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1 Introduction

This note describes the canonical real business cycle model. A couple of classic references here are

Kydland and Prescott (1982), King, Plosser, and Rebelo (1988), and King and Rebelo (2000). The

model is essentially just the neoclassical growth model augmented to have variable labor supply.

2 The Decentralized Model

I will set the problem up as a decentralized model, studying first the behavior of households and

then the behavior of firms.

There are two primary ways of setting the model up, which both yield identical solutions. In

both households own the firms, but management and ownership are distinct, and so households

behave as though firm profits are given. In one formulation firms own the capital stock. In another

formulation, households own the capital stock and rent it to firms. We will go through both

formulations. Absent some other kind of friction, it doesn’t matter how we specify ownership.

In both setups I abstract from trend growth, which, as we have seen, does not really make much

of a difference anyway.

2.1 Firms Own the Capital Stock

Here we assume that firms own the capital stock. We begin with the household problem.

2.1.1 Household Problem

There is a representative household. It discounts the future by β < 1. It supplies labor (measured

in hours), Nt, and consumes, Ct. It gets utility from consumption and leisure; with the time

endowment normalized to unity, leisure is 1 − Nt. It earns a wage rate, wt, which it takes as

given. It holds bonds, Bt, which pay interest rate rt−1. rt−1 is the interest rate known at t − 1

which pays out in t; rt is the interest rate known in t which pays out in t + 1. Bt > 0 means
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that the household has a positive stock of savings; Bt < 0 means the household has a stock of

debt. Note that “savings” is a stock; “saving” is a flow. The household takes the interest rate as

given. Its budget constraint says that each period, total expenditure cannot exceed total income. It

earns wage income, wtNt, profit distributions in the form of dividends, Πt, and interest income on

existing bond holds, rt−1Bt (note this can be negative, so that there is an interest cost of servicing

debt). Household expenditure is composed of consumption, Ct and saving, Bt+1 − Bt (i.e. the

accumulation of new savings). Hence we can write the constraint:

Ct + (Bt+1 −Bt) ≤ wtNt +Πt + rt−1Bt (1)

Note a timing convention – rt−1 is the interest you have to pay today on existing debt. rt is

what you will have to pay tomorrow, but you choose how much debt to take into tomorrow today.

Hence, we assume that the household observes rt in time t. Hence we can treat rt as known from

the perspective of time t. The household chooses consumption, work effort, and the new stock of

savings each period to maximize the present discounted value of flow utility:

max
Ct,Nt,Bt+1

E0

∞∑
t=0

βt (u(Ct) + v(1−Nt))

s.t.

Ct +Bt+1 ≤ wtNt +Πt + (1 + rt−1)Bt

We can form a current value Lagrangian:

L = E0

∞∑
t=0

βt (u(Ct) + v(1−Nt) + λt(wtNt +Πt + (1 + rt−1)Bt − Ct −Bt+1))

The first order conditions characterizing an interior solution are:

∂L
∂Ct

= 0 ⇐⇒ u′(Ct) = λt (2)

∂L
∂Nt

= 0 ⇐⇒ v′(1−Nt) = λtwt (3)

∂L
∂Bt+1

= 0 ⇐⇒ λt = βEtλt+1(1 + rt) (4)

These can be combined together to yield:
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u′(Ct) = βEt

(
u′(Ct+1)(1 + rt)

)
(5)

v′(1−Nt) = u′(Ct)wt (6)

(5) and (6) have very intuitive, intermediate micro type interpretations. (5) says that the price

you’re willing to pay for a bond today (normalize to unity) is the expected value of the product

of the stochastic discount factor, βu′(Ct+1)/u
′(Ct) (which is just the marginal rate of substitution

between future and current consumption), with the return on the bond, 1 + rt. (6) says to equate

the marginal rate of substitution between leisure and consumption (i.e. v′(1−nt)
u′(ct)

) to the relative

price of leisure (i.e. wt).

In addition, there is the transversality condition:

lim
t→∞

βtBt+1u
′(Ct) = 0 (7)

This condition just rules out over-saving or dying in debt.

2.1.2 The Firm Problem

There is a representative firm. The firm wants to maximize the present discounted value of (real)

net revenues (i.e. cash flows). It discounts future cash flows by the stochastic discount factor of the

household. The way I’ll write the stochastic discount factor puts cash flows (measured in goods)

in terms of current consumption (we take the current period to be t = 0). Define the stochastic

discount factor as:

Λ0,t = βt u
′(Ct)

u′(C0)

The firm discounts by this because this is how consumers value future dividend flows. One unit

of dividends returned to the household at time t generates u′(Ct) additional units of utility, which

must be discounted back to the present period (which we take to be 0), by βt. Dividing by u′(C0)

gives the period 0 consumption equivalent value of the future utils. So Λ0,t is the relative valuation

the household attaches to income received in t from the perspective of period 0; alternatively, Λt,t+j

is the valuation in period t of income received in t + j. The stochastic discount factor is itself a

random variable (hence “stochastic”): from the perspective of period 0, one doesn’t know what

marginal utility will be in period t.

The firm produces output, Yt, according to a constant returns to scale production function,

Yt = AtF (Kt, Nt), with the usual properties. It hires labor, purchases new capital goods, and

issues debt. I denote its debt as Dt, and it pays interest on its debt, rt−1. Its revenue each period

is equal to output. Its costs each period are the wage bill, investment in new physical capital, and
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servicing costs on its debt. Investment in new physical capital is assumed to be one-for-one in terms

of output. It can raise its cash flow by issuing new debt (i.e. Dt+1 −Dt raises cash flow). The firm

can essentially issue equity to finance capital by reducing its dividend. Its problem can be written

as:

max
Nt,It,Dt+1,Kt+1

V0 = E0

∞∑
t=0

Λ0,t (AtF (Kt, Nt)− wtNt − It +Dt+1 − (1 + rt−1)Dt)

s.t.

Kt+1 = It + (1− δ)Kt

We can re-write the problem by imposing that the constraint hold each period:

max
Nt,Kt+1,Dt+1

V0 = E0

∞∑
t=0

Λ0,t (AtF (Kt, Nt)− wtNt −Kt+1 + (1− δ)Kt +Dt+1 − (1 + rt−1)Dt)

The first order conditions are as follows:

∂V0

∂Nt
= 0 ⇔ AtFN (Kt, Nt) = wt (8)

∂V0

∂Kt+1
= 0 ⇔ 1 = EtΛt,t+1((At+1FK(Kt+1, Nt+1) + (1− δ)) (9)

∂V0

∂Dt+1
= 0 ⇔ 1 = EtΛt,t+1(1 + rt) (10)

Note that (10) is the same as (6). This must therefore must hold in equilibrium as long as

the household is optimizing. What this means, in practice, is that the amount of debt the firm

issues is indeterminate, since the condition will hold for any choice of Dt+1. This is essentially the

Modigliani-Miller theorem – it doesn’t matter how the firm finances its purchases of new capital –

debt or equity – and hence the debt/equity mix is indeterminate.

2.1.3 Closing the Model

To close the model we need to specify a stochastic process for the exogenous variable(s). The only

exogenous variable in the model is At. We assume that it is well-characterized as following a mean

zero AR(1) in the log (we have abstracted from trend growth):

lnAt = ρ lnAt−1 + sAεt (11)

We assume that εt ∼ N(0, 1); scaling by sA gives us the standard deviation of shocks.
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2.1.4 Equilibrium

A competitive equilibrium is a set of prices (rt, wt) and allocations (Ct, Nt,Kt+1, Dt+1, Bt+1) taking

Kt, Dt, Bt, At and the stochastic process for At as given; such that the optimality conditions (5)-(6),

(8)-(10), and the transversality condition all hold; and all markets clear. The labor market clearing

just means that wt is such that the Nt hired by the is the same as the Nt supplied by the household.

The bond market clearing means that Bt = Dt in all periods, so Bt+1 = Dt+1 as well). This just

means that any debt issued by the firm is held by the household (and vice-versa).

Let’s consolidate the household and firm budget constraints. Just combine the definition of flow

accounting profit with the capital accumulation equation and the household budget constraint at

equality:

Ct + (Bt+1 −Bt) = wtNt + rt−1Bt +AtF (Kt, Nt)− wtNt − It +Dt+1 − (1 + rt−1)Dt

Imposing the market-clearing conditions, we get:

AtF (Kt, Nt) = Ct + It (12)

In other words, bond market-clearing plus both budget constraints holding just gives the stan-

dard aggregate resource constraint (or accounting identity) that output, Yt = AtF (Kt, Nt), must

be consumed or invested in new physical capital.

If you combine the household’s first order condition for labor supply with the firm’s condition,

you get:

v′(1−Nt) = u′(Ct)AtFN (Kt, Nt)

If you combine the household’s first order condition for bonds with the firm’s first order condition

for capital, you get:

EtΛt,t+1(1 + rt) = EtΛt,t+1 (At+1FK(Kt+1, Nt+1) + (1− δ))

Which may be written:

1 + rt =
EtΛt,t+1 (At+1FK(Kt+1, Nt+1) + (1− δ))

EtΛt,t+1
(13)

I can do this because 1 + rt is known from the perspective of period t, so I can move it out

side the expectations operator. Now, one would be tempted to “cancel” the expected values of the

stochastic discount factors, but one cannot, in general, do this because in the numerator we have

the expected value of a product of two random variables (the stochastic discount factor with the

future marginal product of capital). In a first-order approximation we would be able to do this,

but in general we will not be able to. In effect, there will be a slight “risk premium” to physical

capital relative to riskless bonds, but suffice it to say there will be a close connection between the
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real interest rate on bonds and the marginal product of physical capital.

2.2 Households Own the Capital Stock

Now we consider a version of the decentralized problem in which the household owns the capital

stock and rents it to firms. Otherwise the structure of the problem is the same.

2.2.1 Household Problem

As before, the household consumes and supplies labor. Now it also owns the capital stock. It earns

a rental rate for renting out the capital stock to firms each period, Rk
t . The household budget

constraint is:

Ct +Kt+1 − (1− δ)Kt +Bt+1 −Bt = wtNt +Rk
tKt + rt−1Bt +Πt (14)

The household has income comprised of labor income, capital income, interest income, and

profits (again it takes profits as given). It can consume this, accumulate more capital (this is the

Kt+1 − (1− δ)Kt term), or accumulate more saving. Its problem is:

max
Ct,Nt,Kt+1,Bt+1

E0

∞∑
t=0

βt (u(Ct) + v(1−Nt))

s.t.

Ct +Kt+1 − (1− δ)Kt +Bt+1 −Bt = wtNt +Rk
tKt + rt−1Bt +Πt

Form a current value Lagrangian:

L = E0

∞∑
t=0

βt
(
u(Ct) + v(1−Nt) + λt(wtNt +Rk

tKt + (1 + rt−1)Bt +Πt − Ct −Kt+1 + (1− δ)Kt −Bt+1)
)

The first order conditions are:

∂L
∂Ct

= 0 ⇐⇒ u′(Ct) = λt (15)

∂L
∂Nt

= 0 ⇐⇒ v′(1−Nt) = λtwt (16)

∂L
∂Kt+1

= 0 ⇐⇒ λt = βEtλt+1(R
k
t+1 + (1− δ)) (17)

∂L
∂Bt+1

= 0 ⇐⇒ λt = βEtλt+1(1 + rt) (18)
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These first order conditions can be combined to yield:

v′(1−Nt) = u′(Ct)wt (19)

u′(Ct) = βEtu
′(Ct+1)(R

k
t+1 + (1− δ)) (20)

u′(Ct) = βEtu
′(Ct+1)(1 + rt) (21)

Note that the labor supply condition and the Euler equation for bonds are the same as in the

earlier setup.

2.2.2 The Firm Problem

The firm problem is similar to before, but now it doesn’t choose investment. Rather, it chooses

capital today given the rental rate, Rk
t . Note that the firm can vary capital today even though the

household cannot given that capital is predetermined. The labor choice and debt choice are similar.

In fact, because the amount of the debt is going to end up being indeterminate, it is common to

just assume that firms don’t issue/hold debt and just solve a static problem. Again, the firm wants

to maximize the present discounted value of cash flows.

max
Nt,Kt,Dt+1

V0 = E0

∞∑
t=0

Λ0,t

(
AtF (Kt, Nt)− wtNt −Rk

tKt +Dt+1 − (1 + rt−1)Dt

)
The first order conditions are:

∂V0

∂Nt
= 0 ⇐⇒ AtFK(Kt, Nt) = wt (22)

∂V0

∂Kt
= 0 ⇐⇒ AtFK(Kt, Nt) = Rt (23)

∂V0

∂Dt+1
= 0 ⇐⇒ 1 = EtΛt,t+1(1 + rt) (24)

The first order condition for debt is again identical to the one for the household; so again the

amount of debt is indeterminate.

2.2.3 Equivalence to the Other Setup

It is pretty straightforward to see that either setup gives you identical conditions. Take the FOC

for capital demand for the firm and plug it into the household’s Euler equation for capital:

u′(Ct) = βEt(u
′(Ct+1)(At+1FK(Kt+1, Nt+1) + (1− δ)) (25)

This is identical to the firm FOC for capital when the firm owns the capital stock. Hence, all
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the first order conditions are the same. The definition of equilibrium is the same. Both the firm

and household budget constraints holding again give rise to the accounting identity (14). Hence,

these setups give rise to identical solutions. It simply does not matter whether households own the

capital stock and lease it to firms or whether firms own the capital stock. Since households own

firms, these are equivalent ownership structures.

3 A Planner’s Version of the Problem

A central planner just picks allocations to maximize the objective of the household in the model.

Prices do not appear in the planner’s problem. It is:

max
Ct,Nt,Kt+1

E0

∞∑
t=0

βt (u(Ct) + v(1−Nt))

s.t.

Ct +Kt+1 − (1− δ)Kt ≤ AtF (Kt, Nt)

A Lagrangian is:

L = E0

∞∑
t=0

βt [u(Ct) + v(1−Nt) + λt (AtF (Kt, Nt)− Ct −Kt+1 + (1− δ)Kt)]

The FOC are:

∂L
∂Ct

= 0 ⇐⇒ u′(Ct) = λt

∂L
∂Ct

= 0 ⇐⇒ v′(1−Nt) = λtAtFN (Kt, Nt)

∂L
∂Ct

= 0 ⇐⇒ λt = βEtλt+1(At+1FK(Kt+1, Nt+1 + (1− δ))

Eliminating the multipliers yields:

u′(Ct) = βEtu
′(Ct+1) (At+1FK(Kt+1, Nt+1) + (1− δ)) (26)

v′(1−Nt) = u′(Ct)AtFN (Kt, Nt) (27)

These, plus the law of motion for capital (and a transversality condition) constitute the solution

to the planner’s problem. Note that if we eliminate the prices in the decentralized problem, we

arrive at exactly these same conditions. In other word’s, the planner’s solution coincides with the

decentralized equilibrium. The competitive equilibrium is efficient.
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4 Analysis of the Decentralized Model

We can combined first order conditions from the firm and household problems (in either setup) to

yield the equilibrium conditions:

u′(Ct) = βEt

(
u′(Ct+1)(R

k
t+1 + (1− δ)

)
(28)

v′(1−Nt) = u′(Ct)wt (29)

Kt+1 = AtF (Kt, Nt)− Ct + (1− δ)Kt (30)

lnAt = ρ lnAt−1 + sAεt (31)

Yt = AtF (Kt, Nt) (32)

Yt = Ct + It (33)

u′(Ct) = βEtu
′(Ct+1)(1 + rt) (34)

wt = AtFN (Kt, Nt) (35)

RK
t = AtFK(Kt, Nt) (36)

(28) is the Euler equation for capital – I’m going to write this in terms of the rental rate on

capital (in the setup where household’s own the capital stock), but it doesn’t matter. This is

functionally just an asset pricing condition, as discussed above. (29) is a labor supply condition.

(30) is the law of motion for capital, while (31) is an exogenous process for productivity. (32) is the

aggregate production function. (33) is the aggregate resource constraint. (34) is the Euler equation

for bonds. (35) is a labor demand condition, and (36) is a capital demand condition.

We have nine variables, Ct, Nt, Kt, Yt, It, rt, R
k
t , wt, and At. We always need the same number

of variables as we have equations. Three of these are prices – rt, wt, and RK
t . One is exogenous

(At). The others are quantities or flow units of time (Nt). Note that we do not need to keep track

of bonds. The level of debt is indeterminate absent some other kind of friction. So it is common

to assume that no one issues debt or holds bonds in these models.

We need to specify functional forms. For simplicity, assume that u(Ct) = lnCt and v(1−Nt) =

θ ln(1−Nt). Assume that the production function is Cobb-Douglas: Yt = AtK
α
t N

1−α
t .

Given these parameter values we can analyze the steady state. I will use a lack of a time

subscript, rather than a ∗ superscript, to denote steady state values. The steady state is a situation

in which A = 1 (its non-stochastic unconditional mean), Kt+1 = Kt = K, and Ct+1 = Ct = C.

Given the steady state values of these variables, the steady state values of the static variables can

be backed out.

Start with the Euler equation for capital.

1 = β(Rk + (1− δ))
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This means:

Rk =
1

β
− (1− δ) (37)

Similar, the steady state real interest rate is:

r =
1

β
− 1 (38)

This means: Rk = r+ δ. The key is to solve ro the capital-labor ratio and go from there. From

the capital demand condition, we have:

RK = α

(
K

N

)α−1

But this means:

K

N
=

(
α

1
β − (1− δ)

) 1
1−α

(39)

Now that we have the capital-labor ratio, we can get the steady state wage in terms of that:

w = (1− α)

(
K

N

)α

(40)

Now, combine the capital accumulation equation with the resource constraint, but divide ev-

erything by N : (
K

N

)α

=
C

N
+ δ

K

N

This means we can write the consumption-labor ratio in terms of the capital-labor ratio as:

C

N
=

(
K

N

)α

− δ
K

N

Now go to the labor supply condition, written in terms of K/N :

θ
1

1−N
=

1

C
(1− α)

(
K

N

)α

Multiply and divide both sides by N :

θ
N

1−N
=

N

C
(1− α)

(
K

N

)α

Using our expression for the consumption-labor ratio, we can write this as:

θ
N

1−N
=

(1− α)
(
K
N

)α(
K
N

)α − δK
N
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This can be written:

1−N

N
= θ

(
K
N

)α − δK
N

(1− α)
(
K
N

)α
Which implies:

1

N
= 1 + θ

(
K
N

)α − δK
N

(1− α)
(
K
N

)α
Or:

N =

(
1 + θ

(
K
N

)α − δK
N

(1− α)
(
K
N

)α
)−1

(41)

Here, we naturally see that N is decreasing in θ – the bigger is θ, the more the household likes

leisure, and the less labor it supplies. Instead of doing things this way, we will often specify a target

value of labor, such as N = 1/3, and pick θ to be consistent with that target. As we shall see,

with this specification of preferences, the target value of N (or equivalently the value of θ) is not

innocuous from the perspective of model dynamics. There is an alternative preference specification

in which the steady state level of N is just a normalization that does not matter for dynamics.

Once we have N and K/N , the rest of the steady state is straightforward to compute.

4.1 Log-Linearization

To build intuition, it is helpful to log-linearize the model by hand. It’s much easier to build intuition

with linear equations.

Let’s analyze the decentralized model, characterized by (28)-(36). We will log-linearize about

the non-stochastic steady state using the functional forms given above.

Start with the capital Euler equation, (28). I will (i) take logs, (ii) totally differentiate, and

then (iii) simplify to put in “tilde” notation. Note that I will ignore expectations operators until

the end when I am done with the linearization, as discussed earlier.

− lnCt = lnβ − lnCt+1 + ln
(
Rk

t+1 + (1− δ)
)

−dCt

C
= −dCt+1

C
+ βdRk

t+1

EtC̃t+1 = C̃t + βRkEtR̃t+1 (42)

(42) says that expected consumption growth is positively related to the expected return on

capital (which is equal to the marginal product of capital). Now go to the labor supply condition.

ln θ − ln(1−Nt) = − lnCt + lnwt
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dNt

1−N
= −dCt

C
+

dwt

w

N

1−N
Ñt = −C̃t + w̃t

Define γ = N
1−N . We can then write this as:

γÑt = −C̃t + w̃t (43)

1
γ is what is called the Frisch labor supply elasticity. It measures the partial of Ñt with respect

to w̃t, holding C̃t fixed. In words, the Frisch elasticity is defined as the elasticity of labor supply

holding the marginal utility of wealth fixed. In this model with separable preferences, the marginal

utility of wealth is just the marginal utility of consumption. This parameter, γ, ends up mattering

for the dynamics in the model. This means that the steady state value of N matters. We will

return to this issue later. There is a way to write preferences in which steady state N is just a

normalization.

I’m going to go out of order, but let’s now log-linearize the factor demand conditions, which

are already log-linear:

w̃t = Ãt + αK̃t − αÑt (44)

R̃k
t = Ãt − (1− α)K̃t + (1− α)Ñt (45)

(44) says that labor demand is downward-sloping; it shifts right with an increase in productivity

or when there is more capital. (45) is similar for capital demand. Note that labor and capital are

complements – more of one increases the marginal product of the other.

The production function is also already log-linear:

Ỹt = Ãt + αK̃t + (1− α)Ñt (46)

The resource constraint can be written in log-linear terms as:

Ỹt =
C

Y
C̃t +

I

Y
Ĩt (47)

The linearized accumulation equation for capital is:

K̃t+1 = δĨt + (1− δ)K̃t (48)

The Euler equation for bonds is:

EtC̃t+1 = C̃t + r̃t (49)

(49) says that expected consumption growth is positively related to the current real interest

rate. If you combine this with the Euler equation for capital, we get:
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r̃t = βREtR̃
k
t+1 (50)

In other words, the real interest rate is closely tied to the marginal product of capital. Intuitively,

this makes sense. Bonds and capital are alternative means to transfer resources intertemporally.

Bonds are risk-free, capital is risky (in the sense that one doesn’t know what future productivity

will look like). In a linearization, agents behave as though they are risk-neutral, so we basically

have a one-to-one arbitrage condition between capital and bonds.

The law of motion for productivity is already log-linear.

Ãt = ρÃt−1 + sAεt (51)

For completeness, the full set of linearized equilibrium conditions put together is:

EtC̃t+1 = C̃t + βRkEtR̃t+1 (52)

γÑt = −C̃t + w̃t (53)

w̃t = Ãt + αK̃t − αÑt (54)

R̃k
t = Ãt − (1− α)K̃t + (1− α)Ñt (55)

Ỹt = Ãt + αK̃t + (1− α)Ñt (56)

Ỹt =
C

Y
C̃t +

I

Y
Ĩt (57)

K̃t+1 = δĨt + (1− δ)K̃t (58)

EtC̃t+1 = C̃t + r̃t (59)

Ãt = ρÃt−1 + sAεt (60)

5 Graphical Analysis

It is not terribly common to do so, but I think it is extremely helpful for building intuition to try

to graphically analyze this model.

To do this, as a first step we want to build a phase diagram in the forward-looking jump variable

(C̃t) and the endogenous state variable (K̃t). We have to do some laborious algebra to substitute

out all other variables. Atart with the Euler equation for capital. Eliminate the rental rate to write

it as:

EtC̃t+1 = C̃t + βRkEt

(
Ãt+1 − (1− α)K̃t+1 + (1− α)Ñt+1

)
Now eliminate Ñt+1 using the labor supply/demand conditions. As a first step, substitute out

the real wage by combining labor demand and supply:

Ãt + αK̃t − αÑt = γÑt + C̃t
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So:

Ñt =
1

α+ γ
Ãt +

α

α+ γ
K̃t −

1

α+ γ
C̃t

Now, plug this in for Ñt+1

EtC̃t+1 = C̃t + βRkEt

[
Ãt+1 − (1− α)K̃t+1 + (1− α)

(
1

α+ γ
Ãt+1 +

α

α+ γ
K̃t+1 −

1

α+ γ
C̃t+1

)]
Now group terms:

(
1 +

β(1− α)Rk

α+ γ

)
EtC̃t+1 = C̃t + βRk

(
1 +

1− α

α+ γ

)
EtÃt+1 + β(1− α)Rk

(
α

α+ γ
− 1

)
K̃t+1

This can be simplified a bit to yield:

(
1 +

β(1− α)Rk

α+ γ

)
EtC̃t+1 = C̃t + βRk

(
1 + γ

α+ γ

)
EtÃt+1 − β(1− α)Rk

(
γ

α+ γ

)
K̃t+1 (61)

Now proceed similarly with the accumulation equation for capital. We have:

K̃t+1 = δ

(
Y

I
Ỹt −

C

I
C̃t

)
+ (1− δ)K̃t

Note that Y =
(
K
N

)α
N and I = δ

(
K
N

)
N , so Y/I =

(
K
N

)α−1
δ−1. We can write C/I = C/(δK),

so we can write the above as:

K̃t+1 =

(
K

N

)α−1

Ỹt −
C

K
C̃t + (1− δ)K̃t

Now plug in for Ỹt from the production function:

K̃t+1 =

(
K

N

)α−1 (
Ãt + αK̃t + (1− α)Ñt

)
− C

K
C̃t + (1− δ)K̃t

Now eliminate Ñt from what we found earlier:

K̃t+1 =

(
K

N

)α−1(
Ãt + αK̃t + (1− α)

(
1

α+ γ
Ãt +

α

α+ γ
K̃t −

1

α+ γ
C̃t

))
− C

K
C̃t + (1− δ)K̃t

Grouping terms, we get:
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K̃t+1 =

(
K

N

)α−1(
1 +

1− α

α+ γ

)
Ãt−

((
K

N

)α−1(1− α

α+ γ

)
+

C

K

)
C̃t+

(
α

(
K

N

)α−1(
1 +

1− α

α+ γ

)
+ (1− δ)

)
K̃t

We can simplify some terms:

K̃t+1 =

((
K

N

)α−1( 1 + γ

α+ γ

))
Ãt −

((
K

N

)α−1(1− α

α+ γ

)
+

C

K

)
C̃t+(

α

(
K

N

)α−1

+

(
1− α

α+ γ

)
α

(
K

N

)α−1

+ (1− δ)

)
K̃t

Now, note that α
(
K
N

)α−1
+ (1− δ) = 1

β . So we can write this as:

K̃t+1 =

((
K

N

)α−1( 1 + γ

α+ γ

))
Ãt−

((
K

N

)α−1(1− α

α+ γ

)
+

C

K

)
C̃t+

(
1

β
+ α

(
K

N

)α−1(1− α

α+ γ

))
K̃t

(62)

(61) and (62) are the key dynamic (linearized) equations, subbing out all the redundant/static

variables. Okay, that was laborious. What is this buying us? Capital being constant, K̃t+1 = K̃t,

requires:

0 =

((
K

N

)α−1( 1 + γ

α+ γ

))
Ãt−

((
K

N

)α−1(1− α

α+ γ

)
+

C

K

)
C̃t+

(
1

β
− 1 + α

(
K

N

)α−1(1− α

α+ γ

))
K̃t

Re-arranging:

C̃t =

((
K

N

)α−1(1− α

α+ γ

)
+

C

K

)−1 [((
K

N

)α−1( 1 + γ

α+ γ

))
Ãt +

(
1

β
− 1 + α

(
K

N

)α−1(1− α

α+ γ

))]
K̃t

(63)

(63) is the K̃t+1 = K̃t isocline: it shows combinations of C̃t and K̃t, taking Ãt as given, where

K̃t+1 = K̃t. In a graph with C̃t on the vertical axis and K̃t on the horizontal axis, it must be

upward-sloping (since 1
β − 1 > 0). It shifts up whenever Ãt increases. This is exactly what we

would have in the neoclassical model with fixed labor, which has an upward-sloping isocline (at

least in the region of the non-stochastic steady state, before it reaches a hump and starts sloping

down).

Now, let’s fiddle with (61). For EtC̃t+1 = C̃t, we must have:(
β(1− α)Rk

α+ γ

)
EtC̃t+1 = βRk

(
1 + γ

α+ γ

)
EtÃt+1 − β(1− α)Rk

(
γ

α+ γ

)
K̃t+1
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Now, we have the annoying issue that this in terms of t+1 variables. Let’s “cheat” and assume

these are all dated t (which would be fine in continuous time):(
β(1− α)Rk

α+ γ

)
C̃t = βRk

(
1 + γ

α+ γ

)
Ãt − β(1− α)Rk

(
γ

α+ γ

)
K̃t

This simplifies greatly, yielding:

C̃t =

(
1 + γ

1− α

)
Ãt − γK̃t (64)

(64) is the EtC̃t+1 = C̃t isocline. It is downward-sloping in K̃t (which is different than the

basic neoclassical model). This is the case unless γ → ∞ (which would correspond to labor

being inelastically supplied, because the labor supply elasticity is 1/gamma), in this case, which is

isomorphic to the neoclassical model with fixed labor, it would be vertical at K̃t = 0 (i.e. at the

steady state). This isocline shifts up whenever Ãt increases.

We can graph both (64) and (63). This is shown below. The two isoclines must intersect at the

steady state (since variables are linearized about the steady, the point of intersection is actually

“0 − 0” on the graph). In terms of dynamics, if we are to the right of the consumption-constant

isocline (K̃t is “too big”), consumption will be declining (because the rental rate on capital, and

hence the real interest rate, will be small / below steady state). Hence, arrows point down to

the right of this isocline, and up to the left. If we have too little consumption relative to the

capital-constant isocline, capital will be increasing (arrows point to the right below), and the

reverse (arrows point to the left above). From this, we can infer that there will exist a saddle

path that goes from southwest to northeast. This is shown as the dotted line. Note this is exactly

the same idea as the phase diagram in the basic neoclassical growth model – the only difference

that consumption constant isocline is (locally) downward-sloping (rather than vertical, due to

endogenous labor supply).

 

�̃�𝐶𝑡𝑡 

𝐾𝐾�𝑡𝑡 

�̃�𝐶𝑡𝑡+1 = �̃�𝐶𝑡𝑡 
 

𝐾𝐾�𝑡𝑡+1 = 𝐾𝐾�𝑡𝑡 
 

saddle path 

What the phase diagram does is tell us what C̃t needs to be, given the endogenous (K̃t) and
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exogenous (Ãt) state variables. Once we have C̃t, we can then determine labor market variables.

We can graph labor demand and supply as follows:

 

𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡 + 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡 + 𝛾𝛾𝑁𝑁�𝑡𝑡  

𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 

C̃t essentially tells us where the labor supply curve should sit. Ãt and K̃t tell us where the labor

demand curve should sit. The intersection determines Ñt and w̃t. Once we have Ñt pinned down,

we can get Ỹt (and hence also Ĩt.

Now, the real interest rate, which in this model is closely related to the rental rate on capital,

can be inferred by the expected consumption dynamics in the phase diagram. But we can also

think about there existing a demand-supply graph for physical capital that determines R̃k
t . Capital

demand is downward-sloping – the firm rents capital up until the point at which the rental rate

equals the marginal product. The supply of capital is a bit trickier. In the short run, the supply of

capital is completely inelastic – capital is pre-determined within period, after all. In the long run,

the supply of capital is, in contrast, effectively perfectly elastic, since the steady-state rental rate

on capital is determined by preferences. This is shown below.

 

𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡 + (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡 

𝐾𝐾�𝑡𝑡 

𝑅𝑅�𝑡𝑡 
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Once we have these three graphs, we can qualitatively think about how all the endogenous

variables will react to shocks in the model. Although everything happens simultaneously in general

equilibrium, it is helpful (to me, at least) to think about progressing in stages. We will consider

exercises in which we initially sit in a steady state, and then there is an exogenous shock (in this

simple model, the only exogenous shock is to productivity). To intuit what happens, follow these

steps:

1. Given the exogenous state variable, Ãt, determine what C̃t should be in the phase diagram

2. Given C̃t from the phase diagram, determine Ñt and w̃t in the labor market diagram. The

real interest rate, r̃t, is governed by expected consumption dynamics.

3. Determine R̃k
t in the capital market diagram

4. Determine Ỹt and Ĩt given Ñt and C̃t

5. Determine dynamics of C̃t and K̃t from the phase diagram, and then repeat the steps above

to infer the dynamics of other variables.

6 Dynamic Responses to Productivity Shocks

Let us use this machinery to get some intuition for the qualitative responses to shocks to Ãt. I’m

going to consider two types of shocks to productivity: a permanent increase in Ãt and a purely

temporary increase in Ãt (by purely temporary, I mean lasting only one period, i.e. iid).

6.1 Permanent Productivity Shock

Assume that we initially sit in a steady state (so Ãt = 0, along with all other variables). Then, in

period t, Ãt jumps up, and is expected to stay forever at this higher level.

 

�̃�𝐶𝑡𝑡 

𝐾𝐾�𝑡𝑡 

�̃�𝐶𝑡𝑡+1 = �̃�𝐶𝑡𝑡 
 

𝐾𝐾�𝑡𝑡+1 = 𝐾𝐾�𝑡𝑡 
 

(a) Initial position 

(b) Impact 
jump 

(c) New SS 
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Let’s start with the phase diagram. The increase in Ãt shifts both isoclines up. Although from

the shifts it appears ambiguous, we know that the isoclines must cross at a point with higher capital

and consumption – that is, the steady state of both of these variables will be higher. There is a new

saddle path associated with the new isoclines. Because we are dealing with a permanent change,

consumption must jump immediately to the new saddle path.

Now, we know that the saddle path must be upward-sloping (from southwest to northeast). I

have drawn the figure where consumption jumps up on impact. It is conceivable that consumption

could jump down. There are two competing economic effects governing the response of consump-

tion. On the one hand is the income effect – the household is wealthier, and so wants to increase

consumption. But there is a competing substitution effect – we need to accumulate more capital,

and the marginal product of capital is higher (and hence the real interest rate will be higher). This

force encourage the household to defer its consumption to take advantage of the high return on

capital. It is conceivable that consumption could jump down (i.e. the saddle path is very steep,

as opposed to comparatively flat). This is likely to happen when the intertemporal elasticity of

substitution, IES, is quite high (i.e., with iso-elastic utility, σ is quite low, for example less than

log utility). But for most values of the IES, consumption is going to jump up, so that is how I have

drawn it.

 

 

𝑘𝑘0∗ 

𝑘𝑘1∗ 

𝑐𝑐0∗ 

𝑐𝑐1∗ 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡 𝑡𝑡 

Once we know the initial jump in consumption, the dynamics of consumption and capital are

easy to infer from the saddle path. Both will increase, and will approach the new higher steady

state. These impulse response diagrams are shown above.

Now, let us turn to the labor market. The increase in Ãt shifts the labor demand curve to the

right. If C̃t jumps up, as shown above (and is it will under typical parameterizations), then the

labor supply curve will shift up (or into the left). This is shown in the figure below.
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𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡 + 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡 + 𝛾𝛾𝑁𝑁�𝑡𝑡  

𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 

𝑤𝑤�𝑡𝑡′ 

𝑁𝑁�𝑡𝑡′ 

𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡′+ 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡  

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡′+ 𝛾𝛾𝑁𝑁�𝑡𝑡 

There are, again, competing income and substitution effects. The way the labor supply curve

is drawn, movements along the labor supply curve measure the substitution effect. Higher pro-

ductivity leads to a higher wage, which causes labor input to rise (and leisure to fall). But the

income effect is to take more leisure (assuming consumption goes up), meaning to work less. This

causes the labor supply curve to shift in. The size of the income effect depends on the persistence

of the shock, because this governs how much consumption reacts. As drawn, I have shown it where

the labor supply curve shifts in, but not by so much that Ñt falls. We can unambiguously con-

clude that the real wage rises. The effect on labor is ambiguous, but likely to go up for standard

parameterizations.

Now, what is going to happen dynamically? Consumption is going to continue to increase,

which is going to cause the labor supply curve to continue to shift in. While Ãt stays at a higher

level, we do start to accumulate more capital, which causes the labor demand curve to continue to

shift out. Since capital is slow-moving, the effects on labor demand are likely to be small relative to

labor supply. So, for most parameterizations we would expect labor input to start falling (after its

initial upward-jump) while the wage continues to rise. This is how things are shown in the graph

below.
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𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡 + 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡 + 𝛾𝛾𝑁𝑁�𝑡𝑡  

𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡 

𝑤𝑤�𝑡𝑡′ 

𝑁𝑁�𝑡𝑡′ 

𝑤𝑤�𝑡𝑡 = �̃�𝐴𝑡𝑡′+ 𝛼𝛼𝐾𝐾�𝑡𝑡 − 𝛼𝛼𝑁𝑁�𝑡𝑡  

𝑤𝑤�𝑡𝑡 = �̃�𝐶𝑡𝑡′+ 𝛾𝛾𝑁𝑁�𝑡𝑡 

𝑤𝑤�𝑡𝑡+1′ 

𝑤𝑤�𝑡𝑡+1 = �̃�𝐶𝑡𝑡+1 + 𝛾𝛾𝑁𝑁�𝑡𝑡+1 

𝑤𝑤�𝑡𝑡+1 = �̃�𝐴𝑡𝑡+1 + 𝛼𝛼𝐾𝐾�𝑡𝑡+1 − 𝛼𝛼𝑁𝑁�𝑡𝑡+1 

𝑁𝑁�𝑡𝑡+1 

Whether labor ends up higher or lower in the new steady state is not obvious qualitatively. In

much of macro, we work with preferences where long-run income and substitution effects exactly

offset (as in King-Plosser-Rebelo), so labor eventually returns to where it started.

Now, let’s turn to thinking about the rental rate on capital. In the short run, the supply of

capital is fixed. The demand for capital rises due to higher Ãt and higher Ñt. Even if labor falls

on impact, which is possible depending on parameters, the demand for capital must still shift out

because the rental rate needs to rise as the economy accumulates more capital. So, we can conclude

that R̃k
t rises on impact.

 

𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡 + (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡 

𝐾𝐾�𝑡𝑡 

𝑅𝑅�𝑡𝑡 

𝑅𝑅�𝑡𝑡′ 

𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡′+ (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡′ 

What about dynamically? As we move forward in time, the supply of capital shifts to the right

as the economy accumulates capital. The demand for capital, in contrast, starts to shift as labor

input declines (this assumes that labor input rises on impact). Both of these effects put downward

pressure on the rental rate, as shown below.
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𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡 + (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡 

𝐾𝐾�𝑡𝑡 

𝑅𝑅�𝑡𝑡 

𝑅𝑅�𝑡𝑡′ 

𝑅𝑅�𝑡𝑡 = �̃�𝐴𝑡𝑡′+ (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡′ 

𝑅𝑅�𝑡𝑡+1 = �̃�𝐴𝑡𝑡+1 + (𝛼𝛼 − 1)𝐾𝐾�𝑡𝑡+1 + (1 − 𝛼𝛼)𝑁𝑁�𝑡𝑡+1 

𝐾𝐾�𝑡𝑡+1 

𝑅𝑅�𝑡𝑡+1 

In the long run, we know that the rental rate on capital is unrelated to the level of productivity;

the steady-state rental rate is Rk = 1
β − (1 − δ). Effectively, the long-run supply of capital is

perfectly elastic (horizontal). So we know that the rental rate must eventually return to its original

starting point. This is shown below.

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝑅𝑅�𝑡𝑡 

𝑡𝑡 

What about output and investment? We can infer these from our analysis above. On impact,

we know that output must go up – because productivity is higher and labor input is (likely) higher.

Output must increase even if Ñt declines. We know this because we know that investment must

increase (to get to a higher steady-state capital stock). The only way for labor input to decline on

impact is for there to be a big impact-increase in consumption. If both consumption and investment

rise, then output must also rise. After impact, output dynamics will be governed by the dynamics

of capital – it will continue to rise until it approaches the new, higher steady state, as shown below.
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𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝑌𝑌�𝑡𝑡 

𝑡𝑡 

𝑌𝑌0∗ 

𝑌𝑌1∗ 

Given the dynamics of the capital stock from the phase diagram, we know that investment must

increase on impact. Investment must also be higher in the new steady state to support a higher

steady state capital stock. We would expect that investment will “overshoot” on impact, rising by

more than its new steady state value, because capital is going to accumulate fastest early on.

 

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝐼𝐼𝑡𝑡 

𝑡𝑡 

𝐼𝐼0∗ 

𝐼𝐼1∗ 

The real interest rate is pinned down by the expected rental rate on capital (as well as the

consumption dynamics it). Therefore, the real interest rate should rise on impact, and then decline

back to its original steady state.

To summarize, following a permanent increase in productivity in this model, we should have:

1. Permanently higher capital, output, consumption, investment, and real wage. In the long run,

output rises by more than the direct effect of higher productivity because of higher capital.

2. On impact, investment and output must go up. So, too, must the real wage. It is, in

theory, ambiguous what happens to consumption and labor hours. Consumption is likely
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to go up (unless the IES is really large). Labor input is also likely to rise, but how much

it rises is inversely related to how much consumption rises. Labor rising provides short-run

amplification of the productivity shock – output rises by more than the direct effect of higher

productivity. Capital accumulation provides long-run amplification.

6.2 Temporary Productivity Shock

Now, let’s think about the polar opposite of a permanent productivity shock – a one-time, iid shock

to Ãt. I will called this “purely temporary.” For this exercise, I am not going to show graphs, but

rather just reason through things with words.

First, think about the phase diagram. The isoclines shift in the same way as earlier, but

consumption cannot jump to the new saddle path. Rather, it needs to jump, “ride” explosive

dynamics for one period, and then be back on the original saddle path. If the shock is only one

period, approximately consumption will do nothing at all. In actuality, it will jump up a very little

bit, but this change will be negligible.

Now turn to the labor market. The effect on labor demand is the same whether the shock to

productivity is permanent or just one time. This means labor demand shifts right, exactly as in the

permanent shock case. But because consumption does very little, the labor supply curve essentially

does not move. Therefore, we have labor hours rising and the real wage rising. But note: relative

to the permanent shock case, labor rises more, and the real wage less. After the period of the shock,

the labor market will quickly back to its original steady state.

With labor rising, output will rise on impact. In fact, it will rise more relative to the permanent

shock case because of the bigger impact on labor. With output rising (more) and consumption

essentially not reacting, investment must also rise, also by more than in the permanent shock case.

In terms of capital demand, the capital demand curve shifts right immediately. This means

R̃k
t rises. Dynamically, however, the capital demand curve is going to shift right back in the

next period, but the capital supply curve will shift out slightly because of higher investment on

impact. Therefore, we would expect EtR̃
k
t+1 to slightly fall. That means that the real interest rate

will fall. Which means that consumption will be expected to decline (from its very small initial

upward jump). This makes sense, because consumption has to go back to the original steady state.

Everything will go back to steady state quickly.

From reasoning through all this, we can conclude a couple of things in response to productivity

shocks in the RBC model. We have considered two knife-edge cases: a permanent shock and a

purely temporary shock. Most of the time, we will be considering shocks that are transitory but

somewhere in between permanent and purely temporary. The equilibrium effects on endogenous

variables will lie somewhere in between the two polar cases. The more persistent a shock, the

more the responses will look like the permanent case. The more transitory the shock, the more the

responses will look like the iid case.

1. When productivity improves, output, investment, and the real wage are going to go up.

Output and investment will go up more the less persistent is the productivity shock; the real
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wage will go up less the less persistent is the shock.

2. Consumption is likely to go up, and will go up more the more persistent is the shock. In

contrast, labor hours will go up less the more persistent is the shock.

3. The rental rate on capital will go up when productivity improves. It will always return to

steady state, even if the shock is permanent. The real interest rate tracks the one-period

ahead change in the rental rate.
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