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1 Introduction

Over the last several years, there has been significant interest in the implications of heterogeneity

for macroeconomics. Both sides of the heterogeneity coin are of interest: how does heterogeneity

impact transmission of aggregate shocks into the aggregate economy, and how does the presence of

heterogeneity affect optimal policy design?

In this course, we have focused almost exclusively on representative agent frameworks. While

unrealistic, the representative agent framework keeps models tractable, which is useful both for

gaining analytic intuition as well and because it is much easier to solve models without heterogeneity.

To a large extent, the surge of interest in macro implications of heterogeneity has been a response

to increased computational power.

In this set of notes, I am going to lay out a very simple New Keynesian model with heterogeneity.

In particular, I am going to study a Two-Agent New Keynesian Model (TANK). This is different

than the standard setup, which is often times called RANK (Representative Agent New Keynesian

Model). In the TANK model, there are two types of households: the standard representative

household that can freely borrow and save, and another household that is shut out of financial

markets. I am going to refer to the latter type of household as “constrained” or as “hand-to-

mouth.” These households are unable to borrow or save. As a consequence, they just consume

their disposable income each period.

The TANK model is a bridge to a more complicated model with richer heterogeneity, the so-

called HANK model (Heterogeneous Agent New Keynesian). In HANK models, households are

subject to non-insurable idiosyncratic income shocks and are subject to some form of a borrowing

constraint (typically that a household is not permitted to go into debt). The combination of

uninsurable income shocks and a borrowing constraint makes the distribution of household wealth

matter. Some households will always be at the borrowing constraint, behaving like the hand-to-

mouth households in the TANK model. But there will be time variation in how many households

are constrained, which could result in interesting non-linearities (e.g. certain types of shocks might

affect output more when lots of agents are constrained compared to times when few are constrained).
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It is also the case that there will be some precautionary behavior, in that agents not currently

subject to the borrowing limit might behave preemptively in ways to avoid hitting the constraint.

In a standard TANK model, there is no switching between types, and as a result there is no

precautionary behavior. Still, the TANK model can help us gain some intuition for implications

of a more complicated HANK framework. In particular, as we shall see below, the presence of

constrained households makes the New Keynesian model behave a bit more like “old” Keynesian

intuition – things like current disposable income and marginal propensity to consume suddenly

matter. It is also the case that “supply” shocks will affect output less, whereas “demand” shocks

are amplified. In that sense, the inclusion of hand-to-mouth agents is somewhat isomorphic to

having nominal rigidities be stronger (i.e. the Phillips Curve be flatter).

2 Households

In the basic TANK model, there are two types of households: unconstrained households and con-

strained households. I’m going to assume that, in total, there exists a unit mass of households. A

mass α ∈ [0, 1] are unconstrained and the remaining mass 1 − α are unable to borrow or save. I

will refer to unconstrained households as unconstrained, and to constrained households as either

constrained or as hand-to-mouth.

2.1 Unconstrained Households

There is a representative unconstrained household. I will denote variables related to these house-

holds with a u subscript. The problem facing these households is entirely standard. Note that I

am abstracting altogether from money, but could include it as an additively separable term in the

flow utility function if I wanted.

The problem is:

max
Cu,t,Nu,t,Bu,t

E0

∞∑
t=0

βt

[
C1−σ
u,t

1− σ
− θ

N1+χ
u,t

1 + χ

]
s.t.

PtCu,t +Bu,t −Bu,t−1 ≤WtNu,t + PtDu,t − PtTu,t + it−1Bu,t−1

Here Pt is the price of goods. Bu,t−1 is the stock of nominal bonds with which a household enters

the period; these bonds pay net nominal interest it. Wt is the nominal wage. Du,t is distributed

profit from ownership in firms and is taken as given by an unconstrained household. Tu,t is a lump

sum tax (or transfer) paid to the government, and is also taken as given by the household.

The first order conditions are standard. Let wt =Wt/Pt be the real wage and Πt = Pt/Pt−1 be

the gross inflation rate:

θNχ
u,t = C−σ

u,t wt (1)
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1 = Et
[
Λu,t,t+1(1 + it)Π

−1
t+1

]
(2)

Λu,t−1,t = β

(
Ct
Ct−1

)−σ
(3)

These are standard conditions. Λu,t,t+1 is the stochastic discount factor for the unconstrained

household between t and t+ 1.

2.2 Constrained Households

Constrained households have identical preferences to unconstrained households. The important

difference is that constrained households are not allowed to borrow or save (i.e. they cannot hold

or issue bonds). They also do not hold ownership in firms. I shall refer to these households as

hand-to-mouth, and denote them with an h subscript.

The problem of a constrained household is:

max
Ch,t,Nh,t

E0

∞∑
t=0

βt

[
C1−σ
h,t

1− σ
− θ

N1+χ
h,t

1 + χ

]
s.t.

PtCh,t ≤WtNh,t − PtTh,t

The constrained household supplies labor and faces the same wage as the unconstrained house-

hold. The constrained household pays a lump sum tax (transfer) to the government, Th,t, which

is potentially different from what the unconstrained household pays. Because there are no state

variables, the problem of a constrained household is effectively static. The first order condition is:

θNχ
h,t = C−σ

h,t wt (4)

3 Production

The production side of the economy is identical to the standard New Keynesian model. The only

thing to keep track of is that the relevant stochastic discount factor for the dynamic pricing problem

of intermediate firms is the stochastic discount factor of the unconstrained households, Λu,t,t+1.

The optimality conditions for the production and price-setting part of the problem are:

p#t =
ϵ

ϵ− 1

X̂1,t

X̂2,t

(5)

X̂1,t = mctYt + ϕEtΛu,t,t+1Π
ϵ
t+1X̂1,t+1 (6)

X̂2,t = Yt + ϕEtΛu,t,t+1Π
ϵ−1
t+1X̂2,t+1 (7)

mct =
wt
At

(8)
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4 Policy, Equilibrium, and Aggregation

Monetary policy is set according to a Taylor rule:

it = (1− ρi)i+ ρiit−1 + (1− ρi)ϕπ (lnΠt − lnΠ) + siεi,t (9)

I am allowing for interest rate smoothing, but, for simplicity, I am ruling out any response to

output (or the output gap). That is not hard to accommodate.1

In nominal terms, the government’s budget constraint is:

PtGt + it−1B
G
t−1 ≤ αPtTu,t + (1− α)PtTh,t +BG

t −BG
t−1

Note that Tu,t is the amount each unconstrained household pays (or receives, if it is negative).

In aggregate, since there are α of these households, the government is receiving nominal revenue of

αPtTu,t (and similarly for the constrained households). To write this in real terms, divide through

by Pt, and define bGt = BG
t /Pt as real government debt. We have:

Gt + (1 + it−1)Π
−1
t bGt−1 ≤ αTu,t + (1− α)Th,t + bGt (10)

Note that Ricardian Equivalence will not hold in this model; I shall return to this below.

The aggregate production function, price level, and price dispersion terms are the same as in

the standard model. Written in terms of inflation rates, we have:

vpt Yt = AtNt (11)

vpt = (1− ϕ)
(
p#t

)−ϵ
+ ϕΠϵtv

p
t−1 (12)

1 = (1− ϕ)
(
p#t

)1−ϵ
+ ϕΠϵ−1

t (13)

Define aggregate labor input as the sum of labor input across the two types of households. We

therefore have:

Nt = αNu,t + (1− α)Nh,t (14)

We proceed in the same way for aggregate consumption:

Ct = αCu,t + (1− α)Ch,t (15)

Let us integrate over the budget constraints (at equality) for both types of households. Doing

so, we have:

1With two households, this model is substantially more complicated than the standard model. Note that one can
always solve for Y f

t (the flexible price level of output) numerically in Dynare by including a hypothetical “flexible
price block” in the model. Then one could write the Taylor rule with an addition ϕx(lnYt − lnY f

t ) term.

4



αPtCu,t + α(Bu,t −Bu,t−1) = αWtNu,t + αPtDu,t − αPtTu,t + αit−1Bu,t−1

(1− α)PtCh,t = (1− α)WtNh,t − (1− α)PtTh,t

Sum these together. We have:

Pt (αCu,t + (1− α)Ch,t)+αBu,t =Wt (αNu,t + (1− α)Nh,t)+αPtDu,t−αPtTu,t−(1−α)PtTh,t+α(1+it−1)Bu,t−1

But, using the definitions of aggregate consumption and labor input, these are:

PtCt + αBu,t =WtNt + αPtDu,t − αPtTu,t − (1− α)PtTh,t + α(1 + it−1)Bu,t−1

Bond market clearing requires that unconstrained households (in aggregate) hold all government

debt. This means:

αBu,t = BG
t

The α term appears on the left hand side because the integral of bond holdings by unconstrained

households is α times what they each hold. Solve the government’s budget constraint at equality

for αPtTu,t:

αPtTu,t = PtGt + (1 + it−1)B
G
t−1 −BG

t − (1− α)PtTh,t

Plug this into the combined household budget constrains at equality:

PtCt+αBu,t =WtNt+αPtDu,t−
(
PtGt + (1 + it−1)B

G
t−1 −BG

t − (1− α)PtTh,t
)
−(1−α)PtTh,t+(1+it−1)αBu,t−1

Given the bond market clearing condition, the terms involving debt cancel (i.e. αBu,t = BG
t ,

and (1 + it−1)B
G
t−1 = (1 + it−1)αBu,t−1. The term involving Th,t also cancels out. We have:

PtCt + PtGt =WtNt + αPtDu,t

What are profits from firms? The final good firm earns nominal profit:

PtD
F
t = PtYt −

∫ 1

0
Pt(j)Yt(j)dj

Collectively, intermediate firms earn profits:

PtD
I
t =

∫ 1

0
[Pt(j)Yt(j)−WtNt(j)] dj =

∫ 1

0
Pt(j)Yt(j)−Wt

∫ 1

0
Nt(j)dj

Total profits for distribution are:
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PtDt = PtD
F
t + PtD

I
t = PtYt −

∫ 1

0
Pt(j)Yt(j)dj +

∫ 1

0
Pt(j)Yt(j)−Wt

∫ 1

0
Nt(j)dj

Using the labor market clearing condition, this is:

PtDt = PtYt −WtNt

These profits have to be distributed (in aggregate) to only unconstrained households. Therefore,

we have:

PtDt = αPtDu,t

Plugging this in above yields the aggregate resource constraint in real terms:

Yt = Ct +Gt (16)

Let’s assume that Gt follows an exogenous AR(1) process in the log (and same, as usual, for

At):

lnGt = (1− ρG) lnG+ ρG lnGt−1 + sGεG,t (17)

lnAt = ρA lnAt−1 + sAεA,t (18)

lnG is the log steady-state government spending level, and the steady state level of productivity

is normalized to unity (so zero in the log).

Because constrained households do not have access to credit markets, Ricardian Equivalence

does not hold and we have to keep track of the constrained household’s budget constraint, which

is (at equality, and in real terms):

Ch,t = wtNh,t − Th,t

Because Th,t is directly relevant for the constrained households’ consumption, we cannot just

ignore lump sum taxes altogether like in a standard model with no constraints. We also cannot

ignore government debt or lump sum taxes levied on the unconstrained households. This means

we have to assume something about all these fiscal variables (unlike in a standard representative

agent with free access to credit markets). There are a number of ways to do this. The simplest way

is to assume that the government never issues any debt, so BG
t = 0 (which implies that bGt equals

zero as well):

bGt = 0 (19)

I am then going to assume that lump sum taxes to the constrained household follow an AR(1) in

the level (I’m doing level, not log, because I want to allow these to go negative so that constrained

households can receive transfers):
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Th,t = (1− ρh)Th + ρhTh,t−1 + shεh,t (20)

To see how this shock works, impose that bGt = 0. The government’s budget constraint at

eqaulity is:

Gt = αTu,t + (1− α)Th,t

Since Gt follows an exogenous process, this means that (i) shocks to Th,t are funded by offsetting

taxes on unconstrained households – so a shock to Th,t is really a transfer shock; and, (ii) changes

in government spending are funded by taxes on unconstrained households (not on constrained

households). There are, of course, other fiscal rules that I could employ.

5 Equilibrium Conditions

I am collecting all equilibrium conditions below. We have 21 variables: Nu,t, Cu,t, wt, Λu,t,t+1,

it, Πt, Nh,t, Ch,t, Th,t, Tu,t, p
#
t , X̂1,t, X̂2,t, mct, Yt, At, Nt, Ct, Gt, v

p
t , and bGt . We also have 21

equations. These are shown below (grouped by type).

� Unconstrained households:

θNχ
u,t = C−σ

u,t wt (21)

1 = Et
[
Λu,t,t+1(1 + it)Π

−1
t+1

]
(22)

Λu,t−1,t = β

(
Cu,t
Cu,t−1

)−σ
(23)

� Hand-to-mouth households

θNχ
h,t = C−σ

h,t wt (24)

Ch,t = wtNh,t − Th,t (25)

� Intermediate firms:

p#t =
ϵ

ϵ− 1

X̂1,t

X̂2,t

(26)

X̂1,t = mctYt + ϕEtΛu,t,t+1Π
ϵ
t+1X̂1,t+1 (27)

X̂2,t = Yt + ϕEtΛu,t,t+1Π
ϵ−1
t+1X̂2,t+1 (28)

mct =
wt
At

(29)
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� Policy

it = (1− ρi)i+ ρiit−1 + (1− ρi)ϕπ (lnΠt − lnΠ) + siεi,t (30)

Gt + (1 + it−1)Π
−1
t bGt−1 = Tu,t + Th,t + bGt + bGt (31)

� Aggregate conditions

vpt Yt = AtNt (32)

vpt = (1− ϕ)
(
p#t

)−ϵ
+ ϕΠϵtv

p
t−1 (33)

1 = (1− ϕ)
(
p#t

)1−ϵ
+ ϕΠϵ−1

t (34)

Nt = αNu,t + (1− α)Nh,t (35)

Ct = αCu,t + (1− α)Ch,t (36)

Yt = Ct (37)

� Exogenous

lnAt = ρA lnAt−1 + sAεA,t (38)

lnGt = (1− ρG) lnG+ ρG lnGt−1 + sGεG,t (39)

bGt = 0 (40)

Th,t = (1− ρh)Th + ρhTh,t−1 + shεh,t (41)

5.1 Steady State

We need to solve for the steady state. I’m going to approximate about a zero inflation steady state.

This means Π = 1. We have Λu = β. This means that the steady state nominal interest rate

satisfies:

1 + i = β−1

As we have seen before, zero inflation steady state means:

p# = 1

vp = 1

mc = w =
ϵ− 1

ϵ

Solving for the remainder of the steady state is going to be a bit more challenging because there

are more free steady state variables. Let’s start by assuming that government spending is a fixed
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share, ψG, of steady state output:

G = ψGY

Let’s assume further that the steady state lump-sum taxes on both types of households are

equal: Tu = Th = T . From the government’s budget constraint, since we are assuming no debt, we

therefore have:

T = ψGY

Then, from the unconstrained household’s budget constraint, we have:

Ch = wNh − ψGY (42)

Where w = ϵ−1
ϵ . From the FOC for labor for the same household, we can then write:

θNχ
h = (wNh − ψGY ) (43)

But we know that Y = N in steady state, so this can be written:

θNχ
h = (wNh − ψGN)−σ w (44)

Now go to the static labor supply FOC for the unconstrained household. We have:

θNχ
u = C−σ

u w

But we know that: Nu = 1
αN− 1−α

α Nh and Cu = 1
αC− 1−α

α Ch. But we also know that C = (1−
ψG)Y . So Cu = 1−ψG

α Y − 1−α
α Ch. But we know Ch, so we have: Cu = 1−ψG

α N− 1−α
α (wNh − ψGN).

We therefore have:

θ

(
1

α
N − 1− α

α
Nh

)χ
=

(
1− ψG
α

N − 1− α

α
(wNh − ψGN)

)−σ
w (45)

(44) and (45) constitute two equations in two unknowns – N and Nh. There is not a straight-

forward analytical solution, but we can solve for N and Nh numerically. Once we have N and Nh,

it is straightforward to recover the rest of the steady staet. In particular:

Nu =
1

α
N − 1− α

α
Nh (46)

Y = N (47)

G = ψGN (48)

C = (1− ψG)N (49)

Ch = wNh − ψGN (50)
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Cu =
1

α
C − 1− α

α
Ch (51)

T = Tu = Th = ψGN (52)

6 Quantitative Analysis

To solve the model, I need to specify values for parameters. I am going to choose “standard” values

for many parameters, and will then play around with α (the share of unconstrained households).

I set β = 0.99, ϵ = 11, σ = χ = 1, θ = 1, and ϕ = 3/4. I pick ψG = 0.2. I assume that the

AR(1) parameters are ρA = 0.9 and ρG = ρh = ρi = 0.8. I set ρi = 0.8 and ϕπ = 1.5. The shock

standard deviations are sA = sG = 0.01, si = 0.0025, and st = 0.02.

I consider different values of α: 1, 0.9, 0.75, and 0.6. 1−α is the share of constrained households.

Hence, when α = 1, we are in the standard NK model. As α gets smaller, a larger share of agents

are constrained.2 I compute impulse responses to the four different shocks for these four different

values of α below. Solid black lines are the standard NK model (α = 1), the dashed black line

corresponds to α = 0.9, the dotted black line to α = 3/4, and the dashed blue line to α = 3/5.

Consider first impulse responses to a productivity shock. I am plotting responses of aggregate

variables. What we observe is that output reacts less to the productivity shock the smaller the share

of unconstrained agents (i.e. the smaller is α; equivalently, the bigger is the share of constrained

agents).

2Given the forward-looking nature of inflation, if α is too low there are determinacy issues in the model.
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Figure 1: IRFs to a Productivity Shock
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Next, consider responses to a government spending shock. This is kind of the inverse of the

productivity shock – output reactsmore to government spending the higher the share of constrained

agents (i.e. the lower is α).
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Figure 2: IRFs to a Government Spending Shock
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Next up, a monetary shock. We see a similar pattern – output reacts more to the shock the

bigger the share of constrained agents.
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Figure 3: IRFs to a Monetary Policy Shock
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Finally, consider a transfer shock. Given the way I have specified the fiscal block of the model,

with a negative sign on the shock I am taxing unconstrained agents to give a transfer to constrained

agents. This has the effect of causing output to rise. With α = 1, there would be no impact of the

transfer shock on the aggregate equilibrium – in other words, Ricardian Equivalence would hold.

13



Figure 4: IRFs to a Transfer Shock
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A basic message emerges here. The presence of hand-to-mouth agents dampens the output

response to a “supply shock” (a shock that would move output and inflation in opposite directions)

and amplifies responses to a “demand shock” (a shock that moves output and inflation in the same

direction). In this way, the presence of hand-to-mouth agents is kind of like having more nominal

rigidity.

6.1 Quick and Dirty Intuition

Let’s try to open the black box above to understand some intuition for these results. Note again that

the supply side of the model is unaffected with the presence of constrained agents. The linearized
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Phillips Curve, written in terms of marginal cost, is:

πt =
(1− ϕ)(1− ϕβ)

ϕ
m̃ct + βEtπt+1 (53)

But the demand side is affected by the presence of hand-to-mouth agents. Let’s log-linearize

the demand side of the model to get some intuition. The linearized bond Euler equation for

unconstrained households is standard:

cu,t = Etcu,t+1 −
1

σ
(it − Etπt+1) (54)

We have Ct = αCu,t + (1− α)Ch,t. Take logs of this:

lnCt = ln [αCu,t + (1− α)Ch,t]

Totally differentiate:

ct =
1

C
[αdCu,t + (1− α)dCh,t]

Or:

ct =
αCu
C

cu,t +
(1− α)Ch

C
ch,t (55)

From the aggregate resource constraint, in linearized terms we have:

yt = (1− ψ)ct + ψgt

Or:

ct =
1

1− ψ
yt −

ψ

1− ψ
gt (56)

Combining (56) with (55), we have:

1

1− ψ
yt −

ψ

1− ψ
gt =

αCu
C

cu,t +
(1− α)Ch

C
ch,t

Or:

cu,t =
C

Cu

1

α(1− ψ)
yt −

C

Cu

ψ

α(1− ψ)
gt −

1− α

α

Ch
Cu

ch,t (57)

From the equilibrium conditions, we know that consumption of the hand-to-mouth equals their

disposal income. In particular, let DISPh,t be the disposal income of the hand-to-mouth agents:

Ch,t = wtNh,t − Th,t = DISPh,t (58)

In linearized terms, using this change of variables, we have:
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ch,t = disph,t (59)

Combine (61) with (57) to have:

cu,t =
C

Cu

1

α(1− ψ)
yt −

C

Cu

ψ

α(1− ψ)
gt −

1− α

α

Ch
Cu

disph,t (60)

Now, combine (60) with (54), the Euler equation for the unconstrained agents. We have:

C

Cu

1

α(1− ψ)
yt −

C

Cu

ψ

α(1− ψ)
gt −

1− α

α

Ch
Cu

disph,t =
C

Cu

1

α(1− ψ)
Etyt+1 −

C

Cu

ψ

α(1− ψ)
Etgt+1−

1− α

α

Ch
Cu

Etdisph,t+1 −
1

σ
(it − Etrt+1)

This can be written:

yt−ψgt−(1−α)(1−ψ)Ch
C
disph,t = Etyt+1−ψEtgt+1−(1−α)(1−ψ)Ch

C
Etdisph,t+1−

α(1− ψ)

σ

Cu
C

(it − Etπt+1)

This can be simplified further to yield:

yt = Etyt+1+ψ(1−ρG)gt−(1−α)(1−ψ)Ch
C

(Etdisph,t+1 − disph,t)−
α(1− ψ)

σ

Cu
C

(it − Etπt+1) (61)

In the above, I note that Etgt+1 = ρGgt. If there were no unconstrained agents, we would have

α = 1, which would also imply that Cu = C. In this case, the IS equation could be written in a

standard way (noting, of course, that there are many ways to write the IS equation, e.g. in terms

of the gap rather than output as we have done already):

yt = Etyt+1 + ψ(1− ρG)gt −
1− ψ

σ
(it − Etπt+1) (62)

Let’s think about what α < 1 does by comparing (62) to (61). α < 1 lowers the coefficient on

the real interest rate (directly through α < 1, and indirectly because α < 1 means Cu < C). And

it increases the coefficient on Etdisph,t+1− disph,t, which is the expected growth rate of disposable

income for hand-to-mouth agents. If α = 1, the expected growth rate of disposable income does

not appear at all in the linearized IS equation.

Effectively what is going on here is that we have two types of agents. Constrained agents simply

eat their income each period (i.e. their marginal propensity to consume is unity). Unconstrained

agents obey the standard Euler equation. The aggregate IS equation is, roughly speaking, a convex

combination of these two forces – a weight (1−α) times the expected growth of disposable income

and a weight α times the real interest rate (with some other constants floating around, of course).

Another way to think about things: the IS equation is combining both elements of an “old”
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Keynesian model (based on the marginal propensity to consume, or MPC) and a “new” Keynesian

model (forward-looking, and based on intertemporal substitution, i.e. a reaction to the real interest

rate). The relative weighting of the two channels depends on the population shares of the two kinds

of agents.

To gain some more intuition for how α impacts aggregate dynamics, I computed impulse re-

sponses of expected disposable income growth for hand-to-mouth agents. These are in response

to each of the same four shocks considered above: a productivity shock, a monetary/Taylor rule

shock, a government spending shock, and a transfer shock. I do so for the same different values of

α as above. Note that I am plotting the responses of expected disposable income growth, not the

level of disposable income. It is the expected growth rate that appears in the IS equation.

Figure 5: IRFs of Expected Disposable Income Growth of Hand-to-Mouth Agents
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In response to the productivity shock, expected disposable income growth (i.e. Etdisph,t+1 −
disph,t) increases after a positive productivity shock. This increase is because of the response of

output itself, which is hump-shaped. The important point here is that expected disposable income
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growth goes up. From the IS equation, (61), this exerts negative pressure on yt from the demand

side. This explains why output reacts less to a positive productivity shock the more unconstrained

agents there are – since expected disposable income growth exerts a negative effect, the more

hand-to-mouth agents there are (i.e. the smaller is α), the less output reacts to the shock.

Consider next the government spending shock. In the aggregate IRFs, we see that output reacts

more (i.e. the multiplier is bigger) the higher the fraction of unconstrained agents (i.e. the lower

is α). The IRF of expected disposable income growth helps us understand why. As we see above,

expected disposable income growth goes down. Note that disposable income itself goes up, but

follows a mean-reverting pattern. This means that expected disposable income growth falls. But

this exerts a positive impact on output from the IS equation. Hence, output reacts more to a

government spending shock when there are more hand-to-mouth agents.

Next, let’s focus on the monetary policy shock. As we see in the aggregate IRFs, output reacts

more (i.e. falls more) the bigger is the share of constrained agents (i.e. the smaller is α). Why is

this? Because expected disposable income growth goes up – disposable income for the constrained

agents falls on impact, but mean reverts, so the expected growth rate goes up. This exerts a negative

impact on output. One might be tempted to think that, because a smaller α makes the coefficient

on the real rate smaller in (61), the monetary shock might have smaller aggregate effects. But

this channel is overwhelmed by the “MPC channel” coming through expected disposable income

growth.

Finally, consider the transfer shock. As defined, the transfer shock shifts resources from uncon-

strained to constrained agents. We see that expected disposable income growth for hand-to-mouth

households declines; as with the government spending and monetary shocks, the level of disposable

income goes up, but follows a mean-reverting pattern, so expected growth declines. This exerts a

positive effect on output, and hence aggregate output reacts more to the shock.

The basic conclusion here is that the presence of constrained agents dampens the responses of

aggregate variables to “supply” shocks (e.g. productivity), and amplifies aggregate responses to

“demand” shocks (e.g. government spending, monetary, and transfer). Qualitatively, that’s similar

to having more price rigidity. Hand-to-mouth agents make the model more “old” Keynesian where

there is a marginal propensity to consume channel.

7 From TANK to HANK

We have spent a bunch of bandwidth studying a RANK model, where RANK stands for “represen-

tative agent New Keynesian” model. The model is purely forward-looking and has lots of powerful

insights. There has been increasing interest of late in the implications of micro-level heterogeneity

for aggregate fluctuations. Much of this literature is within a HANK context, where HANK stands

for “Heterogeneous Agent New Keynesian” model. The TANK framework laid out in these notes

(Two-Agent New Keynesian Model) is sort of an in-between – it captures some (though not all)

of the mechanisms and insights of a HANK model in a reasonably tractable way that is easy to

compare to the RANK benchmark.
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In a typical HANK model, there is a continuum of households who are subject to idiosyncratic

income shocks. As an example, the budget constraint of household k (k ∈ [0, 1]) would look like:

PtCt(k) +Bt(k)−Bt−1(k) ≤ exp[εk,t]WtNt(k) + PtDt(k)− PtTt(k) + it−1Bt−1(k)

This is exactly the same budget constraint for unconstrained agents as above, except there is

an idiosyncratic component to wages, given by exp[εk,t], where Etεk,t = 0. As long as there is some

variance, some households will get good income shocks (positive draws of εk,t) and some will get

bad shocks (negative draws of εk,t). As long as households can freely borrow and save via bonds,

this won’t end up mattering.

But what is typically done is that a borrowing constraint is imposed on households. Though

one could consider alternative forms, the simplest one would say that households cannot go into

debt:

Bt(k) ≥ 0

When the borrowing constraint binds, Bt(k) = 0, the Euler equation won’t hold (there would

be a Lagrange multiplier on the constraint floating around). If a household gets a sequence of

negative εk,t shocks, it will eventually bump up against the borrowing constraint and will behave

like a hand-to-mouth agent. And, in a global solution at least, a household would behave in a

precautionary way away from the borrowing constraint – it would try to save up to avoid hitting

the constraint in the first place.

Solving a model like this is actually substantially more complicated than a standard model,

because we have to keep track of the distribution of household wealth. The idiosyncratic produc-

tivity shock will essentially generate some steady state (or average) share of households who are

borrowing constrained. On top of this, macro shocks will generate time variation in the fraction

who are constrained – when the economy is poor, households would like to borrow and will draw

down their savings, putting more of them close to the borrowing constraint.

The TANK model captures a lot of the essential intuition that comes out of a HANK framework,

but not all. In the HANK model, aggregate dynamics are going to be different than RANK because

of the presence of borrowing constrained (i.e. hand-to-mouth) agents. These folks are going to have

a high marginal propensity to consume and the “old” Keynesian intuition discussed above in the

TANK model will be at play. But the HANK model does more – there will be time-variation

in how many agents are constrained or not, for example giving rise to interesting non-linearities.

And, away from the borrowing constraints, agents will behave in precautionary ways. This is a

long-winded way of saying that a TANK model captures some of the essential intuition that comes

out of a HANK framework, but the HANK model is far richer and has more going on. But studying

a full-fledged HANK model is beyond the scope of this course.

In addition to quantitative complexities (which are easy enough to deal with, if tedious), there

are a number of economic modeling choices that matter in a full-fledged HANK model that are

also issues in the TANK model. These choices result from the fact that some agents are prohibited
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from borrowing. Below are three related issues that arise that are unimportant in a RANK model,

but quite important in a TANK and especially in a HANK framework.

� Because of the failure of Ricardian Equivalence, the method of government finance matters.

When government spending goes up, for example, it matters whether it is financed with debt

or taxes. If financed via debt, it matters when and how tax revenues are raised to pay for that

debt in the future. If financed via taxes – even when taxes are just lump sum – it matters

whether taxes are levied on unconstrained or constrained households. More generally, the

fiscal block of the model starts to matter a lot more.

� I swept this under the rug in the TANK model, but in general it also matters how profits from

firms are distributed. In the TANK model, I swept it under the rug in the sense that I assumed

that only unconstrained agents own firms, which means the timing of profit distribution is

irrelevant. But if one is operating in a full-on HANK framework, in principle both constrained

and unconstrained agents will own firms. This then makes dividend distribution policies

matter – the constrained agents would prefer to be paid dividends immediately, for example,

and they will consume any additional dividends received.

� Relatedly, there is another issue that arises when both constrained and unconstrained agents

are owners in firms. Whose stochastic discount factor does one use to discount cash flows? I

again swept this under the rug above – by assuming that only unconstrained households own

firms, this wasn’t an issue. But if both types of agents have ownership shares in firms, this

becomes a non-trivial issue.

I don’t wish to characterize these issues above as “bad” or anything like that. They are real

issues, and a model with some degree of heterogeneity and market incompleteness forces one to

grapple with them. But the choices that one makes regarding fiscal and distributional rules can

matter a a lot for how TANK and/or HANK models perform, which can make results not partic-

ularly robust (or transparent) in a way that is not true in a RANK framework.
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