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1 Introduction

This set of notes lays and out and analyzes the canonical New Keynesian (NK) model. The NK

model takes a real business cycle model as its backbone and adds to that sticky prices, a form

of nominal rigidity that allows purely nominal shocks to have real effects, and which alters the

response of the economy to real shocks in a way that gives rise to a non-trivial role for active

stabilization policy.

To get price stickiness in the model, we have to have firms as price-setters, which means we

need to move away from the perfectly competitive benchmark. To do so we introduce monopo-

listic competition. We split production into two sectors, where the final goods sector is perfectly

competitive and aggregates intermediates into a final good for consumption. This generates a

downward-sloping demand for intermediate goods. There are a continuum of intermediate goods

producers who can set their own prices, but take all other prices as given. All the action in the

model is at the level of the intermediate producers. We assume that they are not freely able to

adjust their prices each period. In particular, the Calvo (1983) assumption posits that each period

firms face a fixed probability of being allowed to change their price. This seems a little ridiculous

in terms of its realism, but this assumption facilitates aggregation, and this is why it is so popular.

With any price rigidity, any firm’s price becomes a state variable. With a continuum of interme-

diate goods firms, we’d have a continuum of state variables. The Calvo (1983) assumption allows

us to aggregate out this heterogeneity. Even though it seems somewhat bizarre on its surface, it

has some normative implications that seem pretty reasonable (in particular, price stability ends up

being an important policy goal).

The basic New Keynesian model that I’ll lay out below (and which is laid out in Woodford (2003)

and Gali (2007) textbook treatments) has no investment or capital. This simplifies the analysis

quite a bit and permits us to get better intuition. It is not a completely innocuous omission, and

we’ll later look at how the inclusion of capital in the model affects things.
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2 Households

There is a representative household that consumes, supplies labor, accumulates bonds, owns, and

accumulates money. Its problem is:

max
Ct,Nt,Bt+1,Mt

E0

∞∑
t=0

βt

(
C1−σ
t

1− σ
− θ

N1+χ
t

1 + χ
+ ψ ln

(
Mt

Pt

))
Here I have gone ahead and assumed that utility from real balances is logarithmic. As long as

real balances are additively separable from consumption and labor, money in the utility function

doesn’t do much interesting here.1 The nominal flow budget constraint is:

PtCt +Bt+1 +Mt −Mt−1 ≤WtNt + PtDt − PtTt + (1 + it−1)Bt

Here money is the numeraire, and Pt is the price of goods in terms of money. Bt is the stock of

nominal bonds a household enters the period with, and they pay out (known as of t− 1) nominal

interest rate it−1. The household also enters the period with a stock of money, Mt−1. Note that

I’m not being super consistent with timing notation here: Mt−1 and Bt are both known at t − 1.

The reason I write it this way is because the aggregate supply of money in period t, Mt, is not

going to be predetermined but rather set by a central bank. Wt is the nominal wage (denominated

in units of money, not goods). Dt denotes (nominal) profits remitted by firms, and Tt is a lump

sum tax paid to a government (the government will have the role of setting the money supply and

remitting any seignorage revenue back to the household lump sum).

A Lagrangian for the household is:

L = E0

∞∑
t=0

βt

[
C1−σ

t

1− σ
− θ

N1+χ
t

1 + χ
+ ψ ln

(
Mt

Pt

)
+ λt (WtNt + PtDt − PtTt + (1 + it−1)Bt − PtCt −Bt+1 −Mt +Mt−1)

]

The FOC are:

∂L
∂Ct

= 0 ⇔ C−σ
t = λtPt

∂L
∂Nt

= 0 ⇔ θNχ
t = λtWt

∂L
∂Bt+1

= 0 ⇔ λt = βEtλt+1(1 + it)

∂L
∂Mt

= 0 ⇔ θ
1

Mt
= λt − βEtλt+1

We can eliminate the multiplier and re-write these conditions as:

1If we were to assume that central bank policy focuses on an interest rate rather than a monetary aggregate, as we
will do below, then we could ignore money altogether so long as utility from money is separable. This is sometimes
referred to as a “cashless” economy.
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θNχ
t = C−σ

t wt (1)

1 = Et

[
β

(
Ct+1

Ct

)−σ

(1 + it)
Pt

Pt+1

]
(2)

ψ

(
Mt

Pt

)−1

=
it

1 + it
C−σ
t (3)

(1) is a standard labor supply condition, where I have defined wt ≡Wt/Pt as the real wage. (2)

is the standard Euler equation for bonds, with β
(
Ct+1

Ct

)−σ
= Λt,t+1 the stochastic discount factor.

(3) implicitly defines a demand function for real balances that is increasing in consumption and

decreasing in the nominal interest rate.

3 Production

For the production side of things we split into two. There is a representative competitive final goods

firm that aggregates intermediate inputs according to a CES technology. To the extent to which the

intermediates are imperfect substitutes in the CES aggregator, this generates a downward-sloping

demand for each intermediate, which gives these intermediate producers pricing power. There

are a continuum (large number) of intermediates, so these producers behave as monopolistically

competitive (they treat all prices but their own as given). These firms produce output using labor

and are subject to an aggregate productivity shock. They are not freely able to adjust prices each

period, in a way that we will discuss in more depth below.

3.1 Final Good Producer

The final output good is a CES aggregate of a continuum of intermediates:

Yt =

(∫ 1

0
Yt(j)

ϵ−1
ϵ dj

) ϵ
ϵ−1

(4)

Here ϵ > 1. This parameter measures how substitutable different varieties are. The profit

maximization problem of the final good firm is:

max
Yt(j)

Pt

(∫ 1

0
Yt(j)

ϵ−1
ϵ dj

) ϵ
ϵ−1

−
∫ 1

0
Pt(j)Yt(j)dj

The FOC for a typical variety of intermediate j is:

Pt
ϵ

ϵ− 1

(∫ 1

0
Yt(j)

ϵ−1
ϵ dj

) ϵ
ϵ−1

−1
ϵ− 1

ϵ
Yt(j)

ϵ−1
ϵ

−1 = Pt(j)

This can be written:

3



(∫ 1

0
Yt(j)

ϵ−1
ϵ dj

) 1
ϵ−1

Yt(j)
− 1

ϵ =
Pt(j)

Pt

Or:

(∫ 1

0
Yt(j)

ϵ−1
ϵ dj

)− ϵ
ϵ−1

Yt(j) =

(
Pt(j)

Pt

)−ϵ

Making note of the definition of the aggregate final good, we have::

Yt(j) =

(
Pt(j)

Pt

)−ϵ

Yt (5)

(5) says that the demand for each intermediate is (i) proportional to total output, Yt, and, (ii),

decreasing in the relative price of the intermediate. ϵ has the interpretation of the price elasticity

of demand.

We can derive an aggregate price index by defining nominal output as the sum of prices times

quantities:

PtYt =

∫ 1

0
Pt(j)Yt(j)dj

Plugging in the demand for each variety, we have:

PtYt =

∫ 1

0
Pt(j)

1−ϵP ϵ
t Ytdj

Pulling out of the integral things which don’t depend on j:

PtYt = P ϵ
t Yt

∫ 1

0
Pt(j)

1−ϵdj

Simplifying, we get an expression for the aggregate price level:

Pt =

(∫ 1

0
Pt(j)

1−ϵdj

) 1
1−ϵ

(6)

3.2 Aside on the (Constant) Elasticity of Substitution

The elasticity of substitution for the production function is defined as the percentage change in

relative demand for two intermediates (call them k and j) with respect to their relative prices:

∂ (Yt(k)/Yt(j))

∂ (Pt(j)/Pt(k))
× Pt(j)/Pt(k)

Yt(k)/Yt(j)

Take careful note of the indices here – this is measuring how the relative demand for intermediate

k changes when the relative price of good j goes up.

From the demand function for each intermediate, (5), we have:
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Yt(k)

Yt(j)
=

(
Pt(k)

Pt(j)

)−ϵ

=

(
Pt(j)

Pt(k)

)ϵ

The derivative part of the elasticity is then:

∂ (Yt(k)/Yt(j))

∂ (Pt(j)/Pt(k))
= ϵ

(
Pt(j)

Pt(k)

)ϵ−1

This just says (naturally) that the relative demand for intermediate k will rise (ϵ > 0) when

the relative price of intermediate j increases.

The ratio of relative prices to relative demand is:

Pt(j)/Pt(k)

Yt(k)/Yt(j)
=
Pt(j)

Pt(k)

(
Pt(j)

Pt(k)

)−ϵ

=

(
Pt(j)

Pt(k)

)1−ϵ

Therefore, the elasticity of substitution is:

∂ (Yt(k)/Yt(i))

∂ (Pt(k)/Pt(i))
× Pt(k)/Pt(j)

Yt(k)/Yt(j)
= ϵ

(
Pt(j)

Pt(k)

)ϵ−1(Pt(j)

Pt(k)

)1−ϵ

= ϵ

The elasticity of substitution is therefore a constant at ϵ. As ϵ→ ∞, intermediates are perfect

substitutes – the CES aggregator is just linear in varieties then.

3.3 Aside: More on CES Functions

The CES production function shown above looks kind of gnarly. There’s an integral and complicated

exponents.

It’s useful to take a step back and note that we’ve actually been repeatedly using a special case

of a CES function the entire course. That is the Cobb-Douglas production function. In particular,

suppose that output is given by:

Yt = (αKν
t + (1− α)Nν

t )
1
ν

This is a special case (two inputs, not an infinite number of inputs) with share parameters (α

and 1− α) of what we did above (relabeling ν = ϵ−1
ϵ . The function has constant returns to scale –

if you scale both capital and labor by a factor ϑ, you scale output by the same factor.

Suppose that ν = 1. This corresponds to a case of perfect substitutes – the production function

is just linear in capital and labor. The Cobb-Douglas case occurs when ν = 0 (which would

correspond to ϵ = 1 as written above). To see why ν = 0 corresponds to Cobb-Douglas, take logs:

lnYt =
1

ν
ln (αKν

t + (1− α)Nν
t )

I took logs because it allows me to invoke L’Hopital’s rule. When ν = 0, we get ln 1/0 = 0
0 . To

make L’Hopital’s rule easier to use, rewrite the term in parentheses using exponents and logs:
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lnYt =
1

ν
ln (α exp(ν lnKt) + (1− α) exp(ν lnNt))

L’Hopital’s rule says (when both numerator and denominator go to 0):

lim
ν→0

f(ν)

g(ν)
=
f ′(ν)

g′(ν)

g(ν) = ν, so g(0) = 0 and g′(ν) = 1 regardless of what value ν takes on. For the numerator, we

have:

f(ν) = ln (α exp(ν lnKt) + (1− α) exp(ν lnNt))

And:

f ′(ν) =
1

α exp(ν lnKt) + (1− α) exp(ν lnNt)
[α lnKt exp(ν lnKt) + (1− α) lnNt exp(ν lnNt)]

When ν = 0, we get:

f(0) = ln 1 = 0

Hence, we can use L’Hopital’s rule. Evaluating the derivative at ν = 0, we have:

f ′(0) =
1

1
[α lnKt + (1− α) lnNt]

This is because exp(0) = 1. We therefore have:

lnYt = α lnKt + (1− α) lnNt

Or, taking the exponential function to undo the logs:

Yt = Kα
t N

1−α
t

So, the Cobb-Douglas production function is a special case of a CES production function. In

this case, the elasticity of substitution (defined above) is one – a one percent increase in the relative

price of two factors results in a one percent increase in the relative use of those factors.

In the linear case, when the elasticity of substitution goes to ∞, goods are perfect substitutes –

a one percent increase in the relative price of two factors results in an infinite shift in the relative

use of those factors. In contrast, when the elasticity of substitution is less than one, we say that

two factors are complements. In this case, a one percent increase in the relative price of two factors

results in a less than one percent increase in the relative use of the cheaper factor. In the limiting

case in which the elasticity of substitution goes to 0, we have a Leontief function in which goods

are perfect complements.
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The reason we assume ϵ > 1 (but less than ∞) above is that in monopolistic competition goods

are substitutes, but imperfectly so.

Note that sometimes CES functions are referred to as Armington aggregators. They are very

common in international macro.

3.4 Aside: Putting the CES Aggregate in Preferences

As written, I have done this with a two-sector production model: the final good that is sold to the

household, and intermediate goods. We could alternatively put the CES aggregator used by the

final good in preferences. In particular, the household problem would be:

max
Ct,Nt,Bt+1,Mt

E0

∞∑
t=0

βt

(
C1−σ
t

1− σ
− θ

N1+χ
t

1 + χ
+ ψ ln

(
Mt

Pt

))
s.t.

PtCt +Bt+1 +Mt −Mt−1 ≤WtNt + PtDt − PtTt + (1 + it−1)Bt

Ct =

(∫ 1

0
Ct(j)

ϵ−1
ϵ

) ϵ
ϵ−1

PtCt =

∫ 1

0
Pt(j)Ct(j)dj

This just says that the household gets utility from a composite consumption basket, that is a

CES aggregate of the individual consumption varieties. ϵ > 1 still has the interpretation as the

elasticity of substitution. The household’s FOC for Ct is:

C−σ
t = λtPt

If we think about the choice of an individual variety, we would have the FOC:

∂L
∂Ct(j)

= 0 ⇔ ϵ

ϵ− 1

(∫ 1

0
Ct(j)

ϵ−1
ϵ

) (1−σ)ϵ
ϵ−1

−1
ϵ− 1

ϵ
Ct(j)

ϵ−1
ϵ

−1 = λtPt(j)

Simplifying a bit, and substituting out λt = C−σ
t P−1

t , we have:

(∫ 1

0
Ct(j)

ϵ−1
ϵ

) 1−σϵ
ϵ−1

Ct(j)
− 1

ϵ = C−σ
t

Pt(j)

Pt

Which can be written:

(∫ 1

0
Ct(j)

ϵ−1
ϵ

) ϵ(σϵ−1)
ϵ−1

Ct(j) = Cσϵ
t

(
Pt(j)

Pt

)−ϵ

But note that:
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Cσϵ
t =

(∫ 1

0
Ct(j)

ϵ−1
ϵ

) σϵ2

ϵ−1

So, we have:

(∫ 1

0
Ct(j)

ϵ−1
ϵ

) ϵ(σϵ−1)
ϵ−1

− σϵ2

ϵ−1

Ct(j) =

(
Pt(j)

Pt

)−ϵ

Which is:

(∫ 1

0
Ct(j)

ϵ−1
ϵ

)− ϵ
ϵ−1

Ct(j)

(
Pt(j)

Pt

)−ϵ

But the first part of the left hand side is just C−1
t !. So we have:

Ct(j) =

(
Pt(j)

Pt

)−ϵ

Ct (7)

This is the same interpretation as the demand function for each intermediate from the final

good producers, just written in terms of consumption instead of output.

3.5 Intermediate Producers

There are a continuum of intermediate goods producers, j ∈ [0, 1]. A typical intermediate producer

produces output according to a constant returns to scale technology in labor, with a common

productivity shock, At:

Yt(j) = AtNt(j) (8)

Nominal profit for an intermediate producer is:

PtDt(j) = Pt(j)Yt(j)−WtNt(j)

We can sub out for Nt(j) using the production function:

PtDt(j) = Pt(j)Yt(j)−
Wt

At
Yt(j)

Wt/At is the ratio of the nominal wage (wt is the real wage) to the marginal product of labor,

which is just At. This is just (nominal) marginal cost – to produce an extra unit of output, a firm

needs 1/At extra units of labor, which costs Wt. wt/At is real marginal cost.

Plug in the demand function for each intermediate:

PtDt(j) = Pt(j)

(
Pt(j)

Pt

)−ϵ

Yt −
Wt

At

(
Pt(j)

Pt

)−ϵ

Yt

Which can be written:
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PtDt(j) = Pt(j)
1−ϵP ϵ

t Yt −
Wt

At
Pt(j)

−ϵP ϵ
t Yt

We can also write this in real terms by dividing through by Pt:

Dt(j) = Pt(j)
1−ϵP ϵ−1

t Yt −
wt

At
Pt(j)

−ϵP ϵ
t Yt

3.5.1 No Price Rigidity

If there were nothing more to the problem, we could solve for the Pt(j) that would maximize profit.

Take the derivative of real dividends with respect to Pt(j):

∂Dt(j)

∂Pt(j)
= (1− ϵ)Pt(j)

−ϵP 1−ϵ
t Yt + ϵ

wt

At
Pt(j)

−ϵ−1P ϵ
t Yt

Setting this equal to zero and simplifying a bit:

(ϵ− 1)Pt(j) = ϵ
wt

At
Pt

Or, since Wt/At is nominal marginal cost, MCt:

P#
t =

ϵ

ϵ− 1
MCt

P#
t is the optimal price, which does not vary across j – it is the same for all intermediates. The

optimal price is just a markup over marginal cost (this follows because all firms face the same wage

and have the same productivity). Since we are assuming that ϵ > 1, the term ϵ/(ϵ− 1) > 1. This

is the desired markup of price over marginal cost.

Since all firms would choose the same price, P ∗
t = Pt (the aggregate price index). We could

then write this as:

wt =
ϵ− 1

ϵ
At (9)

(9) is a labor demand condition in the aggregate. In an efficient allocation (i.e. what a planner

would choose), we would have wt = At (i.e firms would hire labor up until the point at which

the real wage equals the marginal product of labor, which is just At with a linear production

technology). The term ϵ−1
ϵ , which is the inverse markup, is less than one. This says that the

equilibrium allocation is going to be distorted relative to an efficient allocation. This distortion

arises because of the monopoly power of intermediate firms, where the strength of their monopoly

power depends on the size of ϵ. The more substitutable intermediates are (i.e. the bigger is ϵ), the

smaller will be the distortion.
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3.5.2 Staggered Price Setting

Let us instead assume that prices are “sticky.” In particular, each period there is a fixed probability

of 1− ϕ that a firm can adjust its price. This means that the probability a firm will be stuck with

a price one period is ϕ, for two periods is ϕ2, and so on. Consider the pricing problem of a firm

given the opportunity to adjust its price in a given period. Since there is a chance that the firm

will get stuck with its price for multiple periods, the pricing problem becomes dynamic.

Because the pricing problem is dynamic, we need to discount future profit flows. Intermediate

firms will use the stochastic discount factor of the household to do this – Λt,t+j =
βjλt+j

λt
. In

addition, when setting a price today, the firm will take into account the probability that a price

chosen today will be in effect in the future – this will be given by ϕj .

The dynamic problem of an updating firm can therefore be written:

max
Pt(j)

Et

∞∑
s=0

ϕsΛt,t+s

(
Pt(j)

Pt+s

(
Pt(j)

Pt+s

)−ϵ

Yt+s −
wt+s

At+s

(
Pt(j)

Pt+s

)−ϵ

Yt+s

)
Multiplying out, and for simplicity defining mct = wt/At, we have:

max
Pt(j)

Et

∞∑
s=0

ϕsΛt,t+s

(
Pt(j)

1−ϵP ϵ−1
t+s Yt+s −mct+sPt(j)

−ϵP ϵ
t+sYt+s

)
The first order condition can be written:

(1− ϵ)Pt(j)
−ϵEt

∞∑
s=0

ϕsΛt,t+sP
ϵ−1
t+s Yt+s + ϵPt(j)

−ϵ−1Et

∞∑
s=0

ϕsΛt,t+smct+sP
ϵ
t+sYt+s = 0

Simplifying:

Pt(j) =
ϵ

ϵ− 1

Et

∞∑
s=0

ϕsΛt,t+smct+sP
ϵ
t+sYt+s

Et

∞∑
s=0

ϕsΛt,t+sP
ϵ−1
t+s Yt+s

First, note that since nothing on the right hand side depends on j, all updating firms will update

to the same reset price, call it P#
t . We can write the expression more compactly as:

P#
t =

ϵ

ϵ− 1

X1,t

X2,t
(10)

Here:

X1,t = mctP
ϵ
t Yt + ϕEtΛt,t+1X1,t+1 (11)

X2,t = P ϵ−1
t Yt + ϕEtΛt,t+1X2,t+1 (12)
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If ϕ = 0, then the right hand side would reduce to mctPt = MCt. In this case, the optimal

price would be a fixed markup, ϵ
ϵ−1 , over nominal marginal cost.

3.6 Alternative Setup: Retailers and Wholesalers

Above, we assumed that production firms were potentially heterogeneous. There is an alternative

setup this is sometimes easier to use.

In this setup, the final output good is still a CES aggregate, but it is an aggregate of retail

output. Retailers face the same downward-sloping demand curve, but don’t hire labor. Instead,

they purchase wholesale output, YW,t(j) at price PW,t. There is a representative wholesale firm,

indexed by W , that produces wholesale output according to:

YW,t = AtNt

The wholesaler just hires all the labor supplied by the household. It is competitive and takes

its price, PW,t, as given. It nominal profit is:

PtDW,t = PW,tAtNt −WtNt

The first order condition is:

PW,t =
Wt

At

You will note: the right hand side is the same as nominal marginal cost above. We can define

pW,t = PW,t/Pt as the real price of wholesale output, and then have:

pW,t =
wt

At

Where wt =Wt/Pt is the real wage. This is real marginal cost.

There are a continuum of retailers indexed by j ∈ [0, 1]. Their production function is simple:

they purchase some wholesale output, YW,t(j), and repackage this into retail output, Yt(j) = YW,t(j).

Given that Yt(j) = YW,t(j), their nominal flow profit is:

PtDt(j) = Pt(j)Yt(j)− PW,tYt(j)

Plugging in the demand function for retail output that comes from the CES aggregator, this

is the same problem we encountered before given what PW,t is equal to. We get exactly the

same solution as above. This retailer-wholesaler distinction can be useful if there are features of

production that might not aggregate well (which is not an issue with a linear production function).
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4 Policy, Equilibrium, and Aggregation

Now we need to close the model. First, we need to say something about money supply. Suppose

that the nominal money supply is set by the central bank and follows an AR(1) process in the

growth rate, where gMt = lnMt − lnMt−1:

gMt = (1− ρM )gM + ρMg
M
t−1 + sMεM,t (13)

gM is the steady state growth rate, εM,t is drawn from a standard normal distribution, and sM

is the standard deviation of the shock.

The government’s nominal budget constraint is:

it−1B
G
t ≤ PtTt +Mt −Mt−1 +BG

t+1 −BG
t (14)

I am assuming that the government does no spending; this is easy to add. It will turn out to

be irrelevant whether the government issues any debt or not. But the government earns revenue

(in nominal terms) from “printing” money.

Bond market clearing requires that Bt = BG
t in all periods. Combining (14) with the household’s

budget constraint at equality, we get:

PtCt =WtNt + PtDt

There are two sources of dividends: dividends from ownership in the final good firm and div-

idends from ownership in the intermediate goods firms. The final good firm nominal dividend is

simple:

PtD
F
t = PtYt −

∫ 1

0
Pt(j)Yt(j)dj

Define the dividends from ownership in the intermediate firms as:

PtD
I
t =

∫ 1

0
[Pt(j)Yt(j)−WtNt(j)] dj =

∫ 1

0
Pt(j)Yt(j)dj −Wt

∫ 1

0
Nt(j)dj

Market clearing for labor requires that
∫ 1
0 Nt(j)dj = Nt. We can therefore write this as:

PtD
I
t =

∫ 1

0
Pt(j)Yt(j)dj −WtNt

Total dividends received by the household are the sum of dividends from the two types of firms:

PtDt = PtD
F
t + PtD

I
t = PtYt −

∫ 1

0
Pt(j)Yt(j)dj +

∫ 1

0
Pt(j)Yt(j)dj −WtNt = PtYt −WtNt

Plugging this into the household’s budget constraint, after making use of the market-clearing
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condition for bonds and imposing the government’s budget constraint, gives the aggregate resource

constraint:

Yt = Ct (15)

To get an aggregate production function, note that individual intermediate production functions

are:

Yt(j) =

(
Pt(j)

Pt

)−ϵ

Yt

The left hand side is:

AtNt(j) =

(
Pt(j)

Pt

)−ϵ

Yt

Now integrate both sides: ∫ 1

0
AtNt(j)dj =

∫ 1

0

(
Pt(j)

Pt

)−ϵ

Ytdj

Which is:

At

∫ 1

0
Nt(j)dj = Yt

∫ 1

0

(
Pt(j)

Pt

)−ϵ

dj

Using the market clearing condition for labor, this can be written:

AtNt = Ytv
P
t (16)

Where:

vPt =

∫ 1

0

(
Pt(j)

Pt

)−ϵ

dj (17)

vPt is a measure of price dispersion – if there were no price-setting friction, firms would all

charge the same price, and this would be one. If prices are different, this expression will be bound

from below by unity.

An equilibrium in this economy is a set of prices (wt, it, Pt, P
#
t , and Πt) and allocations (Ct,

Nt, Yt) such that the households and firms behave optimally and markets clear. We need to close

the model with a description of the exogenous productivity variable, which we assume follows a

stationary AR(1):

lnAt = ρA lnAt−1 + sAεA,t (18)

Our full set of conditions can be written:
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1 = EtΛt,t+1(1 + it)Π
−1
t+1 (19)

θNχ
t = wtC

−σ
t (20)

Mt

Pt
= ψCσ

t

(
1 + it
it

)
(21)

Λt−1,t = β

(
Ct

Ct−1

)−σ

(22)

P 1−ϵ
t =

(∫ 1

0
Pt(j)

1−ϵdj

)
(23)

P#
t =

ϵ

ϵ− 1

X1,t

X2,t
(24)

X1,t = mctP
ϵ
t Yt + ϕEtΛt,t+1X1,t+1 (25)

X2,t = P ϵ−1
t Yt + ϕEtΛt,t+1X2,t+1 (26)

mct =
wt

At
(27)

Yt = Ct (28)

AtNt = Ytv
P
t (29)

vPt =

∫ 1

0

(
Pt(j)

Pt

)−ϵ

dj (30)

lnAt = ρA lnAt−1 + sAεA,t (31)

gMt = (1− ρM )gM + ρMg
M
t−1 + sMεM,t (32)

Πt =
Pt

Pt−1
(33)

gMt = lnMt − lnMt−1 (34)

As written, this is 16 equations and 16 variables (Ct, Nt, Yt, Λt−1,t, it, Πt, Pt, Mt, P
#
t , X1,t,

X2,t, mct, wt, At, v
P
t , g

M
t ). I could reduce this down if I wanted to.

There are a couple of issues with how I wrote this model. First, I have the price level showing

up. To the extent to which the price level is growing over time, I want to write the model without

reference to that, and so need to re-write things in terms of the inflation rate. Second, I still have

j subscripts showing up in two places – first, in the definition of the aggregate price level, and

second, in the price dispersion term. I need to get rid of the j subscripts if possible. The Calvo

assumption allows us to do that.

Start with the definition of the price index. Note that exactly 1 − ϕ of firms will choose the

same price, P#
t . Since these firms are random, we can order them however we want along the unit

interval. We can therefore break up the integral as:
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P 1−ϵ
t =

∫ 1−ϕ

0

(
P#
t

)1−ϵ
dj +

∫ 1

1−ϕ
Pt(j)

1−ϵdj

Which becomes:

P 1−ϵ
t = (1− ϕ)

(
P#
t

)1−ϵ
+

∫ 1

1−ϕ
Pt(j)

1−ϵdj

This follows because the reset price doesn’t depend on j. For the firms who cannot change their

price, their prices will just be whatever was charged in the previous period. So:

P 1−ϵ
t = (1− ϕ)

(
P#
t

)1−ϵ
+

∫ 1

1−ϕ
Pt−1(j)

1−ϵdj

Because price adjusters and non-adjusters are randomly chosen, taking the sum of a subset of

old prices is just proportional to summing over all old prices. Put another way:∫ 1

1−ϕ
Pt−1(j)

1−ϵdj = ϕ

∫ 1

0
Pt−1(j)

1−ϵdj

But the right hand side is just P 1−ϵ
t−1 !. Hence, we have:

P 1−ϵ
t = (1− ϕ)

(
P#
t

)1−ϵ
+ ϕP 1−ϵ

t−1

In effect, the current price level (raised to a power) is a convex combination of the reset price

(common across all firms) and the old price level. The Calvo assumption means we don’t need to

keep track of individual firm prices, just the aggregate price level. To write this in terms of inflation

rates, divide both sides by P 1−ϵ
t . We get:

1 = (1− ϕ)

(
P#
t

Pt

)1−ϵ

+ ϕ

(
Pt−1

Pt

)1−ϵ

Define p#t = P#
t /Pt as the optimal relative reset price. The last term is just the inverse of gross

price inflation. So we have:

1 = (1− ϕ)
(
p#t

)1−ϵ
+ ϕΠϵ−1

t (35)

(35) describes the evolution of aggregate inflation dynamics, rather than the price level, and

does so in terms of stationary variables. Now go to the price dispersion term. Using similar logic,

we can break up the integral:

vPt =

∫ 1−ϕ

0

(
P#
t

Pt

)−ϵ

dj +

∫ 1

1−ϕ

(
Pt−1(j)

Pt

)−ϵ

dj

Here, I have used the fact that non-updating firms charge their previous period’s price. We can

multiply and divide the right-hand term by P−ϵ
t−1 to get (since this doesn’t vary with j, it can go
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inside or outside the integral):

vPt = (1− ϕ)
(
p#t

)−ϵ
+

∫ 1

1−ϕ

(
Pt−1(j)

Pt−1

)−ϵ(Pt−1

Pt

)−ϵ

dj

But this can be written:

vPt = (1− ϕ)
(
p#t

)−ϵ
+Πϵ

t

∫ 1

1−ϕ

(
Pt−1(j)

Pt−1

)−ϵ

dj

But now use the same trick as before. The integral is:∫ 1

1−ϕ

(
Pt−1(j)

Pt−1

)−ϵ

dj = ϕ

∫ 1

0

(
Pt−1(j)

Pt−1

)−ϵ

dj = ϕvPt−1

So we can write the price dispersion term just in terms of its own lag:

vPt = (1− ϕ)
(
p#t

)−ϵ
+ ϕΠϵ

tv
P
t−1 (36)

Now, we need to play with the price-setting terms. Define X̂1,t = X1,t/P
ϵ
t and X̂2,t = X2,t/P

ϵ−1
t .

Playing around:

X1,t

P ϵ
t

= mctYt + ϕEtΛt,t+1
X1,t+1

P ϵ
t

(37)

Multiply and divide the last term by P ϵ
t+1:

X̂1,t = mctYt + ϕEtΛt,t+1
X1,t+1

P ϵ
t+1

(
Pt+1

Pt

)ϵ

(38)

So:

X̂1,t = mctYt + ϕEtΛt,t+1Π
ϵ
t+1X̂1,t+1 (39)

Do the same with X2,t+1:

X2,t

P ϵ−1
t

= Yt + ϕEtΛt,t+1
X2,t+1

P ϵ−1
t

So:

X̂2,t+1 = Yt + ϕEtΛt,t+1
X2,t+1

P ϵ−1
t+1

(
Pt+1

Pt

)ϵ−1

And finally:

X̂2,t+1 = Yt + ϕEtΛt,t+1Π
ϵ−1
t+1X̂2,t+1 (40)

Now go to the reset price condition. Re-write it so it is in terms of X̂1,t and X̂2,t:
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P#
t =

ϵ

ϵ− 1

X1,t/P
ϵ
t

X2,t/P
ϵ−1
t

P ϵ
t

P ϵ−1
t

But this is:

P#
t =

ϵ

ϵ− 1

X̂1,t

X̂2,t

Pt

Which can be written in terms of p#t :

p#t =
ϵ

ϵ− 1

X̂1,t

X̂2,t

(41)

Now, let’s re-write things in terms of real balances, mt = Mt/Pt. For the money demand

specification, this is straightforward:

mt = ψCσ
t

(
1 + it
it

)
(42)

For the definition of nominal money growth, to write this in terms of real balance growth, add

and subtract logs of the price level as necessary:

gMt = (lnMt − lnPt) + lnPt − (lnMt−1 − lnPt−1)− lnPt−1

Which is then:

gMt = lnmt − lnmt−1 + lnΠt (43)

Okay, now I’m done. The equilibrium is now characterized by:

1 = EtΛt,t+1(1 + it)Π
−1
t+1 (44)

θNχ
t = wtC

−σ
t (45)

mt = ψCσ
t

(
1 + it
it

)
(46)

Λt−1,t = β

(
Ct

Ct−1

)−σ

(47)

1 = (1− ϕ)
(
p#t

)1−ϵ
+ ϕΠϵ−1

t (48)

p#t =
ϵ

ϵ− 1

X̂1,t

X̂2,t

(49)

X̂1,t = mctYt + ϕEtΛt,t+1Π
ϵ
t+1X̂1,t+1 (50)

X̂2,t = Yt + ϕEtΛt,t+1Π
ϵ−1
t+1X̂2,t+1 (51)
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mct =
wt

At
(52)

Yt = Ct (53)

AtNt = Ytv
P
t (54)

vPt = (1− ϕ)
(
p#t

)−ϵ
+ ϕΠϵ

tv
P
t−1 (55)

lnAt = ρA lnAt−1 + sAεA,t (56)

gMt = (1− ρM )gM + ρMg
M
t−1 + sMεM,t (57)

gMt = lnmt − lnmt−1 + lnΠt (58)

This is the same system of equations, but it is now 15 variables and 15 equations (I have

dropped Pt and re-written things in terms of mt instead of Mt). Importantly, nothing here inherits

any nominal trend, and there are no j subscripts – this is just aggregate variables!

5 The Steady State

In the non-stochastic steady state, A = 1, real variables are constant, and gM is a constant

parameter (the average growth rate of the nominal money supply). To solve for the steady state,

note that this requires:

lnΠ = gM

Hence:

Π = exp(gM )

If gM = 0, for example, then steady state gross inflation will be 1 (so net inflation will be zero).

The steady state stochastic discount factor is:

Λ = β

Therefore, the steady state nominal interest rate is:

1 + i = Π/β

Given Π, we then have steady state reset price inflation as:

1− ϕΠϵ−1 = (1− ϕ)
(
p#
)1−ϵ

So:
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p# =

(
1− ϕΠϵ−1

1− ϕ

) 1
1−ϵ

Next, in steady state, note that:

X̂1 =
mcY

1− ϕβΠϵ

X̂2 =
Y

1− ϕβΠϵ−1

Hence:

X̂1

X̂2

= mc
1− ϕβΠϵ−1

1− ϕβΠϵ

Therefore, we can solve for mc (which is in turn equal to the real wage):

mc =
ϵ− 1

ϵ
p#

1− ϕβΠϵ

1− ϕβΠϵ−1

Now we can solve for steady state price dispersion:

vP =
(1− ϕ)

(
p#
)−ϵ

1− ϕΠϵ

Now we can solve for steady state N from the first order condition for labor supply. Since

C = Y = N/vP , we have:

θNχ = mc

(
N

vP

)−σ

So:

Nσ+χ = (vp)σmc

So:

N =

(
(vp)σmc

θ

) 1
σ+χ

Then:

Y = NvP = C

Once we have Y and C, we can solve for steady state m from the money demand relationship:

m = ψCσ

(
1 + i

i

)
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5.1 Long-Run Distortions

There are two distortionary features of this model in the long run: monopolistic competition and

inflation. To focus on the monopolistic competition distortion, it is easiest to think about a world

in which gM = 0 (since Π = 1, so there is no net inflation in the long run). It is easy to see that

mc = w = ϵ−1
ϵ < 1. The steady state wage without monopolistic competition would be w = mc = 1

(which coincides with ϵ→ ∞). Monopolistic competition will have the effect of giving lower hours

and output in the long run.

The second distortion is inflation. When gM = 0 so that Π = 1, vP = 1. But for any gM ̸= 0,

vP > 1. This is like having lower productivity – for a given N , you get less Y . This arises because of

staggered price-setting. If trend inflation is non-zero (Π ̸= 1), then relative prices of intermediates

will not all be the same. But this means that some output is “lost” when aggregating up in the

CES aggregator.

To get a sense of these factors, I solve for the steady state using some different values of these

parameters. First, I fix β = 0.99, θ = 1, χ = 1, ϕ = 3/4, and ψ = 1. Then, fixing gM = 0 (so no

trend inflation), I solve for steady state output as a function of ϵ, for values of ϵ ranging from 2 to

20. This is shown below.

Figure 1: Steady-State Y and ϵ
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0.7

0.75

0.8

0.85

0.9

0.95

1

Y

We can see that output is everywhere increasing in ϵ. The bigger ϵ is, the weaker is monopoly

power, and the less distorted is the economy.

Next, to get a sense of the role of trend inflation, I fix ϵ = 11, and consider values of gM

ranging from -0.005 up to 0.01. I plot steady state values of the optimal reset price, inflation, price

dispersion, output, and real money balances as a function of trend growth in money.
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Figure 2: Steady-State Inflation and Other Variables
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Since steady state gross inflation is the exponential of steady state money growth, inflation

plotted against money growth is not exactly a 45-degree line (it has some curvature), though for

some levels of trend growth in money (which I am considering), net inflation would be approximately

equal to money growth. When gM = 0, we get p# = Π = 1. For negative values of money growth,

reset price inflation lies below inflation; for positive values, it lies above. Here is what is going on.

If trend inflation is positive, when given a chance to reset its price, a firm has to overadjust to

factor in trend inflation during the period in which it will be (in expectation) stuck with the price

it chooses today (and vice-versa on the downside). Essentially, firms want a constant markup of

price over marginal cost of ϵ/(ϵ − 1). If the aggregate price level is trending up due to inflation,

they have to over-adjust to get that desired markup on average over the duration of the time when

their price will be in effect.

The right plan plots price dispersion. This bottoms out when Π = 1 at vP = 1. It lies

everywhere else above unity. If there is trend inflation (or deflation), then prices are going to

be disperse. This effectively acts like a negative productivity shifter in the production function,

lowering output. Indeed, steady state output is essentially the mirror image of steady state price
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dispersion. Steady state output peaks at gM = 0 so Π = 1 and vP = 1.

The mechanisms above call for Π = 1 (i.e. no steady state inflation). Any steady state inflation

ends up distorting relative prices of intermediate goods, resulting in lost output, which is bad. But,

as we see in the lower right panel, there is still the Friedman rule logic at play – deflation results

in higher steady state real money balances, which increases welfare. Any discussion of optimal

trend inflation must balance the Friedman rule logic with money in the utility function (lower-right

panel) against the bad effects of price dispersion (lower-left panel).

6 Impulse Responses

Next, I solve the model in Dynare and produce impulse responses. I need to parameterize the

model. I pick β = 0.99, σ = 3, χ = 1, and θ = 1. I set ϕ = 0.75 (as we will see below, this implies

that the average duration between price changes is four quarters). I set ϵ = 11. This implies that

average markups of price over marginal cost are 10 percent. I set ψ = 1 (this parameter really has

no influence on the model dynamics). I set gM = 0, so there is zero steady state inflation (Π = 1,

or π = 0). I set ρM = 0.5 and ρA = 0.9. I set the standard deviations of both the monetary and

productivity shocks to one percent (0.01).

6.1 Aside: Calibrating the Calvo Parameter

How does one come up with a reasonable value for ϕ? This is a really important parameter in the

model – the bigger it is (the stickier are prices), the bigger will be the effects of nominal shocks

and the more distorted will be the response of variables to real shocks.

It turns out that there exists a close mapping between ϕ and the expected duration of a price

change. Consider a firm that gets to update its price in a period. In expectation, how long will

it be stuck with that price? The probability of getting to adjust its price one period from now

is 1 − ϕ. The probability of adjusting in two periods is ϕ(1 − ϕ): ϕ is the probability it doesn’t

adjust after one period, and 1− ϕ is the probability it can adjust in two periods. The probability

of adjusting in three periods is ϕ2(1− ϕ): ϕ2 is the probability it gets to the third period with its

initial price, and 1− ϕ is the probability it can adjust in that period. And so on. So the expected

duration of a price chosen today is:

Expected Duration = (1− ϕ)
∞∑
j=1

ϕj−1j

The summation part on the inside can be written:
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S = 1 + 2ϕ+ 3ϕ2 + 4ϕ3 + . . .

Sϕ = ϕ+ 2ϕ2 + 3ϕ3 + . . .

(1− ϕ)S = 1 + ϕ+ ϕ2 + ϕ3 + . . .

(1− ϕ)S =
1

1− ϕ

S =
1

(1− ϕ)2

The second to last line above uses the fact that 1 + ϕ + ϕ2 + · · · = 1
1−ϕ as long as ϕ < 1.

Combining this with the 1− ϕ outside the summation term above, we have:

Expected Duration =
1

1− ϕ

Bils and Klenow (2004, JPE ) analyze micro data on pricing and computing the average length of

time between prices changes. Though there is substantial heterogeneity across types of goods (e.g.

the price of newspapers rarely changes, while gasoline changes daily), for most goods, prices change

on average once every six months, which would suggest that ϕ ≈ 1/2 at a quarterly frequency (av-

erage duration of two quarters). For these models to produce realistic responses to monetary policy

shocks you need ϕ much higher (more like the 0.75 value I’ve been using). So an important area of

research essentially involves ways to “flatten” the Phillips Curve without assuming counterfactually

large levels of price rigidity. I will typically assume something like ϕ = 3/4 or ϕ = 2/3.

6.2 IRFs to Monetary and Productivity Shocks

Consider first impulse responses to a monetary shock. I’m plotting the log level of the money supply

(the cumulated response of gMt . There is a permanent effect on the money supply that grows over

time (given that I assumed ρM > 0). Output increases, inflation increases, the price level increases,

real marginal cost (wt/At) increases, and the nominal interest rate decreases (although not quite

on impact, though it does subsequent to that). These look kind of “standard” from the perspective

of most people’s basic intuition. The increase in real marginal cost is because firms have to pay

workers more to get them to work more, which is necessary for output to increase.

Effectively, price stickiness (ϕ > 0) is limiting how much the price level can react to the increase

in Mt in the short run. This means that mt goes up in the short run (but ultimately the long-run

increase in Mt is met by a proportional increase in Pt). It is easiest to think about the real effects

of a nominal shock by focusing on the money demand relationship, and assuming that the nominal

rate is approximately constant. Then, in log-linear terms, we would have:

m̃t = σyt

For ease of notation (see discussion below), I am just going to use lowercase variables to denote
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Figure 3: IRFs to a Monetary Shock
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Figure 4: IRFs to a Productivity Shock
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log deviations of variables that are already uppercase. This says that output and real balances

must move one-to-one. This is effectively quantity theory logic – since MtVt = PtYt, we have

mt = V −1
t Yt. If velocity is constant, as assumed in quantity theory (and as would be the case with

a constant nominal interest rate), then real balances and output move one-to-one. Price stickiness

allows the increase in the nominal money supply to cause real balances to rise in the short run,

which necessitates a temporary increase in output until price adjustment has taken place.

Next, consider a positive productivity shock. The impulse responses are shown below. Output

increases, but by substantially less than the increase in At. Mechanically, this means that hours,

Nt are going down (which is not shown). Inflation falls, as does the price level. For this parame-

terization, the nominal interest rate declines. Real marginal cost falls – this is saying that the real

wage increases less than the increase in productivity.

In terms of intuition, it is easiest to think about what is going in with the quantity theory logic.

When productivity goes up, output wants to increase. But it can only increase if mt increases.

Because prices are sticky, and there is no change in the money supply, the price level falls by “too
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Figure 5: IRFs to a Monetary Shock, Different ϕ
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little” relative to what it would do without price stickiness, which limits the increase in Yt.

6.3 The Role of Price Stickiness

We can solve the model for different values of ϕ. Recall that ϕ→ 0 means that prices are flexible,

whereas ϕ→ 1 means that prices are very sticky.

Below, I show IRFs to a monetary and productivity shock for three different values of ϕ: 0.75

(what I showed above), ϕ = 0 (prices flexible), and ϕ = 0.9 (prices more sticky).

If prices are flexible (dashed line), then the monetary shock has no effect on output or real

marginal cost. The price level jumps up almost all the way to its new higher steady state value.

This means that, on impact, real money balances decline (the price level jumps more than the

nominal money supply initially). To accommodate real money balances declining, the nominal

interest rate actually increases. Inflation jumps up a lot. There is no impact on output or real

marginal cost (nor on the real interest rate or hours). In contrast, when prices are stickier (bigger

ϕ), output reacts more, and the price level reacts less. Thus, naturally, the real effects of monetary
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Figure 6: IRFs to a Productivity Shock, Different ϕ
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expansion are bigger the stickier are prices.

Next, consider a productivity shock.

6.4 The Relative Unimportance of Steady State Inflation

Above, I solved the model with gM = 0, which means Π = 1 (gross inflation, which equivalently

means π, net inflation, is zero in the steady state). Obviously, we live in a world where inflation is,

on average, positive.

It turns out that for low values of gM (equivalently, values of Π near one) the model dynamics

are not much affected. And it is much easier to linearize the model about a zero inflation steady

state (as we will see in a bit). Below, I show impulse responses to monetary and productivity shocks

for different parameterizations of steady state inflation. I’m using a quarterly calibration. Inflation

is typically quote at an annual frequency (so approximately four times the quarterly number).

Hence, gM = −0.005 corresponds to πA = −2 percent and gM = 0.005 corresponds to πA = 2

percent, where the A superscript stands for annualized.
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Figure 7: IRFs to a Monetary Shock, Different gM
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Qualitatively, the impulse responses for to both shocks are the same regardless of the level of

trend inflation. There are some (small) quantitative differences, particularly in response to the pro-

ductivity shock. But, ignoring trend inflation is typically not much of a big deal for understanding

equilibrium dynamics, at least in a small-scale model. This does not mean that trend inflation is

irrelevant, particularly for welfare – as noted above, higher trend inflation leads to price dispersion,

which works like a reduction in aggregate productivity. It also does not mean that substantially

higher levels of inflation (like 4 percent or more at an annualized frequency) will not have substan-

tive impacts (indeed, if trend inflation is high or low enough, it will not be possible to solve the

model).
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Figure 8: IRFs to a Productivity Shock, Different gM
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6.5 A Taylor Rule Formulation

I have written the model with an exogenous rule for the money supply. This is not the way that the

model is typically written down. Modern central banks pay little attention to the money supply,

and instead focus on targeting short-term interest rates.

We can replace the money growth rule with an interest rate rule of the sort proposed by Taylor

(1993). In particular:

it = i+ ϕπ(lnΠt − lnΠ) + ϕy(lnYt − lnY ) + ut (59)

ut = ρuut−1 + suεu,t (60)

One can alternatively write this in levels; taking logs gives the expression above.

1 + it = (1 + i)

(
Πt

Π

)ϕπ
(
Yt
Y

)ϕy

exp(ut) (61)
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In this formulation, the (nominal) interest rate reacts to deviations of inflation from its long-run

level and to output from its steady state. For a determinate equilibrium (more on this below), we

need ϕπ and ϕy to be sufficiently big (more on this later). I will always assume that ϕπ > 1 – this

is typically referred to as the “Taylor principle.” The condition needed for determinacy is actually

slightly different than that, but if ϕy = 0, then ϕπ > 1 is necessary for a unique equilibrium. i

is the steady state interest rate (which is a function of the steady state real interest, 1
β − 1, and

the steady state inflation rate, Π, which we can treat as an exogenous policy parameter). ut is

an autocorrelated shock – given that there are no endogenous state variables in the model, for

persistent effects of a monetary shock, we need an autocorrelated shock. Alternatively, we could

get persistence by assuming some form of interest rate smoothing (more on this later).

To solve the model with a Taylor rule, we simply replace the money growth rule with the rule

for it. This makes the nominal money supply an endogenous variable – it reacts to meet money

demand given the interest rate target from the policy rule. Impulse responses to a monetary shock

(ut) and a productivity shock with a Taylor rule formulation are shown below. In generating these,

I assume ϕπ = 1.5 and ϕy = 0.5.

Figure 9: IRFs to a Monetary Shock, Taylor Rule
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Figure 10: IRFs to a Productivity Shock, Taylor Rule
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The responses to a monetary shock are qualitatively similar to what we get with a money growth

rule, except that the nominal interest rate response is more conventional. Output, inflation, the

price level, and the money supply all fall. Output and inflation eventually revert to where they

started, and the price level ends up permanently lower. In response to the productivity shock, we

also get a similar pattern – output rises, but undershoots the increase in productivity. Inflation

and the price level fall. One difference relative to the money growth rule – the price level ends

up permanently lower in response to the productivity shock (it was mean-reverting in the money

growth specification).

As noted, a Taylor rule makes the money supply endogenous – it adjusts to meet money demand

given the interest rate target. Below, I show the impulse response of the nominal money supply

to a productivity shock with a Taylor rule. The money supply increases when there is a positive

productivity shock. This means that the central bank is (partially) accommodating the productivity

shock when it follows a Taylor rule. This is what allows output to respond more (relative to the

money growth rule) in response to the productivity shock.

As long as utility from real money balances is additively separable, the evolution of the money
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Figure 11: Endogenous Money Response to Productivity Shock, Taylor Rule
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supply with a Taylor rule is actually irrelevant for the equilibrium dynamics of output, inflation,

and the interest rate to any kind of shock. We could solve the model without reference to money

demand altogether and get the same exact impulse responses we have above. For this reason,

it is quite common to consider the economy to be “cashless” in New Keynesian models. In the

background, there is a demand for money and an endogenous reaction of the money supply to meet

that demand at the desired interest rate, but the exact specification of money demand is irrelevant

for the equilibrium dynamics of other variables. So, many people ignore it altogether.

7 Log Linearization

The basic New Keynesian model is most often presented in log-linear form. I’m going to use the

notation that xt = lnXt − lnX = dXt
X for variables that are already capitalized, and x̃ notation

for variables that are lowercase (with the exception that I’m doing to treat it = dit and πtd lnΠt).

This just eases things up a bit.

Take logs of the Euler equation on bonds. We get:

ln 1 = lnΛt,t+1 + ln(1 + it)− lnΠt+1

Note that we can write the stochastic discount factor in terms of consumption:

ln 1 = lnβ − σ lnCt+1 + σ lnCt + ln(1 + it)− lnΠt+1

Totally differentiating:
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0 = −σEtct+1 + σct + it − Etπt+1

Here, I am using the notation that ct = dCt/C, it ≈ ln(1 + it), and πt ≈ lnΠt. Imposing the

resource constraint (i.e. ct = yt), we have:

yt = Etyt+1 −
1

σ
(it − Etπt+1) (62)

(62) is often referred to as the “IS” equation. This sounds a little odd, because there is no

investment (nor saving) in the model, but it’s the same idea of imposing asset market-clearing

and taking the optimal condition (Euler equation) and imposing the aggregate resource constraint.

Since rt = it − Etπt+1, this is showing a negative relationship between current output and the real

interest rate, taking the expected future level of output as given.

Next, note that the labor supply condition is already log-linear:

χnt = w̃t − σct

Again, just to be clear nt = dNtN and ct = Ct/C, but w̃t = dwt/w since I’m already using a

lowercase variable. But we can substitute out ct = yt from the resource constraint, leaving:

χnt = w̃t − σyt (63)

Next, log-linearize the money demand relationship:

lnmt = lnψ + σ lnCt + ln(1 + it)− ln it

Totally differentiating, we have:

m̃t = σct + it −
it
i

Again, keep the notation in mind: it = dit. We can write this as:

m̃t = σyt +
i− 1

i
it (64)

Since i < 1, the coefficient on it is negative. This just says that money demand is increasing in

output and decreasing in the nominal interest rate.

I’m going to proceed a bit out of order. The marginal cost condition and production function

are already log-linear:

m̃ct = w̃t − at (65)

at + nt = yt + ṽPt (66)

Again, take note of my notation: for example, at = d lnAt = dAt
A . Given this, exogenous
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processes are straightforward:

at = ρAat−1 + sAεA,t (67)

g̃Mt = ρM g̃
M
t−1 + sMεM,t (68)

g̃Mt = m̃t − m̃t−1 + πt (69)

The nasty part involves linearizing the pricing conditions. To do this, we’re going to assume

we are linearizing about a zero inflation steady state: Π = 1 (so gM = 0). For small steady state

money growth rates, this isn’t going to be a big deal (see above), and it makes the math much

easier.

Start with the evolution of inflation condition. Take logs:

ln 1 = ln

[
(1− ϕ)

(
p#t

)1−ϵ
+ ϕΠϵ−1

t

]
Now, totally differentiate. This is pretty easy because, in steady state, the term in brackets is

one. So we have:

0 = (1− ϕ)(1− ϵ)
(
p#
)−ϵ

dp#t + (ϵ− 1)ϕΠϵ−1dΠt

Or:

0 = (1− ϕ)(1− ϵ)
(
p#
)1−ϵ dp#t

p#
+ (ϵ− 1)ϕΠϵ−1dΠt

Now, since p# = 1 if steady state inflation is zero, and because Π = 1 and dΠt = πt, we have:

0 = (1− ϕ)(1− ϵ)p̃#t + ϕ(ϵ− 1)πt

Hence, we have:

πt =
1− ϕ

ϕ
p̃#t (70)

Next, go to the price dispersion term. Take logs:

ln vPt = ln

[
(1− ϕ)

(
p#t

)−ϵ
+ ϕΠϵ

tv
P
t−1

]
With zero trend inflation, we know that vPt = 1 in steady state. This makes the total differen-

tiation easier. We have:

dvPt
vP

=
1

vP

[
−ϵ(1− ϕ)

(
p#
)−ϵ−1

dp#t + ϵϕΠϵ−1vPdΠt + ϕΠϵdvPt−1

]
Now, again using the fact that p# = Π = vP = 1, we can write this as:
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ṽPt = −ϵ(1− ϕ)p̃#t + ϵϕπt + ϕṽPt−1

Or:

ṽPt = −ϵ
(
(1− ϕ)p̃#t − ϕπt

)
+ ϕṽPt−1

But, using (70), the terms involving inflation and the relative reset price drop out, so we are

left with:

ṽPt = ϕṽPt−1 (71)

But since there is nothing to shock ṽPt out of steady state (the point of approximation), we

have ṽPt = 0 – it drops out of the linearization (including in the production function). This would

not be true if trend inflation were non-zero, but around a zero inflation steady state, we can ignore

price dispersion.

Now we need to log-linearize the reset price expression. Since this is multiplicative, it is already

log-linear:

p̃#t = x̂1,t − x̂2,t

Where x̂1,t = dX̂1,t/X̂1. Now we need to linearize those two things. We have:

ln X̂1,t = ln
[
mctYt + ϕEtΛt,t+1Π

ϵ
t+1X̂1,t+1

]
Totally differentiate:

dX̂1,t

X̂t

=
1

X̂1,t

[
Y dmct +mcdYt + ϕΛΠϵdX̂1,t+1 + ϵϕΛΠϵ−1X̂1dΠt+1 + ϕΠϵX̂1dΛt,t+1

]
Given that Λ = β and Π = 1, we can write this as:

x̂1,t =
1

X̂1

[
mcY m̃ct +mcY yt + ϕβX̂1x̂1,t+1 + ϵϕβX̂1πt+1 + ϕβX̂1λt,t+1

]
Where λt,t+1 =

dΛt,t+1

Λ . We can write this further:

x̂1,t =
mcY

X̂1

m̃ct +
mcY

X̂1

yt + ϕβEtx̂1,t+1 + ϵϕβEtπt+1 + ϕβEtλt,t+1

Note, that, in steady state, X̂1 =
mcY
1−ϕβ assuming Π = 1, so this reduces further to:

x̂1,t = (1− ϕβ)m̃ct + (1− ϕβ)yt + ϕβEtx̂1,t+1 + ϵϕβEtπt+1 + ϕβEtλt,t+1 (72)

Now do log-linearization of X̂t:
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ln X̂2,t = ln
[
Yt + ϕEtΛt,t+1Π

ϵ−1
t+1X̂2,t+1

]
Totally differentiate:

dX̂2,t

X̂2

=
1

X̂2

[
dYt + ϕΛΠϵ−1dX̂2,t + (ϵ− 1)ϕΛΠϵ−2X̂2dΠt+1 + ϕΛΠϵ−1dλt,t+1

]
Which can be written:

x̂2,t+1 =
1

X̂2

[
Y yt + ϕβX̂2x̂2,t+1 + (ϵ− 1)ϕβX̂2πt+1 + ϕβX̂tλt,t+1

]
Where I have imposed steady state values where relevant: Λ = β and Π = 1. Note that

X̂2 =
Y

1−ϕβ . Using this fact, we can write the above as:

x̂2,t+1 = (1− ϕβ)yt + ϕβEtx̂2,t+1 + (ϵ− 1)ϕβEtπt+1 + ϕβEtλt,t+1 (73)

Now subtract (73) from (72). We have:

x̂1,t − x̂2,t = (1− ϕβ)m̂ct + ϕβEtπt+1 + ϕβ (Etx1,t+1 − Etx2,t+1)

Now, since x̂1,t − x̂2,t = p̃#t , we can write this:

p̃#t = (1− ϕβ)m̂ct + ϕβEtπt+1 + ϕβEtp̃
#
t+1

But from (70), we know that:

p̃#t =
ϕ

1− ϕ
πt

Plug this in, and we have:

ϕ

1− ϕ
πt = (1− ϕβ)m̃ct + ϕβEtπt+1 +

ϕ2β

1− ϕ
Etπt+1

But this is:

πt =
(1− ϕ)(1− ϕβ)

ϕ
m̃ct + (1− ϕ)βEtπt+1 + ϕβEtπt+1

But this is just:

πt =
(1− ϕ)(1− ϕβ)

ϕ
m̃ct + βEtπt+1 (74)

(74) is called the New Keynesian Phillips Curve and is one of the most important equations in

modern macro. With this equation in hand, we have eliminated (and no longer need to keep track

of) “intermediate” variables like p̃#t , x̂1,t, or x̂2,t¿
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To gain some intuition for this expression, solve it forward. We can express inflation as propor-

tional to a present discounted value of real marginal cost:

πt =
(1− ϕ)(1− ϕβ)

ϕ
Et

∞∑
s=0

βsm̃ct+s (75)

With monopolistic competition, intermediate good firms want their price to be a markup (ϵ/(ϵ−
1)) over marginal cost. If current (or expected future) marginal cost is supposed to be high, firms

who can need to raise prices today to hit their desired markup. If they don’t adjust today, they will

have lower than desired markups in the future. So marginal cost pressures put upward pressure

on inflation. How much upward pressure depends on ϕ – if ϕ is small, the coefficient (1−ϕ)(1−ϕβ)
ϕ is

large, and lots of firms will adjust, so inflation will react to marginal cost (current or future) a lot

(and vice-versa if ϕ is low). In the limiting case where prices are flexible, (1−ϕ)(1−ϕβ)
ϕ → ∞, which

necessitates m̂ct+s = 0, which means all firms will have their desired markup each period.

7.1 Linearized Conditions in One Place

Below are the remaining conditions in one place, where I have substituted out p̃#t , x̂1,t, x̂2,t, ṽ
p
t ,

ct, and λt,t+1. As noted early, price dispersion is constant to a first-order approximation about a

zero inflation steady state, and p̃#t , x̂1,t, x̂2,t are subsumed in the New Keynesian Phillips Curve.

I no longer need to keep track of the stochastic discount factor either, and I have imposed the

market-clearing condition that ct = yt. This leaves me with nine equations and nine variables (yt,

it, πt, nt, w̃t, m̃ct, m̃t, at, and g̃
M
t ) as follows:

yt = Etyt+1 −
1

σ
(it − Etπt+1) (76)

χnt = w̃t − σyt (77)

m̃t = σyt +
i− 1

i
it (78)

m̃ct = w̃t − at (79)

at + nt = yt (80)

πt =
(1− ϕ)(1− ϕβ)

ϕ
m̃ct + βEtπt+1 (81)

g̃Mt = ρM g̃
M
t−1 + sMεM,t (82)

at = ρAat−1 + sAεA,t (83)

g̃Mt = m̃t − m̃t−1 + πt (84)

In terms of the economics of what these equations are saying, (76) is the IS equation, which

is essentially an aggregate demand condition (note that rt = it − Etπt+1). (77) is a labor supply

condition. (78) is a money demand condition. The money supply equation is (82), and (84) is
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just a relationship between growth in the nominal money supply, real balances, and inflation. (79)

defines real marginal cost; as discussed earlier, this is essentially a labor demand condition. (80)

is the production function. (81) is the Phillips curve, which can be interpreted as an aggregate

supply relationship (more below). Essentially, we have three markets – for goods, for labor, and for

money – with demand and supply relationships going into each. In equilibrium, prices must adjust

so that all three hold. (83) is just an exogenous process for productivity.

Note that, if instead of an exogenous money supply rule, we wanted to model monetary policy

with an interest rate rule, we would just replace (82) with a Taylor rule. The money supply would

then be exogenous, given a target for the interest rate. The linearized Taylor rule (which takes out

the constants) would be:

it = ϕππt + ϕyyt + ut (85)

7.2 System Reduction, Flexible Price Output, the Output Gap, and the Natural

Rate

We can actually reduce the system quite a bit further. Combining the production function with

the labor supply condition to substitute out nt, we have:

χ(yt − at) = w̃t − σyt

From the labor demand condition, we can eliminate w̃t from this expression:

χ(yt − at) = m̃ct + at − σyt

But this can be written:

(σ + χ)yt = m̃ct + (1 + χ)ãt

Now, let us introduce an important concept, called the “flexible price level of output.” Some-

times this is called “potential output.”2 The flexible price level of output is defined as the equi-

librium level of output that would emerge in equilibrium in the hypothetical world in which prices

are completely flexible (i.e. ϕ = 0). We could get this using the conditions in levels, but it is

straightforward to do so in the linearized model. When prices are flexible, m̃ct = 0 – real marginal

cost will be constant (in levels, equal to ϵ−1
ϵ ). This would just mean that all firms charge a constant

markup over marginal cost. Let’s call ỹft the flexible price level of output. From above, we have:

(σ + χ)yft = (1 + χ)at

Or:

2Though one wants to be careful here. The flexible price level of output is not in general going to be efficient since
there is a monopoly distortion. Even without price stickiness, labor would be paid less than its marginal product.
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yft =
1 + χ

σ + χ
at

In other words, since productivity is the only (real) exogenous state variable, equilibrium output

in the hypothetical world with flexible prices is just a linear function of it. But using this definition,

we can actually sub out real marginal cost. We have:

m̃ct = (σ + χ)yt − (1 + χ)at

But since at =
σ+χ
1+χ y

f
t , we have:

m̃ct = (σ + χ)
(
yt − yft

)
In other words, real marginal cost is just proportional to the output gap, yt − yft . Define

xt ≡ yt − yft as the gap. If xt > 0, then mct > 0, which means that the average markup is lower

than desired. This puts upward pressure on inflation (and vice-versa). With this, we can write the

Phillips Curve more compactly as:

πt = γxt + βEtπt+1 (86)

Where γ = (1−ϕ)(1−ϕβ)
ϕ (σ+ χ). This is in-line with empirical Phillips Curves, which show some

relationship between economic activity and inflation (typically in terms of an unemployment rate,

which would naturally be negatively related to an output gap). With this, we can reduce the system

further:

yt = Etyt+1 −
1

σ
(it − Etπt+1) (87)

m̃t = σyt +
i− 1

i
it (88)

πt = γxt + βEtπt+1 (89)

g̃Mt = ρM g̃
M
t−1 + sMεM,t (90)

at = ρAat−1 + sAεA,t (91)

g̃Mt = m̃t − m̃t−1 + πt (92)

yft =
1 + χ

σ + χ
at (93)

xt = yt − yft (94)

In this formulation, (89) summarizes the supply-side of the economy: production, labor demand,

labor supply, and price-setting. (87) summarizes demand for goods, and (88) the demand for money.

We can actually go even further. Add and subtract yft and Ety
f
t+1 from the (87):

39



yt − yft + yft = Etyt+1 − Ety
f
t+1 + Ety

f
t+1 −

1

σ
(it − Etπt+1)

Which can be written more compactly:

xt = Etxt+1 + Ety
f
t+1 − yft − 1

σ
(it − Etπt+1)

Now, one might wonder where this is going. Define the natural rate of interest, rft (or sometimes

r∗t , or “r-star”) as the hypothetical real interest rate that would clear the goods market with no

price rigidity. This would satisfy:

1

σ
rft = Ety

f
t+1 − yft

But then we can write the IS equation:

xt = Etxt+1 −
1

σ

(
it − Etπt+1 − rft

)
The term it−Etπt+1−rft = rt−rft is a (real) interest rate gap – the gap between the equilibrium

real interest rate and the natural rate. We can actually write the entire system as a function of rft
and drop yft and at. How? Note that:

rft = σ
(
Ety

f
t+1 − yft

)
But, from above, this may be written:

rft = σ

(
1 + χ

σ + χ
Etat+1 −

1 + χ

σ + χ
at

)
=
σ(1 + χ)

σ + χ
(Etat+1 − at)

But since Etat+1 = ρAat, this is:

rft =
σ(1 + χ)(ρA − 1)

σ + χ
at

But solving backwards, we can write this as:

rft =
σ(1 + χ)(ρA − 1)

σ + χ
ρAat−1 +

σ(1 + χ)(ρA − 1)

σ + χ
sAεA,t

But since at−1 =
σ+χ

σ(1+χ)(ρA−1)r
f
t−1, we have:

rft = ρAr
f
t−1 + srεA,t (95)

Where:

sr =
σ(1 + χ)(ρA − 1)

σ + χ
sA

Then the full system is:
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xt = Etxt+1 −
1

σ

(
it − Etπt+1 − rft

)
(96)

πt = γxt + βEtπt+1 (97)

m̃t = σyt +
i− 1

i
it (98)

g̃Mt = ρM g̃
M
t−1 + sMεM,t (99)

g̃Mt = m̃t − m̃t−1 + πt (100)

rft = ρAr
f
t−1 + srεA,t (101)

(96) is an aggregate demand relationship (IS equation) and (97) is an aggregate supply rela-

tionship. (98)-(100) describe the money market, and (101) is an exogenous process for the natural

rate of interest.

7.3 The Three-Equation NK Model

Although I have done it with money, it is uncommon to even bother modeling money in most

applications. Rather, most of the time researchers assume some kind of interest rate rule. A

modified version of the Taylor rule (that reacts to the output gap, rather than the log deviation of

output from steady state) is:

it = ϕππt + ϕxxt + ut (102)

Where ut obeys a potentially persistent process. One also often sees people build in interest

rate persistence via a lagged interest rate term:

it = ρiit−1 + (1− ρi)ϕππt + (1− ρi)ϕxxt + ut (103)

Here, 0 ≤ ρi < 1, and I have just scaled the coefficients on inflation and the output gap by

1 − ρi (more on why later). In (103), we would typically assume that ut is an iid shock, but one

could entertain persistence. Either way, if one includes (102) or (103), one gets a three-equation

model:

xt = Etxt+1 −
1

σ

(
it − Etπt+1 − rft

)
(104)

πt = γxt + βEtπt+1 (105)

it = ϕππt + ϕxxt + ut (106)

This is three equations in three endogenous variables – inflation, the output gap, and the

interest rate. We could include the money demand equation, (99), and the relationship between

nominal money growth, real balances, and inflation, (100), if we wanted to (note we would drop

the exogenous money supply rule in favor of the interest rate rule), but we actually don’t need to
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in order to determine xt and it. We also need the exogenous process for rft (and potentially ut),

but (104)-(106) summarize the endogenous variables of the model concisely in three equations.

This three equation model is nice. It’s nice for several reasons. First, it is easy to work with

and build intuition for. Second, it has an AD-AS flavor from an undergraduate textbook. Third,

it focuses in on exactly the variables central banks care about. In the US, the Federal Reserve

has a “dual mandate” for “price stability” and “full employment.” We can interpret πt (inflation)

as measuring price stability and xt (the output gap) as a measure of how close we are to full

employment. The Fed’s principal policy tool is the short-term interest rate, it. So these three

equations describe the two targets modern central banks focus on (inflation and the output gap /

unemployment gap) and its principal instrument (a nominal interest rate). Kind of cool!

7.4 Cost-Push Shocks

It is common to include a “cost-push” shock into the NKPC:

πt = γxt + βEtπt+1 + upt (107)

Where upt follows a stationary AR(1) process:

uPt = ρpu
p
t−1 + spεp,t (108)

A shock like this can be motivated as time-variation in desired markups (i.e. a shock to ϵt in

the full, non-linear model). People also sometimes think about a shock like this as representing an

oil price shock. In any event, as we will see, this shock is “nice” in that it introduce a non-trivial

tradeoff for a central bank that wants to stabilize both inflation and the output gap.

8 Method of Undetermined Coefficients

The method of undetermined coefficients is a way to solve for linearized policy functions by hand.

In principle, it could be used in a more complicated model, but it is especially useful in a small-scale

model with no endogenous state variables. It allows us to build better intuition for how the model

economy works than simply plugging equations into a computer.

The basic gist of the methodology is to guess that forward-looking jump variables are linear

functions of state variable(s). In principle, we could do this with many exogenous states, but it’s

most straightforward with just one. Consider the basic NK model from above, (104)-(106). Suppose

that inflation and output are linear function of the exogenous state variable, rft :

πt = θπr
f
t

xt = θxr
f
t
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Given that we have assumed rft (which can be thought of as exogenous) is stationary, we do not

need to worry about imposing that inflation and the gap do not explode. These linear functions

will be time-invariant (i.e. they hold at all times). Plug them into the NKPC:

θπr
f
t = γθxr

f
t + βθπEtr

f
t+1

The last line follows because Etπt+1 = θπEtr
f
t+1. But Etr

f
t+1 = ρAr

f
t . So we have:

θπr
f
t = γθxr

f
t + βθπρAr

f
t

This is one equation in two unknowns. rft drops out. Solving for θπ as a function of θx, we

have:

θπ =
γ

1− βρA
θx

Now go to the IS equation and do the same. Plug in the Taylor rule to write it in terms of πt

and xt (and assume ut = 0, which is not without loss of generality given the linearity of the model

– we will get the same policy functions in response to rft whether we allow for the monetary policy

shock or not):

θxr
f
t = θxEtr

f
t+1 −

1

σ

(
ϕππt + ϕxxt − θπEtr

f
t+1

)
+

1

σ
rft

Note again that Etr
f
t+1 = ρAr

f
t , and plug in inside the Taylor rule to eliminate πt and xt. We

have:

σθxr
f
t = σθxρAr

f
t − ϕπθπr

f
t − ϕxθxr

f
t + θπρAr

f
t + rft

We can now drop the rft . We have:

θx (σ(1− ρA) + ϕx) + θπ(ϕπ − ρA) = 1

We now have two equations in two unknowns. Plug in for θπ using the expression we found

from the NKPC:

θx (σ(1− ρA) + ϕx) + θx
γ(ϕπ − ρA)

1− βρA
= 1

Which is:

θx [(1− βρA) (σ(1− ρA) + ϕx) + γ(ϕπ − ρA)] = 1− βρA

Or:

θx =
1− βρA

(1− βρA) (σ(1− ρA) + ϕx) + γ(ϕπ − ρA)
(109)
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But then:

θπ =
γ

(1− βρA) (σ(1− ρA) + ϕx) + γ(ϕπ − ρA)
(110)

These are pretty intuitive. First, suppose that γ → ∞ (prices are completed flexible). Then

θx = 0 (but θπ will not be, since γ is in both the numerator and the denominator). In other

words, if prices are flexible, then the output gap is always zero (i.e. yt = yft ). Second, suppose

that ϕπ → ∞. Then both θx and θπ go to 0. Third, suppose that ϕx → ∞. Again, both θπ and

θx go to zero. This is a manifestation of something called the “Divine Coincidence” – in the basic

NK model, even though there is on instrument (the policy rate) and two targets (inflation and the

output gap), it is possible to stabilize both targets at the same time. To see this better, note that

if ϕπ → ∞, then πt = 0 for the Taylor rule to feature a non-explosive policy rate. But, from the

Phillips Curve, if inflation is always zero, then xt = 0 as well.

We can use these coefficients to recover an expression for the nominal interest rate (which is

effectively a static variable, given that it only appears in the equilibrium conditions at date t. We

have:

it = (ϕπθπ + ϕxθx) r
f
t

Which is:

it =
ϕπγ + ϕx(1− βρA)

(1− βρA) (σ(1− ρA) + ϕx) + γ(ϕπ − ρA)
rft (111)

9 Alternative Price Stickiness Model: Rotemberg (1982) Pricing

We have thus far modeled price stickiness via the Calvo (1983) assumption, wherein each period

firms face a constant hazard of being able to adjust their price. This means that in equilibrium

firms are heterogeneous, but the model is rigged in such a way that aggregation works out nicely.

An alternative pricing assumption is based on Rotemberg (1982). In the Rotemberg model, firms

face a quadratic cost of price adjustment. In equilibrium they all end up behaving identically. To a

first order approximation about a zero inflation steady state, the Rotemberg and Calvo models can

be parameterized to be identical. They are not identical to order higher than one, and they have

different implications for micro data (e.g. in the Calvo model only a fraction of firms will adjust

their price in a given period, but in the Rotemberg model all firms will be changing their prices

each period).

In the Rotemberg model, there are many intermediate goods firms. Firms face the same demand

curve from the final good firm as earlier. They produce output according to Yt(j) = AtNt(j), just

as in the Calvo model. Nominal flow profit for producer j is given by:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ϵ

Yt −WtNt(j)−
ψp

2

(
Pt(j)

Pt−1(j)
− 1

)2

PtYt (112)
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The parameter ψp ≥ 0 measures the cost of price adjustment, and it is measured in units of the

final good. We can write the profit function in real dollars as:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ϵ Yt
Pt

− wtNt(j)−
ψp

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (113)

Since Nt(j) = Yt(j)/At, we can write this as:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ϵ Yt
Pt

− wt

At
Yt(j)−

ψp

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (114)

But since mct = wt/At, this is just:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ϵ Yt
Pt

−mctYt(j)−
ψp

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (115)

Plugging in the demand function for variety j, we get:

Πt(j) = Pt(j)

(
Pt(j)

Pt

)−ϵ Yt
Pt

−mctPt(j)
−ϵP ϵ

t Yt −
ψp

2

(
Pt(j)

Pt−1(j)
− 1

)2

Yt (116)

Each period, firms choose price to maximize the expected present discounted value of flow

profit, where discounting is by the household’s stochastic discount factor. The problem is dynamic

because the adjustment cost function means that current prices are relevant for future profits. The

optimality condition for price-setting can be written:

(ϵ− 1)

(
Pt(j)

Pt

)−ϵ Yt
Pt

=

ϵmct

(
Pt(j)

Pt

)−ϵ−1 Yt
Pt

− ψp

(
Pt(j)

Pt−1(j)
− 1

)
Yt

Pt−1(j)
+

ψpEt

[
Λt,t+1

(
Pt+1(j)

Pt(j)
− 1

)(
Pt+1(j)

Pt(j)

)(
Yt+1

Pt(j)

)]
(117)

This first order condition holds for all firms. We will therefore converge to a symmetric equi-

librium where all firms behave identically, so Pt(j) = Pt for all j. We can therefore write the FOC

as:

(ϵ− 1)
Yt
Pt

= ϵmct
Yt
Pt

− ψp (Πt − 1)
Yt
Pt

+ ψpEt

[
Λt,t+1 (Πt+1 − 1)Πt+1

Yt+1

Pt

]
Which can be written:

ϵ− 1 = ϵmct − ψpπtΠt+1 + ψpEtΛt,t+1πt+1Πt+1
Yt+1

Yt

Here I am using Πt =
Pt

Pt−1
and πt = Πt − 1. To make life especially straightforward, suppose

that we have log utility over consumption, so Λt,t+1 = β Ct
Ct+1

. Since Ct = Yt will be the aggregate
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resource constraint, all terms involving Yt and Yt+1 drop out, leaving:

ϵ− 1 = ϵmct − ψpπtΠt+1 + ψpβEtπt+1Πt+1 (118)

If there is no price rigidity (ψp = 0), then this reduces to mct =
ϵ−1
ϵ , which again just says that

price is a constant markup over marginal cost (equivalently, labor is paid a markdown relative to

its marginal product).

Let’s now log-linearize (118) about a zero inflation steady state. Take logs of both sides:

ln(ϵ− 1) = ln [ϵmct − ψpπtΠt+1 + ψpβEtπt+1Πt+1]

Totally differentiate:

0 =
1

ϵ− 1
[ϵdmct − ψpπdΠt+1 − ψpΠdπt + ψpπdΠt+1 + ψpβΠdπt+1]

We are linearizing about a zero (net) inflation steady state: this means π = 0, Π = 1, dπt = πt,

and dΠt = πt. So we have:

0 =
1

ϵ− 1

[
mcϵ

dmct
mc

− ψpπt + ψpβEtπt+1

]
Which can be written:

0 = mcϵm̃ct − ψpπt + ψpβEtπt+1

In steady state, mc = ϵ−1
ϵ , so we can write this further as:

ψpπt = (ϵ− 1)m̃ct + ψpβEtπt+1

Or:

πt =
ϵ− 1

ψp
m̃ct + βEtπt+1 (119)

Although the coefficient on real marginal cost is different, this is exactly the same expression as

(74)! We can pick ψp to generate exactly the same slope of the NKPC if we want. We again have

that, if prices are quite flexible, then ψp is low, and the coefficient on marginal cost is big (and

vice-versa).

The rest of the model works out similarly without adjustment. The one area where there is

some potential adjustment is in the aggregate resource constraint. Because the adjustment cost

for changing prices comes out of profit, this will show up in the aggregate resource constraint. In

particular, the aggregate resource constraint will be:

Yt = Ct +
ψp

2
π2t Yt (120)
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In other words, there is some resource loss due to inflation moving around. But if you linearize

this about a zero inflation steady state, it drops out:

lnYt = ln

[
Ct +

ψp

2
π2t Yt

]
Ỹt =

dCt

Y
+
ψp

2
π2Ỹt + 2ψpππ̃t

If we are linearizing about the point π = 0, then the latter terms drop out, and C = Y , leaving:

Ỹt = C̃t (121)

This is analogous to how, in the Calvo model, price dispersion potentially lowers productivity,

but this term disappears to first order about a zero inflation steady state.
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