)

Wt−1

)−εw
dh

But via a law of large numbers,
∫ 1
1−φw

(
Wt−1(h)
Wt−1

)−εw
dh = φwv

w
t−1. So we have:

vwt = (1− φw)

(
w#
t

wt

)−εw
+ φw

(
wt
wt−1

)εw
Πεw
t v

w
t−1 (57)

The FI balance sheet condition is linear in FI-specific variables. So it simply sums up to

the same aggregate condition. Market-clearing for long-bonds requires that bonds issued by the

wholesale firm and government, respectively, are either held by the central bank or the financial

intermediaries:

fw,t = ft + fcb,t (58)

bG,t = bt + bcb,t (59)

Aggregate net worth evolves as follows. A fraction σ of intermediaries survive from t− 1 to t.

The typical such intermediary has real net worth:

ni,t = P−1t

[(
RFt −Rdt−1

)
Qt−1Fi,t−1 +

(
RBt −Rdt−1

)
QB,t−1Bi,t−1 +

(
Rret−1 −Rdt−1

)
REi,t−1 +Rdt−1Ni,t−1

]
Each of the bond/net worth terms inside brackets needs to be divided by Pt−1 to put in real

terms. So, multiplying and dividing by Pt−1, we get:

ni,t = Π−1t

[(
RFt −Rdt−1

)
Qt−1fi,t−1 +

(
RBt −Rdt−1

)
QB,t−1bi,t−1 +

(
Rret−1 −Rdt−1

)
rei,t−1 +Rdt−1ni,t−1

]

19



This is just linear in all variables the FI can choose. So we can sum this across FIs. Because those

that die are randomly chosen, via a law of large numbers, the sum of surviving-FI variables (e.g.

ni,t) is just proportional the aggregate via σ. Newly borne intermediaries are given, in aggregate,

X of real start-up net worth. Hence, aggregate real net worth evolves as a convex-combination of

these:

nt = σΠ−1t

[(
RFt −Rdt−1

)
Qt−1ft−1 +

(
RBt −Rdt−1

)
QB,t−1bt−1 +

(
Rret−1 −Rdt−1

)
ret−1 +Rdt−1nt−1

]
+X

(60)

Before proceeding, it is worth pointing something out about a sort of unmodeled friction here.

This unmodeled friction is that we are not allowing the household to choose the new equity trans-

ferred to intermediaries, X. Given that the intermediaries earn excess returns on long bonds that

the household cannot directly access, it would be optimal for the households to transfer more equity

to intermediaries each period than they do. We are assuming, implicitly, that something stops this

from happening.

The limited enforcement constraint will bind in the region of the steady state we are interest

in. This requires that Vi,t = atni,t = φtθt ≥ θ (Qtfi,t + ∆QB,tbi,t). Summing across intermediaries

gives the aggregate version of the constraint:

φt =
Qtft + ∆QB,tbt

nt
(61)

The aggregate resource constraint is messy. First of all, profit remitted investment firms is

straightforward:

divk,t = pkt Ît − It (62)

Nominal dividends from a typical labor union are:

DIVL,t(h) = Wt(h)1−εwW εw
t Ld,t −MRSt

(
Wt(h)

Wt

)−εw
Ld,t

Integrate across unions to get the aggregate:

DIVL,t = W εw
t Ld,t

∫ 1

0
Wt(h)1−εwdh−MRStLd,t

∫ 1

0

(
Wt(h)

Wt

)−εw
dh

The first integral on the RHS is W 1−εw
t (i.e. the definition of the price index), while the second

integral is wage dispersion. So we get:

DIVL,t = WtLd,t −MRStLd,tv
w
t

But then dividing by Pt to put in real terms, and noting that Ld,tv
w
t = Lt from above, we have:

divL,t = wtLd,t −mrstLt (63)
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Similarly, dividends from a typical retain firm are:

DIVR,t(f) = Pt(f)1−εpP
εp
t Yt − Pw,t

(
Pt(f)

Pt

)−εw
Yt

Integrate across f to get the aggregate:

DIVR,t = P
εp
t Yt

∫ 1

0
Pt(f)1−εpdf − Pw,tYt

∫ 1

0

(
Pt(f)

Pt

)−εw
df

But, similarly to above, the first integral is P
1−εp
t , and the second is vpt . Then noting that

Ytv
p
t = Yw,t, and dividing by Pt, we get real aggregate dividends from retail firms:

divR,t = Yt − pw,tYw,t (64)

The real dividend from the wholesale firm is:

divw,t = pw,tYw,t − wtLd,t − pkt Ît +Qtfw,t −
1

Pt
(1 + κQt)Fw,t−1

Which may be written:

divw,t = pw,tYw,t − wtLd,t − pkt Ît +Qtfw,t −RFt Π−1t Qt−1fw,t−1 (65)

The last part follows from multiplying and dividing the Fw,t−1 term by Qt−1 and Pt−1.

If we sum up dividends across the investment firm, labor unions, retail firms, and the wholesale

firm, we get total non-financial firm dividends, i.e. sum (62-(65):

divNF,t = pkt Ît − It + wtLd,t −mrstLt + Yt − pw,tYw,t+

pw,tYw,t − wtLd,t − pkt Ît +Qtfw,t −RFt Π−1t Qt−1fw,t−1

Some stuff cancels, leaving:

divNF,t = Yt − It −mrstLt +Qtfw,t −RFt Π−1t Qt−1fw,t−1 (66)

1 − σ of intermediaries exit each period and return their net worth to the household. This is

just:

divFI,t = (1− σ)Π−1t

[
RFt Qt−1ft−1 +RBt QB,t−1bt−1 +Rret−1ret−1 −Rdt−1dt−1

]
(67)

Total dividends are then the sum of dividends from non-financial and financial firms: divt =

divNF,t + divFI,t. Plug this into the household’s budget constraint written in real terms:
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Ct + dt −Rdt−1Π−1t dt−1 −mrstLt +X + Tt =

Yt−It−mrstLt+Qtfw,t−RFt Π−1t Qt−1fw,t−1+(1−σ)Π−1t

[
RFt Qt−1ft−1 +RBt QB,t−1bt−1 +Rret−1ret−1 −Rdt−1dt−1

]
The mrstLt cancel, so we can write:

Ct + It + dt −Rdt−1Π−1t dt−1 +X + Tt =

Yt+Qtfw,t−RFt Π−1t Qt−1fw,t−1+(1−σ)Π−1t

[
RFt Qt−1ft−1 +RBt QB,t−1bt−1 +Rret−1ret−1 −Rdt−1dt−1

]
Now, where is this getting us? From above, we know that X saatisfies:

X = nt − σΠ−1
t

[
RFt Qt−1ft−1 +RBt QB,t−1bt−1 +Rret−1ret−1 −Rdt−1dt−1

]
But then if we plug this in to the household’s constraint, we get:

Ct + It + dt −Rdt−1Π−1t dt−1 + nt + Tt =

Yt +Qtfw,t −RFt Π−1t Qt−1fw,t−1 + Π−1t

[
RFt Qt−1ft−1 +RBt QB,t−1bt−1 +Rret−1ret−1 −Rdt−1dt−1

]
Which simplifies somewhat to:

Ct + It + dt + nt + Tt =

Yt +Qtfw,t −RFt Π−1t Qt−1fw,t−1 + Π−1t
[
RFt Qt−1ft−1 +RBt QB,t−1bt−1 +Rret−1ret−1

]
Now, note that we can write the government’s budget constraint, in real terms, as:

Tt = Gt + (1 + κQB,t)
BG,t−1
Pt

− Tcb,t −QB,tbG,t

Which can be written:

Tt = Gt +RBt Π−1t QB,t−1bG,t−1 −Qb,tbG,t − Tcb,t

The central bank’s transfer is:

Tcb,t = RFt Π−1t Qt−1fcb,t−1 +RBt Π−1t QB,t−1bcb,t−1 −Rret−1Π−1t ret−1

Combining these, we get:
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Tt = Gt+R
B
t Π−1t QB,t−1bG,t−1−Qb,tbG,t−RFt Π−1t Qt−1fcb,t−1−RBt Π−1t QB,t−1bcb,t−1+Rret−1Π

−1
t ret−1

Now plug this into the household’s budget constraint:

Ct+It+Gt+dt+nt+Gt+R
B
t Π−1t QB,t−1bG,t−1−Qb,tbG,t−RFt Π−1t Qt−1fcb,t−1−RBt Π−1t QB,t−1bcb,t−1+R

re
t−1ret−1

= Yt +Qtfw,t −RFt Π−1t Qt−1fw,t−1 + Π−1t
[
RFt Qt−1ft−1 +RBt QB,t−1bt−1 +Rret−1ret−1

]
Which can be written further:

Ct+It+Gt+dt+nt+Gt+R
B
t Π−1t QB,t−1bG,t−1−Qb,tbG,t−RFt Π−1t Qt−1fcb,t−1−RBt Π−1t QB,t−1bcb,t−1

= Yt +Qtfw,t −RFt Π−1t Qt−1fw,t−1 + Π−1t
[
RFt Qt−1ft−1 +RBt QB,t−1bt−1

]
We can write this further by re-arranging terms:

Ct + It +Gt + dt + nt −Qb,tbG,t −Qtfw,t +RBt Π−1t QB,t−1bG,t−1 +RFt Π−1t Qt−1fw,t−1 =

Yt + Π−1t RFt Qt−1(ft−1 + fcb,t−1) + Π−1t RBt QB,t−1(bt−1 + bcb,t−1)

But since market-clearing requires fw,t = ft + fcb,t and bG,t = bt + bcb,t, several terms drop out,

leaving:

Ct + It +Gt + dt + nt −QB,tbG,t −Qtfw,t = Yt

But now plug in the balance sheet condition of the intermediaries:

Ct + It +Gt + dt + (Qtft +QB,tbt + ret − dt) = Yt +QB,tbG,t +Qtfw,t

The dts cancel, and we get:

Ct + It +Gt +Qt(ft − fw,t) +QB,t(bt − bG,t) + ret = Yt

But market-clearing requires that ft − fw,t = −fcb,t and bt − bG,t = −bcb,t. Hence:

Ct + It +Gt −Qtfcb,t −QB,tbcb,t + ret = Yt

But ret = Qtfcb,t +QB,tbcb,t. So we get a standard resource constraint:

Yt = Ct + It +Gt (68)
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Aggregate productivity follows an AR(1) in the log:

lnAt = ρA lnAt−1 + sAεA,t (69)

Similarly, the credit shock follows an AR(1):

ln θt = (1− ρθ) ln θ + ρθ ln θt−1 + sθεθ,t (70)

3 All Equilibrium Conditions in One Place

• Household:

Λt−1,t =
βµt
µt−1

(71)

µt =
1

Ct − bCt−1
− βbEt

1

Ct+1 − bCt
(72)

χLηt = µtmrst (73)

1 = Rdt Et Λt,t+1Π
−1
t+1 (74)

• Labor union:

w#
t =

εw
εw − 1

f1,t
f2,t

(75)

f1,t = mrstw
εw
t Ld,t + φw Et Λt,t+1Π

εw
t+1f1,t+1 (76)

f2,t = wεwt Ld,t + φw Et Λt,t+1Π
εw−1
t+1 f2,t+1 (77)

• Investment Firm:

Ît =

[
1− S

(
It
It−1

)]
It (78)

1 = pkt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ Et Λt,t+1p

k
t+1S

′
(
It+1

It

)(
It+1

It

)2

(79)

• Retail firm:

Π#
t =

εp
εp − 1

x1,t
x2,t

(80)

x1,t = pw,tYt + φp Et Λt,t+1Π
εp
t+1x1,t+1 (81)

x2,t = Yt + φp Et Λt,t+1Π
εp−1
t+1 x1,t+1 (82)
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• Wholesale firm:

wt = (1− α)pw,tAt(utKt)
αL−αd,t (83)

pktM2,tδ
′(ut) = αpw,tAt(utKt)

α−1L1−α
d,t (84)

pktM2,t = Et Λt,t+1

[
αpw,t+1At+1(ut+1Kt+1)

α−1ut+1L
1−α
d,t+1 + (1− δ(ut+1))p

k
t+1M2,t+1

]
(85)

QtM1,t = Et Λt,t+1Π
−1
t+1 [1 + κQt+1M1,t+1] (86)

M1,t − 1

M2,t − 1
= ψ−1 (87)

Yw,t = At(utKt)
αL1−α

d,t (88)

Kt+1 = Ît + (1− δ(ut))Kt (89)

ψpkt Ît = Qt
(
fw,t − κΠ−1t fw,t−1

)
(90)

• Financial intermediary:

Et Λt,t+1

(
RFt+1 −Rdt

)
Π−1t+1Ωt+1 =

λt
1 + λt

θt (91)

Et Λt,t+1

(
RBt+1 −Rdt

)
Π−1t+1Ωt+1 =

λt
1 + λt

∆θt (92)

Et Λt,t+1

(
Rret −Rdt

)
Π−1t+1Ωt+1 = 0 (93)

Ωt = 1− σ + σφtθt (94)

φt =
Et Λt,t+1Π

−1
t+1Ωt+1R

d
t

θt − Et Λt,t+1Ωt+1Π
−1
t+1

(
RFt+1 −Rdt

) (95)

Qtft +QB,tbt + ret = dt + nt (96)

φt =
Qtft + ∆QB,tbt

nt
(97)

nt = σΠ−1
t

[(
RFt −Rdt−1

)
Qt−1ft−1 +

(
RBt −Rdt−1

)
QB,t−1bt−1 +

(
Rret−1 −Rdt−1

)
ret−1 +Rdt−1nt−1

]
+X

(98)

• Central Bank

lnRtrt = (1− ρr) lnRtr + ρr lnRtrt−1 + (1− ρr) [φπ(ln Πt − ln Π) + φy(lnYt − lnYt−1)] + srεr,t (99)

Rret = max
{

1, Rtrt
}

(100)

fcb,t = (1− ρf )fcb + ρffcb,t−1 + sfεf,t (101)

bcb,t = (1− ρb)bcb + ρbbcb,t−1 + sbεb,t (102)
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Qtfcb,t +QB,tbcb,t = ret (103)

• Aggregate conditions:

1 = (1− φp)
(

Π#
t

)1−εp
+ φpΠ

εp−1
t (104)

w1−εw
t = (1− φw)

(
w#
t

)1−εw
+ φwΠεw−1

t w1−εw
t−1 (105)

Yw,t = Ytv
p
t (106)

vpt = (1− φp)
(

Π#
t

)−εp
+ φpΠ

εp
t v

p
t−1 (107)

Lt = Ld,tv
w
t (108)

vwt = (1− φw)

(
w#
t

wt

)−εw
+ φw

(
wt
wt−1

)εw
Πεw
t v

w
t−1 (109)

fw,t = ft + fcb,t (110)

bG,t = bt + bcb,t (111)

Yt = Ct + It +Gt (112)

RFt =
1 + κQt
Qt−1

(113)

RBt =
1 + κQB,t
QB,t−1

(114)

lnAt = ρA lnAt−1 + sAεA,t (115)

ln θt = (1− ρθ) ln θ + ρθ ln θt−1 + sθεθ,t (116)

lnGt = (1− ρG) lnG+ ρG lnGt−1 + sGεG,t (117)

ln bG,t = (1− ρB) ln bG + ρB ln bG,t−1 + sBεB,t (118)

The list of endogenous variables is
{
Yt, Ct, It, Gt, Lt, Ld,t, Ît, Yw,t,Kt, ut, wt, w

#
t ,mrst,Πt,Π

#
t , p

k
t ,

pw,t, f1,t, f2,t, x1,t, x2,t, v
p
t , v

w
t , Qt, QB,t, R

F
t , R

B
t , R

d
t , R

re
t , R

tr
t ,M1,t,M2,t, µt,Λt−1,t, fw,t, ft, bt, ret, dt, nt

λt, φt,Ωt, fcb,t, bcb,t, bG,t, At, θt

}
. This is 48 equations and 48 variables. The exogenous shocks are

εA,t, εθ,t, εG,t, εB,t, εf,t, εb,t, and εr,t.

4 Steady State

We are going to focus on a zero inflation steady state. This means that Π = 1, so Π# = 1, vp = 1,

vw = 1, and w# = w. vw = 1 means that L = Ld and Yw = Y . Similarly, since the investment

adjustment cost is irrelevant in the steady state, we have Î = I. I will also normalize the model

such that L = 1. I am also going to pick parameters to have steady state utilization be 1. The
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utilization adjustment cost is:

δ(ut) = δ0 + δ1(ut − 1) +
δ2
2

(ut − 1)2 (119)

Focusing first on the household block, we get:

Λ = β (120)

Which implies:

Rd = Rre = Rtr = β−1 (121)

I am going to target two spreads: spF is the private lending spread, RF−Rd¡ and spB = RB−Rd

is the government lending spread. I will choose spF = 1.031/4 and spB = 1.011/4, so that I am

targeting steady state spreads of 300 and 100 basis points, respectively, at an annual frequency.

This then gives me:

RF = spFR
d (122)

RB = spBR
d (123)

But this then gives us steady state long bond prices as functions of κ, which I set to be 1−40−1:

Q =
(
RF − κ

)−1
(124)

QB =
(
RB − κ

)−1
(125)

But now I can solve for M1 since:

QM1 = β(1 + κQM1)

Which implies:

M1 =
β

Q(1− βκ)
(126)

But then we have M2:

M2 = 1 + ψ(M1 − 1) (127)

As in Sims and Wu (2020), I pick ψ = 0.81.

For both price and wage-setting, I am going to assume that εp = εw = 11. From the price-setting

and wage setting conditions, I then get:
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pw =
εp − 1

εp
(128)

mrs =
εw − 1

εw
w (129)

(128) is steady state real marginal cost; equivalently, this is the inverse steady state markup of

price over marginal cost. (129) tells us the wage the household receives is a markdown over the

wage charged to the wholesale firm; the difference is captured by unions.

Given that I am normalizing Ld = u = 1, I can now solve for steady state capital from the

capital Euler equation. First, note from the FOC for investment that pk = 1. We then have:

M2 = β
[
αpwK

α−1 + (1− δ0)M2

]
Which implies:

K =

 αpw

M2

(
1
β − (1− δ0)

)
 1

1−α

(130)

It is useful to look at (130) and point out different distortions matter. First, pw < 1, owing

to monopoly power in price-setting, lowers steady state capital. Second, M2 > 1, which comes

about because of positive interest rate spreads making the loan in advance constraint binding for

the wholesale firm, also results in too little steady state capital relative to what would be efficient.

Once I have K, I have Y = Yw as well as I = Î and w = w#:

Y = Kα (131)

I = δ0K (132)

w = (1− α)pwK
α (133)

Note that δ′(u) = δ1. We need to pick δ1 to be consistent with our normalization; δ0 and δ2 are

free parameters. In particular, from the FOC for utilization, we must have:

δ1 =
αpwK

α−1

M2
(134)

Let’s assume that in steady state G/Y = g (e.g. g = 0.2). Then we can solve for steady state

consumption as:

C = (1− g)Y − I (135)

But then we can solve for µ:

µ =
1

C

1− βb
1− b

(136)
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As noted above, we know that:

mrs =
εw − 1

εw
w (137)

But then we can solve for χ to be consistent with the normalization of L = 1:

χ = µmrs (138)

We can now figure out how much debt the wholesale firm must float in steady state:

fw =
ψI

Q(1− κ)
(139)

Let’s suppose that the total size of the central bank’s balance sheet is some fraction of output,

say bcs = 0.1Y . This tells us steady state reserves, since that is the steady state balance sheet size.

Suppose that some other fraction, bcbGs of the central bank’s balance sheet is held in government

bonds. Let bcbGs = 0.9. This then gives us steady state central bank government debt holdings:

bcb =
bcbGs× re

QB
(140)

But then we can determine central bank holdings of private bonds via the central bank budget

constraint:

fcb =
re−QBbcb

Q
(141)

Which then from the adding up constraint tells us how much private debt FIs must hold:

f = fw − fcb (142)

Now suppose that the outstanding value of government debt is some fraction of GDP, by (e.g.

0.5). So we have:

bG =
by × Y
QB

(143)

But then from the market-clearing constraint, we have government bonds held by the FI:

b = bG − bcb (144)

Let’s then target a total leverage ratio, lev, where lev is the ratio of total assets to net worth.

I will use lev = 5. This implies a steady state value of net worth:

n =
Qf +QBb+ re

lev
(145)

We can then get steady state deposits from the FIs balance sheet condition:
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d = Qf +QBb+ re− n (146)

Note that there is a restriction implied on ∆, which is the relative recoverability of government

bonds to private bonds. From the FOC from the FI problem, in steady state we have:

∆ =
RB −Rd

RF −Rd
(147)

In other words, (147) tells us that ∆ governs the relative spread between private and government

bonds.

But now we can also get the steady state value of the modified leverage ratio, φ, given ∆:

φ =
Qf + ∆QBb

n
(148)

Now we can get θ from the FOC giving us. This is more complicated than it looks because φ

and θ show up in Ω. We have:

φ
(
θ − β(1− σ + σφθ)(RF −Rd)

)
= 1− σ + σφθ

I’m going to set σ = 0.95. This parameter governs how long FIs are expected to live. The above

is now one equation in one unknown, θ. Multiply the LHS through:

φθ − φβ(1− σ)(RF −Rd)− βσφ2θ(RF −Rd) = 1− σ + σφθ

Isolate the terms involving θ on the LHS:

φθ − βσφ2θ(RF −Rd)− σφθ = 1− σ + φβ(1− σ)(RF −Rd)

Solving for θ:

θ =
1− σ + φβ(1− σ)(RF −Rd)
(1− σ)φ− βσφ2(RF −Rd)

(149)

Now, there is something useful to notice here. In particular, if there is no lending spread, then

we get θ = 1/φ. This is useful because we know the firm’s value function is proportional to net

worth via a = θφ. With no spread, then a = 1, which tells us that net worth is as valuable inside

an FI as not. But with spreads, net worth is more valuable inside the firm than out.

We can then solve for the equity transfer given everything else we have found:

X = n− σ
[
(RF −Rd)Qf + (RB −Rd)QBb+Rdn

]
We can finally solve for the steady state value of the multiplier on the limited enforcement

constraint for the FIs:
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β(RF −Rd)(1− σ + σφθ) =
λ

1 + λ
θ

So:

λ =

(
θ

β(RF −Rd)(1− σ + σφθ)
− 1

)−1
(150)

Note if there is no spread, then the first term inside the parentheses goes to infinity, so λ→ 0.

The bigger is the spread, the bigger is λ (i.e. the tighter is the constraint).

5 Calibration and Impulse Responses

I calibrate the model loosely following Sims and Wu (2020). I describe the parameterization here. I

set β = 0.995, which implies a steady state real interest rate of 2 percent annualized. κ = 1−40−1,

implying a 10 year duration on corporate and government bonds. I set ψ = 0.81 – firms must finance

80 percent of their investment via issuing debt. εp = εw = 11, implying steady state price and wage

markups of 10 percent. I set α = 1/3. I set δ0 = 0.025 (this is steady state capital depreciation)

and δ2 = 0.01, which implies rather volatile capital utilization. δ1 is fixed to be consistent with the

normalization of u = 1. I set the government spending share of output to g = 0.2 in steady state.

The habit formation parameter is b = 0.8. The inverse Frisch elasticity, η, is 1. χ is chosen to be

consistent with the normalization that L = 1 in steady state.

For financial variables, I set σ = 0.95. I target a total leverage ratio (the ratio of all assets to

net worth in steady state, not the modified leverage ratio φ) to be 5. I assume that the central

bank’s steady state balance sheet is 10 percent of output, and that 90 percent of its assets are

government bonds (so only a small fraction are corporate bonds). I assume that the steady state

debt-GDP ratio for the fiscal authority is 50 percent. I target a corporate bond spread of 3 percent

annualized, and a government bond spread of 1 percent annualized. Altogether, these targets imply

values of X, θ, and ∆. In particular, I get X = 0.0442, θ = 0.6555, and ∆ = 0.33. Concretely, this

means that in default an intermediary may abscond with about two-thirds of its private assets and

a little more than 20 percent of its government bonds. To put X into perspective, steady state net

worth of intermediaries is n = 3.75. So the new equity infusion to new intermediaries is only about

1 percent of total equity.

I set the price and wage stickiness parameters to φp = φw = 0.75. This implies average

four quarter durations between price/wage changes. The investment adjustment cost function is:

S (It/It−1 − 1) = ψk
2 (It/It−1 − 1)2. I set ψk = 2. The parameters of the Taylor rule are ρr = 0.8,

φπ = 1.5, and φy = 0.15.

It remains to parameterize the shock prices. The shock standard deviations matter for uncon-

ditional moments but impulse responses are just scaled versions of the shock sizes. Consequently,

I’m not going to focus here on trying to get the shock sizes correct to match any particular uncon-

ditional moments; rather I’m going to focus on impulse responses and how the model works. To be
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transparent, I just set all the shock standard deviations to 0.01. I’m going to set the AR(1) terms

on government spending, government bonds, and productivity to be ρG = ρB = ρA = 0.90. I’m

going to set the AR(1) on the credit shock variable to ρθ = 0.95. Finally, I set the AR(1) parameter

on exogenous private and government bond purchases by the central bank to ρf = ρb = 0.97. This

is a good bit higher than what Sims and Wu (2020) use. The impulse responses I show are of

logs of variables – so we can interpret units of things like output, consumption, and investment

in percentage tersm. For inflation and interest, plotting the responses of logged gross rates gives

the net rates (hence lowercase letters). Interest rates and inflation rate responses are multiplied by

400, to express them in annualized percentage terms.

First, let’s look at the impulse responses to a private QE shock, by which I mean an exogenous

increase in central bank corporate bond holdings. The responses are shown below.

Figure 1: IRFs to Private QE Shock
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Private QE

The private QE shock causes output, investment, and labor input to rise. It also increases

bond prices, Qt, and pushes down the excess return on corporate bonds, Et rft+1 − rdt . Note that
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rFt initially shoots way up – the immediate, surprise increase in Qt massively increases the holding

period return for those who held long bonds initially – but I’m plotting Et rFt+1, which is what

is relevant for the decision of firms deciding how much debt to issue. Inflation rises – this shock

is stimulated aggregate demand. The rise in inflation causes the central bank to raise the policy

rate somewhat. Consumption initially declines and then rises. Effectively, the shock makes invest-

ment more attractive than consumption, so in general equilibrium consumption declines somewhat

before turning positive. The intuition for these effects is pretty simple. Banks are balance sheet

constrained. Purchasing corporate long bonds frees up space on the balance sheet for banks to buy

more – indeed, it doesn’t matter whether the central bank buys the bonds from the banks (as they

do in practice) or directly from the wholesale firm. This pushes up the price of long bonds, which

makes it easier for the wholesale firm to issue more debt given the loan in advance constraint it

faces. The increase in investment drives aggregate demand up.

Figure 2: IRFs to Public QE Shock
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Public QE

Next consider a shock to public QE (i.e. central bank purchases of government bonds, financed
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via the creation of reserves). These responses are shown in the figure above. These are basically the

same as the responses to the private QE shock, but smaller. They are smaller because buying the

same amount of corporate bonds eases the banks’ balance sheet constraints by less – by roughly a

factor of ∆, which is about one-third. This means that QE focused on government bonds works in

the same way as private bonds, but is less effective.

Next, consider the responses to the credit shock. These responses are shown below. These basi-

cally the inverse of a private or public QE shock. A credit shock exogenously tightens intermediary

balance sheet constraints, which results in less lending and hence less investment and aggregate

demand. A QE shock is kind of an inverse credit shock – it loosens intermediary balance sheet

constraints. This forms the basis of the result, in for example Carlstrom, Fuerst, and Paustian

(2017) or Sims and Wu (2019), that QE can completely undo the effects of credit shocks without

changing the policy interest rate.

Figure 3: IRFs to Credit Shock
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Credit Shock

Next, I show impulse responses to an exogenous increase in government bonds issued by the
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Treasury. In a standard model where Ricardian Equivalence holds, this would be completely irrel-

evant. But here issuing government debt is basically like a tightening of credit shocks or a negative

QE shock. Since financial intermediaries must hold government bonds, issuing more of them tight-

ens their balance sheet constraint and crowds out intermediary purchases of private debt. The

corresponding lower bond price makes it more expensive for the wholesale firm to invest, and so

aggregate demand contracts.

Figure 4: IRFs to Gov. Debt Shock
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Gov. Debt Shock

An important an interesting point here: public QE, private QE, a credit shock, and a government

debt shock are all basically the same thing (albeit with different signs). In a standard model with

frictionless financial markets, none of these shocks would matter. In this model, they all matter

because they affect the extent to which intermediaries are balance-sheet constrained. Shocks that

exogenously tighten this constraint are contractionary, and shocks which loosen the constraint are

expansionary.

Next, I show response to the “non-financial shocks” in the model – government spending,
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productivity, and the conventional monetary shock. These look fairly similar to what one would

get in a standard model. We can think about the “amplification” or “dampening” effects as being

captured by the behavior of the excess return. The financial friction dampens the response to

the government spending shock. Firms want to do less investment, which lowers the price of long

bonds. But this tightens the balance sheet constraint of intermediaries, so we see the excess return

rising, so on net output reacts less than it would without the financial friction. We see the reverse

for the government spending shocks. Firms want to increase investment; this puts upward pressure

on long bond prices. But this eases firm balance sheet constraints, which results in an increase in

the supply of credit and a lower excess return. So, on net, output reacts more. A similar force is at

play for the monetary shock (though the sign is reversed). Less demand for long bonds from firms

doing less investment puts downward pressure on prices, but this tightens firm balance sheets, and

results in an increase in excess returns, which makes the monetary shock more contractionary.

Figure 5: IRFs to Gov. Spending Shock
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Figure 6: IRFs to Productivity Shock
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Figure 7: IRFs to Monetary Shock
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Monetary Shock

6 The ZLB

In practice, QE in the United States and other countries was not deployed to combat credit shocks

per se, but rather to deal with monetary paralysis at the ZLB. In this section, I solve the model

taking the ZLB into account.

I implement a ZLB constraint using “occbin,” which is a Dynare toolki developed in Guerrieri

and Iacoviello (2015). The setup is quite general, and Iacoviello has pretty good documentation

and codes available on his website. I will not go into much detail here. The basic idea is fairly

standard. The base model is as we described above. There is a constraint that sometimes binds, in

this case the ZLB constraint, where we do not allow the policy rate (the interest rate on reserves,

which in equilibrium equals the deposit rate) to go below 1 in gross terms (or 0 in net terms). The

algorithm solves and simulates two models. The first is the base model as described here. We then

include a constraint condition, which is that whenever the notional interest rate, Rtrt , goes below

1 (again, this in gross terms), we switch to an alternative model. In the alternative model, we fix
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the gross rate on reserves at 1, Rret = 1. If you tried to solve that model on its own, you would get

indeterminacy – we know that an interest rate peg results in equilibrium indeterminacy. But since

the economy initially goes back to the steady state which is away from the ZLB, the determinacy

properties of the model are based on the base model. There are alternative ways to accomplish

the same thing. For example, one can rig the code to fix the policy rate for a desired number of

periods, after which time we go back to obeying the Taylor rule. Alternatively, one can include

“monetary news shocks” to sterilize the effects of other shocks on the policy rate for a desired

length of time. These different approaches will generate similar answers (though in some cases

there are important differences that can arise when the interest rate peg length is deterministic vs.

stochastic, see Carlstrom, Fuerst, and Paustian 2014).

To generate impulse responses using the occbin procedure, you need to pick some sequence of

shocks to drive the economy to the constraint – i.e. to push the notional interest rate below unity

in gross terms. Starting from the non-stochastic steady state, what I do is assume a sequence of

large, positive credit shocks for 9 periods. Conditional on these shocks, I generate a simulation

of the endogenous variables obeying the occasionally binding constraint. In practice, I generate a

shock sequence that causes the ZLB to bind for about 10 periods, or 2.5 years. Then I do another

simulation with the same sequence of shocks, but then in the 10th period add in a shock to one of

the other exogenous variables. I repeat the simulation, again obeying the ZLB constraint. Then I

take the difference between the simulation with the additional exogenous shock and the simulation

without it. That is the impulse response function.

The figures below show impulse responses to a subset of the exogenous shocks in the model.

Solid lines just repeat the responses I produced above. Dashed lines are responses obeying the

ZLB. You can see in these simulations that the ZLB binds for about 10 periods.
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Figure 8: IRFs to Private QE Shock, ZLB
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Consider first the effects a private QE shock. As shown above, this stimulates output even if

the Taylor reacts so as to partially sterilize it. These effects are magnified at the ZLB. Output,

consumption, investment, and labor input all react more during the periods the ZLB is active.

Inflation also rises substantially more. This is sort of a general rule – the ZLB amplifies the effects

of demand shocks (shocks which move output and inflation in the same direction). Under active

monetary policy, higher inflation triggers a higher nominal rate, which partially sterilizes the effects

on aggregate demand. At the ZLB, the inability of the nominal rate to adjust allows demand to

expand more. But then there is a feedback effect: more aggregate demand means higher inflation,

which with a fixed nominal rate, means even lower short-term real interest rates, and even more

demand. The basic conclusion here is that QE is more powerful when the policy rate is stuck at

the ZLB compared to normal times. The next figure shows IRFs to the public QE shock. Once

again, these are basically the same as the private QE shock, only smaller. But it is still the case

that the ZLB amplifies the effects of the QE shock.
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Figure 9: IRFs to Public QE Shock, ZLB
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Next, I show impulse responses to the credit shock. Because this is an aggregate demand shock,

the ZLB amplifies the effects. In ordinary times, the central bank following a Taylor rule would

cut interest rates, which would work to essentially “soften the blow” of the shock. The inability

to do so with inflation falling results in higher real rates, which further dampens demand (and

hence inflation. The amplification effects here are pretty big – at peak, the output response to the

financial shock is more than twice as big at the ZLB compared to normal times.
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Figure 10: IRFs to Credit Shock, ZLB
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Next, I show impulse responses to a government spending shock. Here again, the ZLB amplifies

the output effects, although the amplification is not that large. In particular, the government

spending multiplier remains below 1 even with a ZLB last 2.5 years – I can see this by noting that

both consumption and investment still decline (albeit not as much) at the ZLB.
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Figure 11: IRFs to Gov. Spending Shock, ZLB

0 5 10 15 20
0

0.5

1

1.5

2

2.5
10-3 Output

0 5 10 15 20
-4

-3

-2

-1

0
10-4 Consumption

0 5 10 15 20
-4

-3

-2

-1

0

1
10-3 Investment

0 5 10 15 20
0

0.5

1

1.5

2

2.5
10-3 Labor

0 5 10 15 20
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20
0

0.005

0.01

0.015

0.02

0.025

0.03
rd

Finally, I show responses to the productivity shock. Here the effects of the ZLB are flipped.

Output expands less when the policy rate is stuck at zero in comparison to normal times. The

basic intuition is the behavior of inflation. When inflation falls but the policy rate can’t react,

the real short-term rate goes up. This chokes off demand, resulting in output and other variables

reacting by less.
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Figure 12: IRFs to Productivity Shock, ZLB
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7 Endogenous QE at the ZLB

As noted above, QE was originally deployed as a substitute for conventional policy at the ZLB.

How good of a substitute it is it?

The principal innovation of Sims and Wu (2020 is to study endogenous quantitative easing in

response to other shocks, and ask the question how well this can substitute for conventional policy.

In turn, this helps inform us about how costly the ZLB is (or isn’t). In the baseline model above,

I assumed that QE (whether public or private) follows an exogenous process. I shall continue to

assume this so long as the ZLB is not binding. But when the ZLB binds, an endogenous component

to the QE rule kicks in. Focusing for ease of exposition on private QE, suppose that QE obeys the

following rule:
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fcb,t = (1− ρf )fcb + ρffcb,t−1 + sfεf,t if Rtrt > 1

fcb,t = (1− ρf )fcb + ρffcb,t−1 −Ψf (1− ρf ) [φπ ln Πt + φy(lnYt − lnYt−1)] + sfεf,t if Rtrt ≤ 1

The idea here is fairly simple. When the notional Taylor rule rate is zero or negative in net terms,

so Rtrt ≤ 1, an endogenous component to QE “kicks on” that looks qualitatively like the reaction

in the basic Taylor rule. This is given by the term −Ψf (1−ρf ) [φπ ln Πt + φy(lnYt − lnYt−1)]. The

target variables are the same as the Taylor rule, and the φπ and φy are the same as well. There is a

negative sign outside – this reflects that purchasing bonds is equivalent to cutting the policy rate,

so the QE rule during the ZLB needs to react the opposite way from how the standard Taylor rule

would.

For the exercises that follow, I use a value of Ψf = 47. Sims and Wu (2020) use Ψf = 7. What

accounts for the difference? Sims and Wu (2020) use ρf = 0.8, but for the purposes of this note

I am using ρf = 0.97. Ψ(1 − ρf ) = 1.4 in both cases. Where does this conversion factor come

from? As discussed in Sims and Wu (2020), it is how an exogenous QE shock needs to be scaled

to generate roughly the same output response as to a conventional policy shock of 100 basis points

(annualized).

To be clear, in my solution, the endogenous QE rule only turns on when the ZLB binds. Once

the ZLB lifts, we go back to the base regime, and central bank bond-holdings just follow the

exogenous AR(1) process (and hence eventually return back to zero).

In the figures below, I show responses of selected variables (i) ignoring the ZLB with exogenous

central bank bond-holdings (solid lines), (ii) imposing the ZLB but no endogenous central bank

bond-holdings (dashed black lines), and (iii) imposing the ZLB but allowing endogenous QE to

turn on as in the rule specified below (dashed blue lines).

Consider first the credit shock. For output and investment, the dashed blue lines are very close

to the solid black lines. There is much less output loss compared to the case of the ZLB and doing

nothing at all. The inflation, labor, and consumption responses are also closer to the base case

than the ZLB with exogenous QE case, though here the differences are more noticeable. This is

something that we will see for all three shocks. Endogenous QE does a good job stabilizing output

and investment, but not as good of a job getting consumption to mimic its patterns absent a ZLB.

The reason for this is fairly straightforward. Investment depends on the yield on the long term

bond, and this is what QE is impacting. Investment accounts for most of the volatility in output.

Consumption, in contrast, depends on the short-term rate via the Euler equation, and this is not

being (directly) affected via endogenous QE. But, overall, we can observe that QE seems to be a

very effective substitute for conventional policy at the ZLB, at least condition on the credit shock.
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Figure 13: IRFs to Credit Shock, ZLB with Endogenous QE
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What about for other shocks? It might not be particularly surprising that QE is a good

substitute for conventional policy conditional on credit shocks. As discussed above, and as discussed

for example in Carlstrom, Fuerst, and Paustian (2017), QE can be used to completely sterilize credit

shocks without changing the policy rate. So it’s not surprising that this simple rule, restricted to

look like the reaction part of a conventional Taylor rule, does pretty well conditioning on a credit

shock. What about other shocks? Below are responses to a government spending shock. Here we

observe that the dashed blue lines are very close to the solid black lines, and represent a significant

improvement over the dashed black lines at the ZLB with no endogenous QE. So, here again, we

would conclude that QE is an effective substitute for conventional policy.
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Figure 14: IRFs to Gov. Spending Shock, ZLB with Endogenous QE
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Finally, consider a productivity shock. The IRFs are shown below. Yet again, the dashed blue

lines are very close to the solid black lines. It’s quite clear that endogenous QE is an effective

substitute for conventional policy.
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Figure 15: IRFs to Productivity Shock, ZLB with Endogenous QE
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Although Sims and Wu (2020) also discuss negative interest rate policy and forward guidance,

really their paper is mostly about QE and in particularly endogenous QE. The results above echo

their main point: QE can be a very effective substitute for conventional short-term policy rate

adjustments at the ZLB. Among other things, this calls into question the overall cost of the ZLB.
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