
Preference-Based Explanations for the Term Premium and Swanson

and Rudebusch (2012, AEJ: Macro)

Eric Sims

University of Notre Dame

Spring 2020

1 Overview

In standard macro models, we assume that all debt is either one-period or intra-period. This is

obviously unrealistic – in the real world, many debt contracts (e.g. mortgage loans, corporate bonds)

are long-term, often ten or more years. An important long-term bond is the 10-year Treasury, for

example.

A significant component of the unconventional monetary policy actions of the last decade-plus

has been large scale asset purchases (LSAPs), more commonly referred to as quantitative easing

(QE). In its most basic form, QE involves the Fed buying long term bonds (financed via the creation

of bank reserves), with the intent of pushing their prices up and yields down. Since many private

debt instruments are priced off of long-term Treasuries, such as mortgage bonds, the idea is that

if the Fed can push down long-term bond rates, it can nevertheless stimulate interest-sensitive

components of expenditure even when short-term rates (like the Fed Funds Rate) are constrained

by the zero lower bound (ZLB).

A yield curve is a plot of interest rates (on debt instruments of the same credit risk) against

time to maturity. We most commonly look at yield curves for Treasuries. In the data, yield curves

are on average upward-sloping – it appears as though long-term bonds are riskier and investors

demand compensation to hold them relative to short term bonds in the form of higher average

yields. We can fairly easily incorporate long-term bonds into standard macro models but these

models will miss the boat. In a linearized macro model, the pure expectations hypothesis will hold,

which says that a long bond rate equals the average of the sequence of expected short rates over

the life of the long bond. Since, on average, short rates are neither trending up nor down, the pure

expectations hypothesis will predict that yield curves are flat on average. This is counterfactual.

The term premium is defined as the difference between the yield on a long bond and the

hypothetical yield that would be implied by the expectations hypothesis. This is related to the

“slope” of a yield curve but is not the same thing – the yield curve slope can change all the time

due to changes in the expected path of short-term rates even under the expectations hypothesis. In

this note, I will introduce a useful trick to incorporate a long-term bond into an otherwise standard
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macro model in a tractable way. We can then price long-term bonds and uncover their yields

to maturity, and can compare those yields to what would be predicted by the pure expectations

hypothesis. In a first order approximation, the pure expectations hypothesis holds, so there is no

term premium at all in these models.

To get a term premium, we either need to (i) use a higher order approximation in the solution

of the model, which will allow for risk premia to show up, or (ii) introduce some kind of other

friction which will generate term premia even to first order. This note is going to focus on (i); we

will then next study (ii). Although the model I consider is slightly different, this note is heavily

influenced by Rudebusch and Swanson (2012, AEJ: Macro). I will construct a sticky price model

with short- and long-term bonds. Then I will solve the model via a third order approximation.

While the term premium won’t be zero in this setup, it turns out to be close to zero and average

and nearly constant with “standard” preferences. As suggested by Rudebusch and Swanson (2012),

we can alternatively specify preferences according to Epstein and Zin (1989, Econometrica), E-Z

for short. These preferences separate out risk aversion from intertemporal substitution, which are

inextricably linked using standard preferences. With E-Z preferences, we can assume lots of risk

aversion and improve upon the asset pricing performance of standard models without much effect

on the implications for business cycle variables. The term premium is one such area. As Rudebusch

and Swanson (2012) show and as I will confirm, using EZ preferences significantly improves the fit

of the model in terms of the average term premium and its volatility. It is not clear, however, how

relevant this is for monetary policy, because in this setup the term premium is not something that

can be affected much by things like QE. Furthermore, the improved performance with respect to

the term premium with E-Z preferences depends on the exact shocks buffeting the economy.

2 Long-Term Bonds

In standard DSGE models, we assume bonds are all one-period. In reality, many debt instruments

are multi-period. From a modeling perspective, this can get overwhelming in that introducing

multi-period bonds significantly increases the number of variables one has to keep track of in a

model.

A useful “trick” is to introduce a perpetual bond with a declining coupon payment. One can

pick the decay parameter to mimic the duration of, say, a 10-year bond in the data. This follows

Woodford (2001).

In particular, suppose that issues one dollar of this long-term in bond in period t. Let this new

issuances be denoted by CBt. This obligates the issuer to a coupon payment of one dollar in t+ 1,

κ dollars in t+ 2, κ2 dollars in t+ 3, and so on, with κ ∈ [0, 1] (where κ = 0 is nests the standard

one-period bond, whereas κ = 1 is a true consol/perpetuity). The total coupon liability due in

period t is based on past issuances of the long-term bond. Let the total coupon liability due in t

be equal to Bt−1 (dated t − 1 because it is predetermined based on actions taken prior to t). It

satisfies:
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Bt−1 = CBt−1 + κCBt−2 + κ2CBt−3 + κ3CBt−4 + . . . (1)

Iterate this forward one period for the total coupon liability due in t+ 1:

Bt = CBt + κCBt−1 + κ2CBt−2 + κ3CBt−3 . . . (2)

If you combine (2) and (1), you see:

CBt = Bt − κBt−1 (3)

One issues these new long-term bonds in period t at market price Qt (note, the notation I’m

going to use is that the market price, Qt, is real, whereas the quantity of issuance is dollar-

denominated). Because of the decaying coupon structure, bonds issued in period t − j will trade

at κjQt for j ≥ 0. This ends up being super nice, because we don’t need to keep track of the price

of all previously issued long-term bonds, just the current price. In particular, the value of a long

bond portfolio on takes from t to t+ 1 is given by:

QtBt = QtCBt + κQtCBt−1 + κ2QtCBt−2 + . . . (4)

The upshot of all this is the following. We can include long bonds in the model by only keeping

track of one state variable, Bt−1 (the total outstanding coupon liability), and one price, Qt, with

the household getting to choose how much of the future state variable to issue/hold, Bt. This is

exactly how we would do a one-period bond, but it allows us to compare to the richness of the term

structure of interest rates that we observe in the data.

3 Model

3.1 Household

There is a representative household with standard preferences over consumption and labor. The

household owns and accumulates the capital stock. It earns income from supplying labor and

leasing capital to firms. It can save via a standard one period nominal bond, Dt, or through the

long-term bond discussed about, Bt. Pt is the price of goods. Its budget constraint is:

PtCt + PtIt +Dt +Qt(Bt − κBt−1) ≤WtLt +RtKt +Rdt−1Dt−1 +Bt−1 +DIVt (5)

On the expenditure side, the household consumes; purchases new capital; saves via one period

bonds, denoted via Dt; and purchases new long-term bonds, which is Qt times the issuance, which

as noted above can be written Bt − κBt−1. On the income side, the household earns labor and

rental income, interest plus principal on its short-term bonds, the total coupon payment from its

holdings of long-term bonds, Bt−1, and a nominal dividend payout, DIVt, from its ownership stake

in production firms.
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Capital accumulates according to a law of motion with Christiano, Eichenbaum, and Evans

(2005) style “I-dot” adjustment costs:

Kt+1 =

[
1− S

(
It
It−1

)]
It + (1− δ)Kt (6)

The function S(·) satisfies: S(1) = S′(1) = 0, while S′′(1) = φi ≥ 0.

Formally, the household problem is:

max
Ct,Lt,Dt,Bt,It,Kt+1

E0

∞∑
t=0

βt

{
C1−σ
t

1− σ
− ψ L

1+χ
t

1 + χ

}
s.t.

PtCt + PtIt +Dt +Qt(Bt − κBt−1) ≤WtLt +RtKt +Rdt−1Dt−1 +Bt−1 +DIVt

Kt+1 =

[
1− S

(
It
It−1

)]
It + (1− δ)Kt

A downside of these preferences is that they are not consistent with balanced growth unless

σ = 1, in which case flow utility from consumption reduces to the natural log. Let’s ignore that –

I’m not going to write down the model with permanent shocks anyway. Let λt be the multiplier

on the budget constraint, and µt the multiplier on the capital accumulation equation. Form a

Lagrangian:

L = E0

∞∑
t=0

βt

{
C1−σ
t

1− σ
− ψ L

1+χ
t

1 + χ
+ µt

[[
1− S

(
It
It−1

)]
It + (1− δ)Kt −Kt+1

]

+ λt

[
WtLt +RtKt +Rdt−1Dt−1 +Bt−1 +DIVt − PtCt − PtIt −Dt −Qt(Bt − κBt−1)

]}

The FOC are:

∂L
∂Ct

= C−σt − λtPt

∂L
∂Lt

= −ψLχt + λtWt

∂L
∂It

= µt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
− λtPt + β Et µt+1S

′
(
It+1

It

)(
It+1

It

)2

∂L
∂Dt

= −λt + β Et λt+1Rt

∂L
∂Bt

= −λtQt + β Et λt+1 (1 + κQt+1)
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∂L
∂Kt+1

= −µt + β Et λt+1Rt+1 + β Et µt+1(1− δ)

Set these equal to zero and eliminate λt. For the labor supply condition, we get:

ψLχt = wtC
−σ
t (7)

For the short-term bond condition, we get:

1

PtCσt
= β Et

1

Pt+1Cσt+1

Rt

Which can be written:

1 = Et Λt,t+1RtΠ
−1
t+1 (8)

Where I have introduced Λt,t+1 as the household’s real stochastic discount factor:

Λt−1,t = β

(
Ct−1
Ct

)σ
(9)

And have defined Πt = Pt/Pt−1 as the gross inflation rate.

For the long-term bond FOC, we have:

Qt
PtCσt

= β Et
1

Pt+1Cσt+1

(1 + κQt+1)

Which may similarly be written using the SDF:

Qt = Et Λt,t+1Π
−1
t+1(1 + κQt+1) (10)

The FOC for capital may be written:

µt = β Et [λt+1Rt+1 + µt+1(1− δ)]

Subbing out λt+1, and defining rt = Rt/Pt as the real rental rate, we have:

µt = β Et
[

1

Cσt+1

rt+1 + µt+1(1− δ)
]

Now, define qt = µtC
σ
t . This is the ratio of the Lagrange multiplier on the accumulation

equation to the marginal utility of consumption. The Lagrange multiplier says how many utils you

get from having more capital (i.e. by relaxing the constraint); dividing by the marginal utility of

consumption (with these preferences multiplying by consumption) tells us how many additional

units of consumption is equivalent to having more capital. Multiply both sides of the above by Ct:

µtC
σ
t = β Et

[(
Ct
Ct+1

)σ
rt+1 + Cσt µt+1(1− δ)

]
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Now, multiply and divide by Cσt+1 inside the brackets:

µtC
σ
t = β Et

[(
Ct
Ct+1

)σ
rt+1 +

(
Ct
Ct+1

)σ
Cσt+1µt+1(1− δ)

]
But then using this new definition, we have:

qt = Et Λt,t+1 [rt+1 + (1− δ)qt+1] (11)

(11) is just a standard asset pricing condition – the value of capital today is the discounted

value of its flow benefit (the rental rate) plus its continuation value (adjusted for depreciation).

The FOC for investment may be written:

λtPt = µt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ β Et µt+1S

′
(
It+1

It

)(
It+1

It

)2

Which is:

1 = µtC
σ
t

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ βCσt Et µt+1S

′
(
It+1

It

)(
It+1

It

)2

Multiply and divide by Ct+1 in the final term:

1 = µtC
σ
t

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ βCσt Et

1

Cσt+1

Cσt+1µt+1S
′
(
It+1

It

)(
It+1

It

)2

But then in terms of qt:

1 = qt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ Et Λt,t+1qt+1S

′
(
It+1

It

)(
It+1

It

)2

(12)

If there were no adjustment cost, then this would just tell us qt = 1.

3.2 Wholesale Firm

There is a wholesale firm, denoted with a w subscript. It produces output using:

Yw,t = AtK
α
t L

1−α
t (13)

The wholesale firm hires labor and leases capital from the household. It sells its output to retail

firms (discussed below) at Pw,t. Its problem is:

max
Lt,Kt

Pw,tAtK
α
t L

1−α
t −WtLt −RtKt

The FOC are:

Wt = (1− α)Pw,tAtK
α
t L
−α
t
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Rt = αPw,tAtK
α−1
t L1−α

t

Define mct = Pw,t/Pt (this will be real marginal cost for the retailers). These FOC in terms of

real prices are then:

wt = (1− α)mctAtK
α
t L
−α
t (14)

rt = αmctAtK
α−1
t L1−α

t (15)

The wholesale firm earns zero real profit in equilibrium:

mctAtK
α
t L

1−α
t − (1− α)mctAtK

α
t L

1−α
t − αmctAtKα

t L
1−α
t = 0

3.3 Final Goods Firm

There are a continuum of retailers indexed by z ∈ [0, 1]. They costlessly transform wholesale

output, Yw,t, purchased at Pwt , into retail output, Yt(z). They then sell this retail output to a

competitive final goods firm at Pt(z). The competitive final goods firm produces final output:

Yt =

(∫ 1

0
Yt(z)

ε−1
ε dz

) ε
ε−1

(16)

Demand for each retail good is:

Yt(z) =

(
Pt(z)

Pt

)−ε
Yt (17)

And the price index is:

P 1−ε
t =

∫ 1

0
Pt(z)

1−εdz (18)

3.4 Retailers

Retailers simply repackage wholesale output, so their production function is Yt(z) = Yw,t(z). Their

nominal profit is:

DIVt = Pt(z)Yt(z)− Pw,tYw,t(z) = Pt(z)Yt(z)− Pw,tYt(z)

Plug in the demand function, (17):

DIVt = Pt(z)
1−εP εt Yt − Pw,tPt(z)−εP εt Yt

Written in real terms:

divt = Pt(z)
1−εP ε−1t Yt −mctPt(z)−εP εt Yt
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Retailers can only update their price in a given period with probability 1 − θ; this is also the

fraction of retailers who can update in any period. A price chosen in period t will be in effect k

periods into the future with probability θk.

The problem of an updating retailer is to pick Pt(z) to maximize the PDV of real dividends,

discounting by the household’s SDF and the probability that a price chosen today will still be in

effect in the future:

max
Pt(z)

Et
∞∑
s=0

θsΛt,t+s

{
Pt(z)

1−εP ε−1t+s Yt+s −mct+sPt(z)−εP εt+sYt+s
}

The FOC is:

(1− ε)Pt(z)−ε Et
∞∑
s=0

θsΛt,t+sP
ε−1
t+s Yt+s + εPt(z)

−ε−1 Et
∞∑
s=0

θsΛt,t+smct+sP
ε
t+sYt+s

Setting equal to zero, and noting that Pt(z) = P ∗t which does not vary across retailers:

P ∗t =
ε

ε− 1

Et
∞∑
s=0

θsΛt,t+smct+sP
ε
t+sYt+s

Et
∞∑
s=0

θsΛt,t+sP
ε−1
t+s Yt+s

Define Π∗t = P ∗t /Pt as the relative reset price, and introduce two auxiliary variables as recursive

representations of the infinite sums. We get:

Π∗t =
ε

ε− 1

z1,t
z2,t

(19)

z1,t = mctYt + θEt Λt,t+1Π
ε
t+1z1,t+1 (20)

z2,t = Yt + θEt Λt,t+1Π
ε−1
t+1z2,t+1 (21)

3.5 Monetary Policy

The gross nominal interest rate is set according to a Taylor rule:

Rt = R1−ρRRρRt−1

[
Πφπ
t (Yt/Y )φY

]1−ρR
exp(sRεR,t) (22)

3.6 Aggregation

Aggregate production and price-setting conditions are:

1 = θΠε−1
t + (1− θ)(Π∗t )1−ε (23)

AtK
α
t L

1−α
t = Ytv

p
t (24)
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vpt is a measure of price dispersion, which can be written:

vpt = (1− θ)(Π∗t )−ε + θΠε
tv
p
t−1 (25)

At obeys an AR(1) process that is mean-zero in the log:

lnAt = ρA lnAt−1 + sAεA,t (26)

We do not need to specify anything about the quantities of long- or short-term debt to solve

the model. These quantities are actually irrelevant the way in which we have written down the

model. The aggregate resource constraint is standard:

Yt = Ct + It (27)

3.7 Bond Returns and the Term Premium

We can define the holding period return on the long bond, RB,t, as:

RB,t =
1 + κQt
Qt−1

(28)

In the numerator, we have the coupon payment from buying a bond in t − 1, 1, plus the

continuation value of a bond issued in t− 1 in period t, which is κQt. In the denominator we have

the purchase price. So (28) is the gross holding period return.

The yield to maturity on the long bond is the (gross) discount rate that equates the price of

the bond to the PDV of cash flows from holding it forever. It therefore satisfies:

Qt =
1

Ry,t
+

κ

R2
y,t

+
κ2

R3
y,t

+ . . .

This can be written:

Qt =
1

Ry,t

[
1 +

κ

Ry,t
+

κ2

R2
y,t

+ . . .

]
=

1

Ry,t

Ry,t
Ry,t − κ

=
1

Ry,t − κ

We therefore have:

Ry,t = Q−1t + κ (29)

Note that (29) is only the same as (28) in the steady state.

The term premium is defined as the difference between the yield on the long-bond and a hy-

pothetical “expectations hypothesis” bond. The price of the hypothetical expectations hypothesis

bond satisfies:

QEH,t =
1 + κEtQEH,t+1

Rdt
(30)
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In other words, the expectations hypothesis bond price, QEH,t, is implicitly defined by discount-

ing the stream of cash flows by the safe, short-term gross interest rate, Rdt . The yield to maturity

on the hypothetical expectations hypothesis bond takes the same form as (29):

REH,t = Q−1EH,t + κ (31)

The gross term premium, TPt, is then the ratio of the yield on the long-term bond and the

hypothetical expectations hypothesis yield:

TPt =
Ry,t
REH,t

(32)

3.8 Full Set of Equilibrium Conditions

• Household

ψLχt = wtC
−σ
t (33)

1 = Et Λt,t+1R
d
tΠ
−1
t+1 (34)

Λt−1,t = β

(
Ct−1
Ct

)σ
(35)

Qt = Et Λt,t+1Π
−1
t+1(1 + κQt+1) (36)

qt = Et Λt,t+1 [rt+1 + (1− δ)qt+1] (37)

1 = qt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ Et Λt,t+1qt+1S

′
(
It+1

It

)(
It+1

It

)2

(38)

• Wholesale Firm:

wt = (1− α)mctAtK
α
t L
−α
t (39)

rt = αmctAtK
α−1
t L1−α

t (40)

• Retail Firm:

Π∗t =
ε

ε− 1

z1,t
z2,t

(41)

z1,t = mctYt + θEt Λt,t+1Π
ε
t+1z1,t+1 (42)

z2,t = Yt + θEt Λt,t+1Π
ε−1
t+1z2,t+1 (43)

• Monetary Policy:
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Rdt = (Rd)1−ρR(Rdt−1)
ρR
[
Πφπ
t (Yt/Y )φY

]1−ρR
exp(sRεR,t) (44)

• Aggregate Conditions:

1 = θΠε−1
t + (1− θ)(Π∗t )1−ε (45)

AtK
α
t L

1−α
t = Ytv

p
t (46)

vpt = (1− θ)(Π∗t )−ε + θΠε
tv
p
t−1 (47)

lnAt = ρA lnAt−1 + sAεA,t (48)

Kt+1 =

[
1− S

(
It
It−1

)]
It + (1− δ)Kt (49)

Yt = Ct + It (50)

• Bond returns and yields:

RB,t =
1 + κQt
Qt−1

(51)

Ry,t = Q−1t + κ (52)

QEH,t =
1 + κEtQEH,t+1

Rdt
(53)

REH,t = Q−1EH,t + κ (54)

TPt =
Ry,t
REH,t

(55)

This is
{
Yt, Ct, Lt,Kt, It, At,Λt−1,t, wt, rt, qt,mct, R

d
t ,Πt,Π

∗
t , z1,t, z2,t, v

p
t , Qt, RB,t, Ry,t, QEH,t, REH,t, TPt

}
23 equations and 23 variables. The only two exogenous shocks are to productivity and monetary

policy – i.e. a “supply” and a “demand” shock.
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3.9 Steady State

Let variables without time subscripts denote non-stochastic steady state values. I assume zero

trend inflation (so Π = 1 in gross terms) A couple are easy and just drop out:

Λ = β (56)

Rd = β−1 (57)

Π∗ = 1 (58)

vp = 1 (59)

mc =
ε

ε− 1
(60)

q = 1 (61)

We can solve for the steady state long bond price as:

Q =

(
1

β
− κ
)−1

(62)

We can immediately see that the steady state expectations hypothesis bond price is the same

thing:

QEH =

(
1

β
− κ
)−1

(63)

But since the price of the long-bond and the hypothetical expectations hypothesis bond price

are the same, their yields will also be the same:

Ry = REH =
1

β
(64)

Which then implies that there is no term premium in the steady state:

TP = 1 (65)

This is an important point that we shall return to below – in a frictionless model (frictionless

from the perspective of bond-pricing; there are other frictions like sticky prices and monopolistic

competition in this model) there is no term premium in the steady state. The term premium

can only arise in terms of stochastic means based on covariances between bond returns and the

stochastic discount factor. Since the steady state is non-stochastic, there will be no term premium

in the steady state. And since in a first-order approximation, the stochastic mean of a variable

equals the non-stochastic steady state, there will be no mean term premium (and hence no slope

of the yield curve) without going to a higher order approximation.

For the rest of the model, let us normalize L = 1 by appropriately picking ψ. A = 1 in the

steady state. Combine the expression for the rental rate on capital with the household’s FOC for
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capital knowing that q = 1 (which comes from the FOC for investment given assumptions on S(·)).
We get:

1 = β
[
αmcKα−1 + (1− δ)

]
But then we can solve for K:

K =

(
αmc

1
β − (1− δ)

) 1
1−α

(66)

But once we know steady state K, we know steady state I. And given L = 1, we know steady

state Y , w, and r. And hence we also know steady state C:

Y = Kα (67)

I = δK (68)

C = Kα − δK (69)

w = (1− α)mcKα (70)

r = αmcKα−1 (71)

But then we can solve for the requisite ψ to be consistent with our normalization of L = 1:

ψ =
(1− α)mcKα

(Kα − δK)σ
(72)

4 Parameterization, Moments, and Higher Order Approximations

I use a standard parameterization: β = 0.99, α = 1/3, δ = 0.025, σ = 2, ε = 11, χ = 1, and

θ = 0.75. I specify the Taylor rule with φπ = 1.5, φy = 0.25/4. I calibrate the productivity

shock to have ρA = 0.95 and sA = 0.005, while the standard deviation of the monetary shock is

sR = 0.003. For the long bond, I set κ = 1−40−1, which implies roughly a duration of 10 years (40

quarters). The investment adjustment cost function takes the form S(·) = ψi
2 (It/It−1 − 1)2, and I

set ψi = 2.

If we solve the model via a first order approximation, we get impulse responses of consumption

and the long bond price of:
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Figure 1: IRFs to Shocks, First Order Solution
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Why do I plot these? Focus on a productivity shock (first column). This causes long bonds to

do well – their price goes up. Essentially what is going on is that the shock is deflationary, which

causes the Fed to lower short term rates. Lower short rates are good for long-term bond prices.

But while long term bond prices go up, consumption is also rising. This means, conditional on

this shock, that long-term bonds are risky in the sense that they do well (high prices) when you

don’t value them doing well that much (consumption high, so marginal utility low). Flipping things

around, when consumption is low (marginal utility is high), you’d really value an asset that has

high payouts in those states. But the long bond does poorly in such states.

We see the same pattern (albeit reversed) conditional on the monetary policy shock. A con-

tractionary policy shock raises short-term rates. This causes long-term bond prices to fall and

consumption to fall. So long-term bonds are doing poorly precisely when you’d like them to do

well (i.e. when consumption is low, so marginal utility of consumption is high).

Without getting into the mathematics, what this means is that we ought to expect to see long

bonds trade at a discount relative to what the hypothetical expectations hypothesis bond would,

where, as noted above, discounting is by the short-term rate rather than the stochastic discount

factor. Because yields are inversely related to prices, we would therefore expect the yield on the

long bond to reflect a premium for bearing this risk.

To investigate whether in fact we get a premium, we have to solve the model beyond first-order.

To first-order, the model is certainty equivalent and there are no risk premia. If we solve the model

via a second-order approximation, we will got non-zero risk premia but these will be constant.

So let’s go out to a third-order approximation. When I solve the same model via a third-order

approximation, I do in fact get a positive term premium. But it is extremely small and close to

constant – in my solution, the (annualized percentage) term premium is merely 0.03, while its
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standard deviation is 0.0006. These results are consistent with Rudebusch and Swanson (2012) –

in the data, the average term premium on a 10 year bond is about 100 basis points (so 1 instead of

0.017) and its volatility is about 0.5. With expected utility preferences (see Table 2 in their paper),

I am able to get a slightly positive average term premium, but it is very close to zero and close to

constant.

The conclusion here is that, using the “standard preferences” we like to use in macro models,

you really can’t get much of a term premium at all. This result belongs to a long-list of asset-pricing

failures in macro models with standard preferences.

5 Preference-Based Explanations for the Term Premium

Where Swanson and Rudebusch (2012) come in is they change preferences. In particular, they use

Epstein-Zin preferences. These are not super easy to work with, but the basic gist is that they

allow one to separate the coefficient of relative risk aversion from the intertemporal elasticity of

substitution. With the standard preferences we like to work with (like the ones above)

Let the lifetime utility function be:

Vt = u(Ct, Lt) + β
(
Et V 1−ζ

t+1

) 1
1−ζ

(73)

When ζ = 0, this just gives us back our standard specification, where I have assumed u(Ct, Lt) =
C1−σ
t
1−σ − ψ

L1+χ
t
1+χ . Note that one would be tempted to “distribute and cancel” the 1 − ζ terms. But

you cannot do this – the exponent 1−ζ is inside an expectations operator while the 1
1−ζ is applying

to the entire expectation. Suppose, for example, that there are two states of nature in t+ 1, with

probability p and 1 − p. Call these states (1) and (2). Then this last term that gets discounted

would be:

(
Et V 1−ζ

t+1

) 1
1−ζ

=
(
pVt+1(1)1−ζ + (1− p)Vt+1(2)1−ζ

) 1
1−ζ

Hence, you cannot distribute and hence eliminate the terms involving ζ, unless, of course, ζ = 0,

in which case we’d be back in the usual case. Swanson and Rudebusch make this all sort of clear

by explicitly using state notation. I’m going to in part do that in what follows.

Let’s form a Lagrangian for the household problem. This is going to look a bit different because

we’re going to include (73) as a constraint. The Lagrangian is:
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L = V0 − E0

∞∑
t=0

ωt

{
C1−σ
t

1− σ
− ψ L

1+χ
t

1 + χ
+ β

∑
st+1

π(st+1)Vt+1(st+1)
1−ζ

 1
1−ζ

− Vt

}
+

E0

∞∑
t=0

βtµt

[[
1− S

(
It
It−1

)]
It + (1− δ)Kt −Kt+1

]

+ E0

∞∑
t=0

βtλt

[
WtLt +RtKt +Rdt−1Dt−1 +Bt−1 +DIVt − PtCt − PtIt −Dt −Qt(Bt − κBt−1)

]
π(st+1) denotes the probability of each possible state of nature, st+1, materializing (implicitly

this is conditional on the current state, st). I only use this notation for the part explicitly referencing

the value function, though it is implicitly picked up by the expectations operators for other parts

of the Lagrangian. Vt+1(st+1) is the value function in a particular state. The summation operator

sums across possible states. It’s important to be clear about this. We will be taking a derivative

wrt to Vt(st) above, where the optimization occurs in period t− 1. You are effectively picking the

value function in each state ahead of time.

The derivatives are:

∂L
∂Ct

= ωtC
−σ
t − βtλtPt

∂L
∂Lt

= −ωtψLχt + βtλtWt

∂L
∂Dt

= −λt + β Et λt+1Rt

∂L
∂It

= µt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
− λtPt + β Et µt+1S

′
(
It+1

It

)(
It+1

It

)2

∂L
∂Kt+1

= −µt + β Et λt+1Rt+1 + β Et µt+1(1− δ)

∂L
∂Vt

= ωt−1
β

1− ζ

(∑
st

π(st)Vt(st)
1−ζ

) 1
1−ζ−1

(1− ζ)Vt(st)
−ζ − Et−1 ωt

The last condition can more compactly be written using conventional expectation operator

notation as:

ωt−1β(Et−1 V 1−ζ
t )

ζ
1−ζ V −ζt = Et−1 ωt

Setting the first equal to zero, we have:

λt =
ωt

βtPtCσt
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Plugging this into the second, for example, the λt and ωt cancel, leaving a standard FOC for

labor:

ψLχt = wtC
−σ
t (74)

Now, let’s start to think about the stochastic discount factor. Go to the FOC for bonds. We

get:

1 = β Et
λt+1

λt
Rdt

Plugging in for λt, we’d have:

1 = β Et
ωt+1

βt+1Pt+1Cσt+1

βtPtC
σ
t

ωt
Rdt

Which would be:

1 = Et
ωt+1

ωt

(
Ct
Ct+1

)σ Pt
Pt+1

Rdt

Where is this getting us? Now to the FOC for Vt, setting it equal to zero:

Et−1 ωt = βωt−1

(
Et−1 V 1−ζ

t

) −ζ
1−ζ Et−1 V −ζt (75)

Now, suppose that ζ = 0. This should correspond to the standard expected utility case. This

would then imply that:

Et−1 ωt = βωt−1

Iterating forward one period, we’d have:

Etωt+1 = βωt

But plugging this into the bond Euler equation, we’d have:

1 = β Et
(

Ct
Ct+1

)σ
RdtΠ

−1
t+1

But this would be exactly standard! So the SDF would be identical to the usual case when

ζ = 0. But when ζ > 0, it’s more complicated. Let’s consider the more general case. Go back to

(75). Iterate it forward one period. We get:

Et ωt+1 = βωt

(
Et V 1−ζ

t+1

) −ζ
1−ζ

V −ζt+1 (76)

We have:
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Et ωt+1

ωt
= β

(
Et V 1−ζ

t+1

) −ζ
1−ζ

V −ζt+1 (77)

Plugging that in for the Euler equation above, for example, we have:

1 = Et β
(
Et V 1−ζ

t+1

) ζ
1−ζ

V −ζt+1

(
Ct
Ct+1

)σ
RdtΠ

−1
t+1

We can thus define the real stochastic discount factor as:

Λt,t+1 = β

(
Ct
Ct+1

)σ Vt+1(
Et V 1−ζ

t+1

) 1
1−ζ


−ζ

With this, the multipliers drop out and give us the standard-looking intratemporal labor supply

condition. Furthermore, the rest of the equilibrium conditions in the model look identical. All that

is different is the stochastic discount factor, with ζ = 0 reverting to the case I used above.

5.1 Quantitative Analysis

I’m going to use the same parameterization as above, but am going to (roughly) follow Rudebusch

and Swanson and set ζ = −150 (note the corresponding parameter in their notation is α, not ζ,

where I have used α for the production function). Note that there is a subtle issue about the sign

of ζ. See the sentences in Rudebusch and Swanson under equation (4): “When u ≥ 0 everywhere,

higher values of α correspond to greater degrees of risk aversion. When u ≤ 0 everywhere, the

opposite is true: higher values of α correspond to lesser degrees of risk aversion.” With σ > 1, the

sign of the flow utility function is in fact negative, so we need ζ < 0 to correspond to more risk

aversion. But if we changed things to scale where flow utility was positive (or, say, we assumed

σ < 1), we would instead need positive values of ζ.

Using exactly the same calibration as above, I am able to get a significantly more positive

average term premium. In particular, I get an average term premium of 0.38 and a standard

deviation of the term premium of 0.009. These are not exactly the same as what Swanson and

Rudebusch (2012) report but are in the same ballpark, particularly for the mean. The model details

are somewhat different – I have variable investment and they do not, for example, plus I’m using

perpetual bonds with decaying coupons rather than a straight up forty quarter bonds.

It is interesting to note that using E-Z preferences with a large ζ and solving the model via

a third-order approximation have essentially no effect on the behavior of macro variables. See

the impulse responses below and compare them to the IRFs with standard preferences under a

first-order solution – they are virtually identical.
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Figure 2: IRFs to Shocks, Third Order Solution, ζ = −150
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The following is a loose and probably not 100 percent correct characterization. What matters

for macro dynamics is the elasticity of substitution, not the amount of risk aversion per se. What

matters for asset prices (and only to higher-order) is the coefficient of relative risk aversion. With

“standard” preferences these are one in the same – the elasticity of intertemporal substitution is

the inverse of the coefficient of relative risk aversion. Generating amplification and persistence

in a macro model requires high elasticities of substitution, such as implied by the popular log

specification (i.e. σ = 1). But this is very low risk aversion, resulting in macro models doing very

poorly in matching facts about asset prices. This is really nothing more than a restatement of the

equity premium puzzle.

In a nutshell, Epstein-Zin preferences allow you to separate risk aversion from the elasticity of

substitution. You can assume lots of risk aversion without impacting the elasticity of substitution

and hence the behavior of macro variables. But it improves the asset pricing performance of the

model – as we can see here, with E-Z preferences we get a much higher average term premium and it

is more volatile. But since these preferences aren’t really relevant for macro dynamics, they’re not

really relevant for policy. For example, large scale asset purchases (LSAPs, or QE) are putatively

aimed at impacting term premia. But with preference-based explanation for the term premia such

as resorting to E-Z preferences, there really is not way for policy to impact the term premium

(because it is based on covariances of long bond prices with consumption), and even if it could it

wouldn’t matter. So this is somewhat dissatisfying.

Another potential problem that arises with this preference based explanation of the term pre-

mium is that it will only work conditional on certain types of shocks. If one thinks about recessions

as periods when short-term interest rates are low, then long-term bonds should do well – bond

prices move opposite interest rates, so if interest rates are low in a recession, long bond prices will
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be high, which makes them a hedge against low consumption (high marginal utility of consumption)

in a recession. So with a preference-based explanation of the term premium, if we think recessions

are period where short-term rates are low, we’d expect the term premia to on average be negative,

not positive.

So why am I able to get a positive average term premium in the analysis above? It’s because

the shocks are rather carefully chosen to undue the intuition from the previous paragraph. A

negative technology shock causes inflation to rise, which in turn causes the central bank to raise

the short-term rate. This would be bad for long-bond prices, which would fall. These prices would

be falling precisely when the household would like them to not (i.e. when consumption is low /

marginal utility high). Similarly, consider a monetary shock. An exogenous contractionary shock

causes short rates to rise and long bond prices to fall at the same time consumption is falling. The

household again doesn’t like this – it would like an asset where Q is high when consumption is low,

and demands compensation in the form of a higher yield to hold it. If you make the household risk

averse enough via ζ, you can get the average term premium to be empirically plausible conditional

on these shocks.

So let’s think about another kind of shock that won’t have this feature. A good candidate is a

marginal efficiency of investment shock (Justiniano, Primiceri, and Tambalotti 2010, 2011). Such

a shock would appear as an exogenous term in the capital accumulation equation:

Kt+1 = νt

[
1− S

(
It
It−1

)]
It + (1− δ)Kt (78)

νt governs the efficiency of transforming investment into new physical capital. Several authors,

such as Justiniano, Primiceri, and Tambalotti (2010, 2011) have stressed this kind of shock as an

important business cycle shock. This is only going to show up in the FOC for investment as follows:

1 = qtνt

[
1− S

(
It
It−1

)
− S′

(
It
It−1

)
It
It−1

]
+ Et Λt,t+1qt+1νt+1S

′
(
It+1

It

)(
It+1

It

)2

(79)

Assume it follows an AR(1) with non-stochastic mean normalized to unity:

ln νt = ρν ln νt−1 + sνεν,t (80)

Below are the impulse responses to a positive MEI shock assuming ρν = 0.90 and using all the

same values for other parameters.
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Figure 3: IRFs to MEI Shock
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Consumption initially falls (output would rise); this is because νt being high makes the household

want to substitute away from consumption and into investment. The shock is inflationary, and hence

associated with short-term rates rising. The long-bond price actually initially declines, but rises

after about six periods. Consumption, in contrast, stays below its starting point for more than

ten periods. This makes the long bond a good hedge compared to the productivity and monetary

shocks discussed above – the long bond does well when consumption is low. This results in the

average term premium being negative at a mean value of -0.3 (annualized percentage points).
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