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1 Introduction

These notes describe optimal monetary policy in the basic New Keynesian model. We take the

basic model to be characterized by two principal equations: the IS curve and the Phillips Curve,

both written in terms of the output gap:

πt = γxt + βEtπt+1 (1)

xt = Etxt+1 −
1

σ

(
it − Etπt+1 − rft

)
(2)

In the most basic model from class, γ = (1−ϕ)(1−ϕβ)
ϕ (σ+χ), where σ is the inverse intertemporal

elasticity of substitution and χ is the inverse Frisch labor supply elasticity. rft is the natural rate

of interest, and we assume it to be exogenous (this can be written as a function of other exogenous

shocks; e.g. productivity or government spending shocks).

The Federal Reserve in the US has a “dual mandate” in that it wants to promote price stability

and full employment. In the context of the basic model, we can take price stability to mean

minimizing volatility in inflation, and full employment to mean minimizing volatility in the output

gap. We can define a loss function for the central bank as follows:

L = Et

∞∑
j=0

βj
1

2

[
π2t+j + ωx2t+j

]
(3)

The flow objective is π2t + ωx2t . Since these are deviations, we can interpret these squares as

variances. So, the loss function is the weighted sum of the variances of inflation and the output

gap. ω ≥ 0 is simply the relative weight the policymaker puts on output fluctuations. The 1/2

outside is just a scaling parameter that won’t affect the optimum.

While a loss function like this seems to accord well with policymaking in practice, it can actually

be derived from taking a second-order approximation of the value function of the representative

household in the model. In doing so, the relative weight on the output gap, ω, can be pinned down

by deeper parameters of the underlying model, rather than just taken as given. In particular, in

the most basic version of the NK model, the value of ω ought to be:
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ω =
γ

(1 + χϵ)ϵ

Given that ϵ is likely pretty large, and most standard calibrations would have γ be pretty small,

the relative weight on output gap fluctuations ought to be quite small if one is basing it on the

approximation to the representative household’s value function. But, for what I am going to do, I

will for the most part just take ω as given – it could be anything.

1.1 Aside: Monopoly Price-Setting and Steady State Distortions

The loss function I wrote down above can be derived from a second-order approximation to the

welfare function of the representative household in the case in which the non-stochastic steady state

of the model is efficient. If there is any kind of steady state distortion, the loss function we derived

above will not be valid. This ought to make some sense: what the planner should care about is

bringing output to its efficient level, call it yet in log deviation form. In general, because of the

monopoly distortion, yft ̸= yet .

The steady-state distortion in the basic NK model comes from monopoly power in price-setting.

In the steady state of the model, optimal behavior by intermediate firms gives rise to a labor demand

condition that satisfies:1

w =
ϵ− 1

ϵ

Recall that ϵ > 1 and steady state labor productivity (the marginal product of labor) is nor-

malized to one. Labor market-clearing (i.e. combining labor demand with supply) gives:

θNχ = C−σ ϵ− 1

ϵ

This is not the labor market condition the planner would choose. The planner would equate

the marginal rate of substitution between labor and consumption to the marginal product of labor

(the latter of which is just unity in the basic model). The planner would therefore have:

θNχ = C−σ

For the quadratic loss function above to be valid, the steady state about which the approxi-

mation is taken needs to be efficient. The steady state can be made efficient provided there are

appropriate subsidies in place from the government. In particular, suppose that the government

levies both a (constant) consumption tax, τC , and a (constant) labor tax, τN . The labor supply

condition of the household would be:

θNχ = C−σ 1− τN

1 + τC
w

1For this subsection, and indeed this entire set of notes, I am assuming that steady state inflation is Π = 1 (gross,
so π = 0, net).
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Plugging in the labor demand condition:

θNχ = C−σ 1− τN

1 + τC
ϵ− 1

ϵ

The fiscal authority can use a consumption or labor tax to implement the efficient allocation

provided:

1− τN

1 + τC
ϵ− 1

ϵ
= 1

For example, if the fiscal authority only uses the labor tax (so τC = 0), we need:

1− τN =
ϵ

ϵ− 1

This means that τN < 0; in other words, the fiscal authority needs to subsidize labor to offset

the monopoly distortion. In contrast, suppose that the fiscal authority instead wants to use the

consumption tax only (so τN = 0). Then we must have:

1 + τC =
ϵ− 1

ϵ

This means that τC < 0; in other words, the fiscal authority needs to subsidize consumption

to offset the monopoly distortion. In the steady state, a consumption tax and a labor tax are

isomorphic. What is important is that the fiscal authority subsidizes consumption and/or labor to

bring the economy’s steady-state level of production up to the efficient level.

2 Optimal Policy Under Discretion

We will consider two versions of an optimal policy problem: discretion and commitment. Under

discretion, the policymaker will choose its instrument to minimize the period loss function, taking

all future values in the loss function as given. Basically, the policymaker is unable to commit to

anything about the future, and so it just minimizes the loss function in the present, taking the

future as given. Under commitment, in contrast, the policymaker picks an entire sequence of its

policy instrument to minimize the entire loss function (i.e. the full present discounted value). The

problem is much easier to solve under discretion.

The instrument the policymaker has at its disposal is the short-term nominal interest rate, it.

Rather than closing the model with an instrument rule like a Taylor rule, we are instead going to

derive an optimal targeting rule. The central bank wants to pick it to minimize the loss function,

taking the Phillips Curve and IS equation as constraints. In particular, under discretion the problem

is:

min
it

L =
1

2
π2t +

ω

2
x2t

s.t.
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πt = γxt + βEtπt+1

xt = Etxt+1 −
1

σ

(
it − Etπt+1 − rft

)
The policymaker takes rft , which is exogenous, as given. It also takes Etπt+1 and Etxt+1

as given as well, since the policymaker will re-optimize in the future. The IS equation therefore

already expresses xt as a function of things the policymaker takes as given as well as its instrument.

Plugging that into the Phillips Curve to eliminate xt gives:

πt = γEtxt+1 −
γ

σ

(
it − Etπt+1 − rft

)
+ βEtπt+1

We can therefore write the policy problem as an unconstrained problem of choosing it:

min
it

L =
1

2

[
γEtxt+1 −

γ

σ

(
it − Etπt+1 − rft

)
+ βEtπt+1

]2
+
ω

2

[
Etxt+1 −

1

σ

(
it − Etπt+1 − rft

)]2
The derivative of the loss function with respect to it is:

∂L
∂it

= −γ
σ
πt −

ω

σ
xt

This follows because the terms in brackets are just πt and xt, respectively. Focusing on the

derivative with respect to it in the inflation term, for example, we bring the exponent down (the 2s

cancel) and we subtract one from the exponent, which leaves πt, and we multiply by the derivative

of the inside with respect to it, which is − γ
σ . Setting the derivative equal to zero and simplifying

yields:

xt = −γ
ω
πt (4)

(4) is the optimality condition. It has a “lean against the wind” flavor – when inflation is high,

the policymaker allows the output gap to go negative, where the amount depends on the relative

weight on the gap in the objective function, ω, as well as the slope of the Phillips curve, γ. One can

include (4) as the “policy rule” and the third equation in the model instead of a Taylor rule. (4) is

an implicit inflation target: each period, the policymaker targets a negative relationship between

the current inflation rate and the current output gap.

To solve for the required path of the interest rate to implement this lean against the wind

condition, plug it into Phillips curve to eliminate xt:

πt = −γ
2

ω
πt + βEtπt+1

Or:

Etπt+1 =

(
1 + γ2

ω

)
β

πt
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This is an explosive difference equation in inflation. The coefficient

(
1+ γ2

ω

)
β > 1. This means

that the only non-explosive solution for inflation is πt = 0. But from lean against the wind condition,

if πt = 0, then xt = 0. This means that, under discretion in this model, we can get to the global

minimum of the loss function at 0! What does this imply about the behavior of the nominal interest

rate? If πt = xt = 0 in period t, then agents will expect the same for t+ 1: Etπt+1 = Etxt+1 = 0.

For the IS equation to hold, this requires:

it = rft (5)

In other words, optimal monetary policy under discretion entails moving the interest rate one-

for-one with the natural rate of interest. This results in both inflation and the output gap being

completely stabilized.

3 Optimal Policy Under Commitment

The problem under commitment gets messier. This is because the central bank doesn’t just get to

choose the current instrument, it, it gets to choose future instruments, like it+1 (and so on). This

is relevant because the central bank doesn’t need to take future inflation and the output gap as

given when choosing the current interest rate.

To make things easier, let’s write the problem in the following way:

L =
1

2
π2t +

1

2
ωx2t + βEt

[
1

2
π2t+1 +

1

2
ωx2t+1

]
+ β2Et

[
1

2
π2t+2 +

1

2
ωx2t+2

]
+ . . .

s.t.

πt+j = γEt+jxt+j+1 −
γ

σ

(
it+j − Et+jπt+j+1 − rft+j

)
+ βEt+jπt+j+1 (6)

xt+j = Et+jxt+j+1 −
1

σ

(
it+j − Et+jπt+j+1 − rft+j

)
(7)

The problem of the central bank is to pick it, it+1, it+2, . . . to minimize L, subject to inflation

and the output gap being determined in each period according to the IS equation and Phillips

curves.

When choosing it, there is no direct effect on future inflation or the future gap (since there are

no endogenous state variables). The derivative of the loss function with respect to it is:

∂L
∂it

=
∂L
∂πt

∂πt
∂it

+
∂L
∂xt

∂xt
∂it

This is making use of the chain rule – ∂L
∂πt

is the derivative of the loss function with respect to

πt, and
∂πt
∂it

is the derivative of inflation with respect to it (i.e. the derivative of (6) with respect to

it), and similarly for xt. These partial derivatives are:
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∂L
∂πt

= πt

∂L
∂xt

= ωxt

∂πt
∂it

= −γ
σ

∂xt
∂it

= − 1

σ

Plugging these in, we have:

∂L
∂it

= −γ
σ
πt −

ω

σ
xt

Setting this equal to zero and simplifying yields:

xt = −γ
ω
πt (8)

(8) is the same as the first order condition under discretion – a “lean against the wind” condition.

One would be tempted to conclude that there is no difference between commitment and discretion.

But one would be wrong. Under commitment, the central bank doesn’t just choose it in period t,

it chooses an expected path of future policy rates, too. The choice of it+1, for example, influences

Etπt+1 and Etxt+1, which are both relevant for the loss function in period t. We need to take this

into account when choosing a path of future interest rates.

This is going to make the problem more cumbersome. Consider the FOC with respect to it+1.

When choosing it+1, we need to take into account how it affects the loss function in period t as

well as how it impacts the loss function in t+1. Formally, the derivative of the loss function (with

respect to it+1, from the perspective of period t) is:

∂L
∂it+1

=
∂L
∂πt

[
∂πt
∂πt+1

∂πt+1

∂it+1
+

∂πt
∂xt+1

∂xt+1

∂it+1

]
+
∂L
∂xt

[
∂xt
∂πt+1

∂πt+1

∂it+1
+

∂xt
∂xt+1

∂xt+1

∂it+1

]
+

∂L
∂πt+1

∂πt+1

∂it+1
+

∂L
∂xt+1

∂xt+1

∂it+1

This looks kind of nasty. And it is. There is the chain rule all over the place. As above, ∂L
∂πt

is the

derivative of the loss function with respect to current inflation. The term
[

∂πt
∂πt+1

∂πt+1

∂it+1
+ ∂πt

∂xt+1

∂xt+1

∂it+1

]
measures how next period’s interest rate impacts current inflation. It doesn’t do this directly (it+1

doesn’t directly show up (6)). It does through its impact on Etπt+1 and Etxt+1. That’s what those

terms in the brackets are picking up. Same story for the next overall term in the derivative – this

is picking up the effect on the loss function of it+1 coming through xt (i.e. (7)), which again comes

through future inflation and the future output gap. In addition to the impacts on the current loss

function, the choice of it+1 impacts the future loss function, as well. This is measured by the terms
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∂L
∂πt+1

∂πt+1

∂it+1
and ∂L

∂xt+1

∂xt+1

∂it+1
.

Let’s collect all these derivatives together in one place.

∂L
∂πt+j

= βjπt+j

∂L
∂xt+j

= ωβjxt+j

∂πt
∂πt+1

=
γ

σ
+ β

∂πt
∂xt+1

= γ

∂xt
∂πt+1

=
1

σ

∂xt
∂xt+1

= 1

∂πt
∂it

= −γ
σ

∂xt
∂it

= − 1

σ

Now plug these in to the general expression for the derivative above:

∂L
∂it+1

= πt

[
−
(γ
σ

)2
− γ

σ
β − γ

σ

]
+ ωxt

[
− γ

σ2
− 1

σ

]
− βπt+1

γ

σ
− ωβxt+1

1

σ

This can be simplified a bit:

∂L
∂it+1

= −γ
σ

[γ
σ
+ 1 + β

]
πt −

ω

σ

[γ
σ
+ 1
]
xt −

βγ

σ
πt+1 −

ωβ

σ
xt+1 (9)

Note that we know something about the relationship from xt and πt. In particular, the FOC

for it is xt = − γ
ωπt. If we plug this in above, we have

∂L
∂it+1

= −γ
σ

[γ
σ
+ 1 + β

]
πt +

γ

σ

[γ
σ
+ 1
]
πt −

βγ

σ
πt+1 −

ωβ

σ
xt+1

But this is now:

∂L
∂it+1

= −γβ
σ
πt −

γβ

σ
πt+1 − ωβxt+1

Setting this equal to zero and simplifying yields:

xt+1 = −γ
ω
(πt + πt+1)

In other words, the FOC fo it+1 results in a condition where the central bank will plan to

implement policy so that the output gap in t + 1 is negatively related to the sum of inflation in

period t and t+ 1. What is the sum of inflation (note that these are net inflation rates, expressed
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in deviation form)? Well:

πt = lnPt − lnPt−1

πt+1 = lnPt+1 − lnPt

Therefore, we have:

πt + πt+1 = lnPt+1 − lnPt−1

This means that the FOC for it+1 can be written:

xt+1 = −γ
ω
(lnPt+1 − lnPt−1) (10)

In other words, optimal policy for commitment means setting the future output gap as a “lean

against the wind condition” as a function of the price level (relative to the period before policy was

set), rather than inflation rate.

Now, to think about this moving forward, things would extremely messy – we would have all

sorts of derivatives floating around. This is because, for example, it+2 is going to be relevant for

the loss function in t. How? Through its impact on πt+2 and xt+2, which are relevant for πt+1

and xt+1, which are in turn relevant for πt and xt. Proceeding via the “plug and chug” method

(i.e. solving for πt and xt in terms of it and future variables, and doing an unconstrained problem)

quickly becomes infeasible.

An easier, though to me less intuitive, way to do this is to set the problem up as a Lagrangian

(instead of plugging in the constraints). We treat the IS and Phillips Curves as constraints with

Lagrange multipliers. The Lagrangian would be:

L = Et

∞∑
j=0

βj

[
π2t+j

2
+ ω

x2t+j

2
+ ψ1,t+j (γxt+j + βπt+j+1 − πt+j) + . . .

ψ2,t+j

(
xt+j+1 −

1

σ

(
it+j − πt+j+1 − rft+j

)
− xt+j

)]

The policymaker gets to choose it+j , πt+j , and xt+j . For j = 0, the FOC are:

∂L
∂πt

= πt − ψ1,t = 0

∂L
∂xt

= ωxt + γψ1,t − ψ2,t = 0

∂L
∂it

= − 1

σ
ψ2,t = 0

Setting these equal to zero means:
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ψ1,t = πt

ωxt + γψ1,t = ψ2,t

ψ2,t = 0

Combining these together:

xt = −γ
ω
πt

This the same condition we had before for period t. Now consider the derivatives with respect

to inflation, the gap, and the interest rate led forward one period. We have:

∂L
∂πt+1

= βψ1,t +
1

σ
ψ2,t + βπt+1 − βψ1,t+1 = 0

∂L
∂xt+1

= −ψ2,t + βωxt+1 + γβψ1,t+1 − βψ2,t+1 = 0

∂L
∂it+1

= −β 1
σ
ψ2,t+1 = 0

Now, for sake of completeness, let us stop for a moment and think about why these derivatives

are what they are. Focus on the FOC with respect to πt+1. πt+1 shows up in the period t constraint

on the Phillips Curve (the term βψ1,t), the period t constraint on the IS equation (the term 1
σψ2,t),

the period t + 1 loss function (the term βπt+1, where the β shows up because the t + 1 loss is

discounted relative to period t), and the period t + 1 constraint on the Phillips Curve (the term

−βψ1,t+1, where the discounting is because the constraint is led forward one period). Similarly,

for the derivative with respect to xt+1: it shows up in the period t IS constraint (ψ2,t), the t + 1

objective function (the term βωxt+1), the period t+ 1 constraint on the Euler equation (the term

βγψ1,t+1), and the t+1 constraint on the IS equation (the term −βψ2,t+1). The future interest rate,

it+1, only appears in the t+ 1 IS equation, and so the derivative of the Lagrangian is −β 1
σψ2,t+1.

We therefore must have ψ2,t+1 = 0. But using this, and setting the other two derivatives to zero,

we have:

πt+1 = ψ1,t+1 − ψ1,t

ψ1,t+1 = −ω
γ
xt+1

Combining these, we have:

π1,t+1 = −ω
γ
xt+1 − ψ1,t

But we know from the period t FOC that ψ1,t = πt. Hence, we have:
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πt+1 = −ω
γ
xt+1 − πt

Or:

xt+1 = −γ
ω
(πt + πt+1)

This is exactly what we had above using the “plug and chug” method!

Now, let’s take the derivatives with respect to period t+ 2 stuff:

∂L
∂πt+2

= β2ψ1,t+1 +
1

σ
βψ2,t+1 + β2πt+2 − β2ψ1,t+2 = 0

∂L
∂xt+2

= −βψ2,t+1 + β2ωxt+2 + γβ2ψ1,t+2 − β2ψ2,t+2 = 0

∂L
∂it+2

= −β2 1
σ
ψ2,t+2 = 0

We again have ψ2,t+2 = 0. This means that:

ψ1,t+2 = −ω
γ
xt+2

And:

πt+2 = ψ1,t+2 − ψ1,t+1

But this is:

πt+2 = −ω
γ
xt+2 − ψ1,t+1

But from above, we know that ψ1,t+1 = πt+1 + ψ1,t. So we have:

πt+2 = −ω
γ
xt+2 − πt+1 − ψ1,t

But from the period t FOC, we know that ψ1,t = πt. Hence, we have:

xt+2 = −γ
ω
(πt + πt+1 + πt+2)

But, just as above, this can be written:

xt+2 = −γ
ω
(lnPt+2 − lnPt−1)

If one keeps going, for any j ≥ 1, the first order conditions boil down to:

xt+j = −γ
ω

j∑
s=0

πt+s = −γ
ω
(lnPt+j − lnPt−1) (11)
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In other words, under commitment the central bank commits to an implicit price level target

wherein the output gap is negatively related to the price level gap (relative to some initial condition).

This differs from the solution under discretion, where each period the output gap is negatively

related to the inflation rate in that period.

3.1 Time Inconsistency

The solution under commitment is plagued by the problem of time inconsistency. The basic idea of

time inconsistency is that a policymaker wants to plan to do something in the future, but when the

future comes around, if the policymaker can re-optimize, she will want to deviate from the plan.

A simple real-world example of time inconsistency involves diet. In period t, one might wish to

plan to eat poorly in the present, but go on a diet in the next period (t+ 1). But when the future

rolls around, one might want to eat poorly again for one more period (t + 1), deferring the diet

until t+ 2. The problem would recur again in t+ 2.

The time inconsistency problem in the basic New Keynesian model is as follows. In period t,

the planner wants to set:

xt = −γ
ω
πt

From the perspective of period t, the policymaker wants to plan to implement policy in t + 1

as follows:

xt+1 = −γ
ω
(πt + πt+1)

In other words, policy in t+1 will be backward-looking in the sense that it will depend on what

inflation was in the previous period (t). But here’s the problem. If the planner can re-optimize in

period t+1, she will not choose the above solution! Rather, she would implement policy such that:

xt+1 = −γ
ω
πt+1

Unless the policymaker can commit to not re-optimizing in the future, it will not be possible to

implement the optimal solution under commitment. “Bygones will be bygones” – the policymaker

won’t care what inflation was in period t when setting policy in t + 1 if she can re-optimize. But

this inability to commit might make the policymaker worse off from the perspective of period t, as

we shall see below.

4 Commitment vs. Discretion and the Divine Coincidence

The optimal targeting rule under discretion is a “lean against the wind” condition in terms of the

output gap and the inflation rate:

xt = −γ
ω
πt (12)
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The optimal targeting rule under commitment looks similar and has a similar feel, but it is an

implicit price level target: the policymaker is targeting a relationship between the output gap (in

any period) and the price level (relative to some benchmark, which we will normalize to zero in the

log, or unity in the level).2

xt = −γ
ω
lnPt (13)

How do these targeting rules differ, and what are the gains from commitment over discretion?3

4.1 Divine Coincidence

In the basic New Keynesian model, it turns out that there are no gains from commitment over

discretion. This is not a general result, but is specific to the model as written down. This boils

down to a term deemed the “Divine Coincidence” (Blanchard and Gali, 2007), which points out

that there actually is no tradeoff between stabilizing inflation and the output gap in the basic New

Keynesian model. We saw this above when discussing discretion. Suppose that, each period, the

central bank is following discretion, which means xt+j = − γ
ωπt+j for any j ≥ 0. Plugging this

condition into the period t Phillips Curve, we have:

πt = −γ
2

ω
πt + βEtπt+1

Therefore:

Etπt+1 =
1 + γ2

ω

β
πt

If we solve this difference equation forward, we get:

Etπt+j =

(
1 + γ2

ω

β

)j

πt

Since
1+ γ2

ω
β > 1, in the limit as j gets big, Etπt+j explodes unless πt = 0. So we must have

πt = 0. But, from the FOC, this means xt = 0. Since this will be true each period, we will have

πt+j = xt+j = 0 as the unique, non-explosive to the policy problem. This means that L = 0, which

is the lowest value it can take (given that it is quadratic). Put another way: even under discretion,

there is no tradeoff between inflation and the output gap. A policymaker can set both equal to

zero.

2A subtle issue at play here is that the New Keynesian model (without money) does not determine the price level,
but rather the inflation rate. For a more in-depth discussion, see Cochrane (2011, Journal of Political Economy),
“Determinacy and Identification with Taylor Rules.” Hence, I need to impose a normalization on the t−1 price level,
so, for simplicity, I’m going to assume Pt−1 = 1 (so lnPt−1 = 0. Since the model determine πt, given Pt−1, I can
determine Pt. But without some nominal anchor like money formally modeled, I cannot determine Pt−1.

3Note that I am referring to a targeting rule as a policy rule that shows some relationship between targets, like πt

and xt, without explicit reference to the instrument (it in this case). In contrast, an instrument rule is a rule that
expresses the instrument as a function of targets – e.g. a Taylor-type rule.
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Since discretion achieves L = 0, there can be no gain from commitment. Under commitment, we

will get exactly the same solution: πt+j = xt+j = 0, which will imply (see above) that it+j = rft+j

each period.

4.2 Determinacy, Instrument Rules, and Stochastic Intercepts

In the basic NK model, there is no distinction between optimal monetary policy under discretion or

commitment. The Divine coincidence holds, and it is possible to completely stabilize both inflation

and the output gap at all times, achieving the global minimum of the loss function.

As shown above, the optimal targeting rule (either xt = − γ
ωπt under discretion, or xt = − γ

ω lnPt

under commitment) requires that the nominal interest rate (the policy instrument) track the natural

rate of interest one-for-one. Formally:

it = rft (14)

One would be tempted to conclude that an instrument rule like (14) would be equivalent to the

optimal targeting rules derived above. This conclusion is wrong. (14) is an equilibrium outcome

for the policy instrument under a targeting rule. If one tries to solve the model with (14) as the

policy rule, there will exist no determinate equilibrium.

As we saw in our notes on determinacy with interest rate rules, for determinacy (i.e. uniqueness

of the equilibrium), the nominal interest rate needs to react sufficiently strongly to endogenous

variables (like inflation). Taking the equilibrium outcome in (14) as an instrument rule would be a

problem, since rft is exogenous.

To see this concretely, suppose that the central bank adopted (14) as the policy rule. Plug this

into the IS equation:

xt = Etxt+1 +
1

σ
Etπt+1

Suppose further that prices are flexible, so ϕ = 0 (and therefore γ → ∞). This means xt =

Etxt+1 = 0. Then, from above, we see that Etπt+1 = 0. Expected inflation is pinned down, but

what about current inflation? There is no unique solution. From the Phillips Curve, we would

have πt = γxt. But ∞ times 0 could be anything. So, an exogenous interest rate rule results in

indeterminacy. Note that this indeterminacy would result even if γ < ∞, which would mean that

not only would πt be indeterminate, xt would be as well.

It is possible to follow an instrument rule that reacts to the natural rate of interest. In particular,

suppose the central bank follows an instrument rule with a “stochastic intercept”:

it = rft + ϕππt (15)

Plug this into the IS equation. We get:

xt = Etxt+1 −
1

σ
(ϕππt − Etπt+1)

13



Again assume that ϕ = 0, which means that xt = Etxt+1 = 0. Then, for the IS equation to

hold, we must have:

Etπt+1 = ϕππt

Solving this forward, we have:

Etπt+T = ϕTππt

If ϕπ > 1, then the only non-explosive solution is πt = 0. But if ϕπ < 1, any value of πt is

consistent with inflation not exploding. This will also be the case even when γ <∞ (so that prices

are sticky and the Phillips Curve is non-vertical).

Now, let’s drop the assumption that prices are flexible (so γ < ∞). As long as ϕπ > 1, then a

rule like (15) will result in an equilibrium in which πt = xt = 0. To see this, guess that the solution

is xt = Etxt+1 = 0. Then the IS equation again gives us Etπt+1 = ϕππt. The only non-explosive

solution possible is πt = 0, which is also consistent with the Phillips Curve holding.

There is something a bit odd going on here. A rule like (15) with ϕ > 1 produces an equilibrium

in which it = rft at all times. But an instrument rule that pre-specifies it = rft will produce a non-

unique equilibrium. The key point here is that it = rft has to emerge as an equilibrium outcome,

not a pre-specified instrument rule.

Cochrane (2011) makes a big point about this issue. A rule like (15), in his terminology, is

essentially a “threat” to “blow up the world.” Forward-looking models need to have the right

number of explosive roots for uniqueness. We pin down unique equilibrium via terminal conditions.

If ϕπ < 1, then the terminal condition (that inflation not explode) will hold for any πt (and,

consequently, any xt). We need ϕπ > 1 so that the terminal condition holding gives us unique

initial conditions. In Cochrane’s words, ϕπ > 0 in (15) is a threat to let inflation go to +/ − ∞
unless πt = 0.

5 Cost-Push Shocks and a Monetary Policy Tradeoff

To make monetary policy “difficult,” and for there to be some potential gain from commitment

over discretion, we need something that can break the Divine Coincidence. The simplest way to

do this is to introduce a “cost-push” shock into the Phillips Curve:

πt = γxt + βEtπt+1 + ut

If ut ̸= 0, then it is not going to be possible for πt = xt = 0 at all times.

The FOC under either commitment or discretion will be the same as above. Let’s focus on

discretion first. Plug in the FOC into the Phillips Curve to eliminate xt:

πt = −γ
2

ω
πt + βEtπt+1 + ut

14



Or:

Etπt+1 =
1 + γ2

ω

β
πt −

1

β
ut

This may be written a little more compactly as:

Etπt+1 =
ω + γ2

ωβ
πt −

1

β
ut

This is a forward-looking difference equation. The coefficient on πt is > 1, which means it is

going to be explosive (just like before). But now there is a term involving ut. Let’s assume that ut

follows an exogenous AR(1) process:

ut = ρuut−1 + suεu,t

This means that Etut+j = ρjuut. As long as 0 < ρu < 1, which we shall assume, in expectation

ut eventually returns to zero. Let’s solve the difference equation forward. Going forward to t+ 2,

we have:

Etπt+2 =
ω + γ2

ωβ
Etπt+1 −

1

β
Etut+1

Define the auxiliary parameter:

a =
ω + γ2

ωβ

So:

Etπt+2 = aEtπt+1 −
1

β
Etut+1

Which is:

Etπt+2 = a2πt − a
1

β
ut −

1

β
ρuut

Now, similarly, going forward another period, we have:

Etπt+3 = aEtπt+2 −
1

β
Etut+2

Which can be written:

Etπt+3 = a3πt −
a2

β
ut −

a

β
ρuut −

1

β
ρ2uut

Which may be written:

Etπt+3 = a3πt −
1

β

(
ρ2u + aρu + a2

)
ut
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Go forward another period. WE have:

Etπt+4 = aEtπt+3 −
1

β
ρ3uut

But this is:

Etπt+4 = a4πt −
1

β

(
aρ2u + a2ρu + a3

)
ut −

1

β
ρ3uut

But this can be written:

Etπt+4 = a4πt −
1

β

(
ρ3u + aρ2u + a2ρu + a3

)
ut

You can see a pattern. Going forward some arbitrary number of periods, T , we have:

Etπt+T = aTπt −
ut
β
S

The term S is shorthand for:

S = ρT−1
u + aρT−2

u + a2ρT−3
u + . . . aT−1

Divide both sides by aT−1, so Ŝ = S
aT−1 . We have:

S

aT−1
= Ŝ =

(ρu
a

)T−1
+
(ρu
a

)T−2
+
(ρu
a

)T−3
+ . . .

Now, to ease notation a bit more, define b = ρu
a , which is less than one (given that ρu < 1 and

a > 1). We have:

Ŝ = 1 + b+ b2 + · · ·+ bT−1

So:

bŜ = b+ b2 + · · ·+ bT

Therefore:

Ŝ − bŜ = 1− bT

So:

Ŝ =
1− bT

1− b

Now, you might ask: where is this getting us? Well, we can write:

Etπt+T = aTπt − ut
aT−1

β
Ŝ
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Which is:

Etπt+T = aTπt − ut
aT−1

β

1− bT

1− b

To have Etπt+T → 0 as T → ∞, we must therefore have the right hand side equal to zero. But

this gives πt as a function of ut!:

aπt = ut
1

β

1− bT

1− b

But as T → ∞, this becomes:

πt = (βa(1− b))−1 ut

Now, let’s write this back in terms of the underlying parameters. Plugging in for b first:

(βa(1− b))−1 =
(
βa
(
1− ρu

a

))−1
= (β(a− ρu))

−1

Now plugging in for a:

(β(a− ρu))
−1 =

(
β

(
ω + γ2

ωβ
− ρu

))−1

=

(
ω + γ2 − ρuωβ

ω

)−1

=
ω

ω(1− ρuβ) + γ2

In other words, under discretion, the solution for πt is:

πt =
ω

ω(1− ρuβ) + γ2
ut (16)

And, therefore, the solution for xt is:

xt = − γ

ω(1− ρuβ) + γ2
ut (17)

(16) and (17) are actually pretty intuitive expressions. Suppose that ω → ∞. This means that

the policymaker really wants to stabilize the output gap. Then, the coefficient for xt will go to 0, so

that xt = 0. Alternatively, suppose that γ → ∞ (so that prices are flexible). Then both coefficients

go to zero, so neither inflation nor the output gap react to the cost-push shock.

Now let’s think about what things look like under commitment. We could proceed as we did

under discretion – take the Phillips Curve, and plug in the first order condition in period t, solve

forward, impose a terminal condition, and then get an analytic expression for endogenous variables.

But, because the optimal solution under commitment is backward-looking, things get very messy

very quickly.

For this reason, it is much simpler to just solve the model in a program like Dynare with

xt = − γ
ω lnPt, where I am normalizing the initial price level to unity (zero in the log). Below, I

show impulse responses to a cost-push shock under both discretion (solid lines) and commitment
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for different values of ω, keeping everything else the same.

Figure 1: Cost-Push Shock: Commitment vs. Discretion (ω = 0.01)
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Figure 2: Cost-Push Shock: Commitment vs. Discretion (ω = 0.5)
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Figure 3: Cost-Push Shock: Commitment vs. Discretion (ω = 1)
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The most noticeable thing in these IRFs should be obvious from looking at the lean against the

wind condition. Under commitment, the price level will be stationary, whereas under discretion it

will not. We see these in all of the graphs – the price level eventually always returns to its pre-shock

value under commitment, but not under discretion. The exact paths of inflation, the output, and

the interest rate differ depending on the value of ω, but the price level always returns to trend.

The absolute units are not very meaningful and are subject to scale effects, but I can calculate

the welfare loss under discretion and commitment when there are a cost-push shocks. I set the

variance of the shock equal to one. When ω = 0.01, the welfare loss under discretion is 190.35,

whereas it is 110.18 under commitment. When ω = 0.5, the losses are 2725 under discretion

and 1300 under commitment. When ω = 1, the losses are 2952 under discretion and 1659 under

commitment. When cost-push shocks are present, the policymaker clearly does better (regardless

of the weight, ω, that it chooses) under commitment.
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