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In this set of notes, we are going to analyze the implications of the zero lower bound (ZLB,

also sometimes called the effective lower bound, ELB) in the New Keynesian model. The basic NK

model is comprised of the IS equation, (1), and the Phillips Curve, (2).

xt = Etxt+1 −
1

σ

(
it − Etπt+1 − rft

)
(1)

πt = γxt + βEtπt+1 (2)

I am ignoring a cost-push shock for this set of notes. To close the model, we need some

description of policy. Outside of the ZLB, I’m going to assume that the central bank follows a

strict inflation target:

πt = 0 (3)

(3) is consistent with optimal policy under either discretion or commitment, and, outside of the

ZLB, will result in xt = 0 and it = rft in equilibrium.

We shall assume that the natural rate of interest, rft , obeys an exogenous process:

rft = ρrr
f
t−1 + srεr,t (4)

For this set of notes, we are going to analyze a situation in which the interest rate, it, is unable

to adjust for some period of time. What matters is not whether the threshold where it can adjust is

literally zero or something else, but rather that the interest rate is pegged (i.e. fixed). The interest

rate cannot be pegged forever – this would result in equilibrium indeterminacy. We are going to

analyze situations in which the economy starts in a situation in which the interest rate is pegged

(i.e. it = 0, so constant) for some period of time. The period of time will be either deterministic

or stochastic, but in either event will be exogenous. Once the peg lifts, it is never expected to bind

again. This means that we are ignoring “precautionary” behavior in which agents might alter their

behavior in anticipation of the ZLB binding.
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1 Deterministic Interest Rate Peg

With a deterministic peg, the interest rate is fixed for some known, finite duration, i.e. it+h = 0 for

h = 0, . . . H − 1. This means that the peg lasts for H > 0 periods. Once the peg lifts, the central

bank sets policy according to (3). This makes finding a solution particularly straightforward – once

the peg lifts, we have πt+k = xt+k = 0 for k ≥ H.

To find the solution, we simply need to work backwards. This is a special case of how all DSGE

models are solved – we have equilibrium conditions, we impose a terminal condition(s), and we find

the initial condition for jump variables consistent with the terminal condition(s) holding. Suppose

that the peg lasts for one period, H = 1, so it = 0 but thereafter it+k = rft+k. We know that

Etxt+1 = Etπt+1 = 0. Then, from (1), we have:

xt =
1

σ
rft (5)

But then we can solve for period t inflation from (2):

πt =
γ

σ
rft (6)

Easy enough. Now, suppose that the interest rate peg will last for two periods, H = 2. We

know that Etxt+2 = Etπt+2 = 0. Hence, from (1) led forward one period, we have:

Etxt+1 =
1

σ
Etr

f
t+1 =

ρr
σ
rft

Similarly, for inflation:

Etπt+1 =
ρrγ

σ
rft

Now, go back to (1) in period t. Imposing the peg, we have:

xt = Etxt+1 +
1

σ
Etπt+1 +

1

σ
rft

Now, using the results from above, we have:

xt =
ρr
σ
rft +

ρrγ

σ2
rft +

1

σ
rft =

1

σ

(
1 + ρr

(
1 +

γ

σ

))
rft

For inflation, we have:

πt =
γ

σ

(
1 + ρr

(
1 +

γ

σ

))
rft +

ρrβγ

σ
rft =

γ

σ

(
1 + ρr

(
1 +

γ

σ

)
+ βρr

)
rft

We could keep doing this for arbitrary peg lengths, H, but it gets laborious and algebraically

messy. It is straightforward to solve this backwards via a loop in a program like Matlab. I did so.

I assume that there is a one-unit (positive) shock to the natural rate of interest in the first period

that decays with AR parameter ρr = 0.9. I assume that γ = 0.1, β = 0.99, and σ = 1. Here is

my code, which generates impulse responses of variables to the natural rate shock for an arbitrary
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peg length, H. I include the real interest rate, rt = it − Etπt+1, as an endogenous variable when

calculating these.

1 % set parameters

2 beta = 0.99;

3 gamma = 0.1;

4 sigma = 1;

5 rhor = 0.9;

6

7

8 % pre−populate IRFs

9 N = 20; % number of periods to plot

10 H = 4; % length of peg

11

12 xirf = zeros(N,1);

13 piirf = zeros(N,1);

14 rfirf = zeros(N,1);

15 iirf = zeros(N,1);

16 rirf = zeros(N,1);

17

18 % natural rate irf

19 for j = 1:N

20 rfirf(j,1) = rhorˆ(j−1);

21 end

22

23 % now do IRFs of the rest

24

25 for j = H:N

26 xirf(j,1) = 0;

27 piirf(j,1) = 0;

28 iirf(j,1) = rfirf(j,1);

29 rirf(j,1) = rfirf(j,1);

30 end

31

32 % now work backwards

33 for j = 1:H

34 xirf(H−j+1,1) = xirf(H−j+2,1) − (1/sigma)*(−piirf(H−j+2,1) − rfirf(H−j+1,1));

35 piirf(H−j+1,1) = gamma*xirf(H−j+1,1) + beta*piirf(H−j+2,1);

36 rirf(H−j+1,1) = −piirf(H−j+2,1);

37 end

IRFs are shown in Figure 1. With no ZLB, the nominal rate would move one-for-one with the

natural rate, inflation and the output gap would always be zero, and the real interest rate would

move one-for-one with the natural rate (and with the nominal rate). I consider four different peg

lengths: H = 2, H = 4, H = 8, and H = 12. When the interest rate is pegged for any duration,

the output gap and inflation go up on impact. What is driving this is pretty simple. The real

interest rate is rt = it−Etπt+1. If the nominal rate can’t react, the real interest rate is equal to the
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negative of the expected inflation rate. As we saw above in the analytics of a one- or two-period

peg, the inflation rate is positive in the period before the peg ends. Working backwards, this means

that the real interest rate either doesn’t react (H = 1) or falls on impact (H > 1). This stimulates

the output gap. But a higher output gap stimulates inflation. The longer the peg lasts, the more

exacerbated these effects are. When the interest rate is pegged for 12 periods, for example, both the

output gap and inflation react quite significantly (and the real interest rate falls quite significantly).

Figure 1: IRFs to Natural Rate Shock, Deterministic Peg of Duration H
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Note that, once the peg ends, the IRFs are all identical. This is true regardless of H. This is a

consequence of having no endogenous state variables in the model.

2 Stochastic Interest Rate Peg

Next, consider a situation in which the length of the interest rate peg is stochastic rather than

deterministic. In particular, assume that, in period t, the nominal interest rate is stuck at 0. Then,

in each subsequent period there is a probability 1 − α that the peg lifts (and, consequently, a

probability α that it stays in place), with 0 ≤ α < 1. The expected duration of the peg is therefore:

E[Duration] = (1− α)× 1 + α(1− α)× 2 + α2(1− α)× 3 + α3(1− α)× 3 + . . .

In this setup, with the interest rate fixed in the present, the probability of the peg lasting one
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period is 1−α: this is the probability the peg lifts for period t+1. The probability of the peg last

two periods is α(1−α): α is the probability it remains pegged for t+1 and 1−α is the probability

that it lifts in period t+ 2. Similarly, the probability of the peg lasting three periods is α2(1− α):

α2 is the probability that the peg is in place for t+ 1 and t+ 2, and 1− α is the probability that

it lifts in t+ 3. And so on. We can therefore write the expected duration as:

E[Duration] = (1− α)
[
1 + 2α+ 3α2 + 4α3 + . . .

]
Define:

S = 1 + 2α+ 3α2 + 4α3

So:

αS = α+ 2α2 + 3α3 + . . .

Therefore:

(1− α)S = 1 + α+ α2 + α3 + . . .

Since we know that the right hand side reduces to (1 − α)−1, we have S = 1
(1−α)2

. Therefore,

the expected duration is:

E[Duration] =
1

1− α

So, if α = 1/2, the ZLB is expected to be in place for two periods. If α = 3/4, the expected

duration is four periods. And so on.

We can solve for analytic expressions for inflation and the output gap using the method of

undetermined coefficients. Once the peg lifts, we know that both will equal zero. During the peg,

guess that these are:

πt = θπr
f
t

xt = θxr
f
t

Plug these guesses into the Phillips Curve, (2):

θπr
f
t = γθxr

f
t + βαθπEtr

f
t+1

In writing the above, note that with probability 1− α we have Etπt+1 = 0; with probability α,

we will still be in the peg and hence Etπt+1 = θπEtr
f
t+1. Since Etr

f
t+1 = ρrr

f
t , we have:

θπr
f
t = γθxr

f
t + βαθπρrr

f
t
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Which implies:

θπ =
γ

1− αρrβ
θx

Now go to the IS equation, (1), and plug in these guesses:

θxr
f
t = θxαEtr

f
t+1 +

1

σ
αθπEtr

f
t+1 +

1

σ
rft

In writing this out, note that with probability 1 − α we have Etπt+1 = Etxt+1 = 0; with

probability α these take on the same policy functions as before. Since Etr
f
t+1 = ρrr

f
t , we have:

θxr
f
t = θxαρrr

f
t +

1

σ
αθπρrr

f
t +

1

σ
rft

Or:

θxσ (1− αρr) = αρrθπ + 1

Plug in for θπ in terms of θx above:

θxσ(1− αρr) =
γαρr

1− αρrβ
θx + 1

Or:

θxσ(1− αρr)(1− αρrβ) = γαρrθx + (1− αρrβ)

Solving for θx, we have:

θx =
1− αρrβ

σ(1− αρr)(1− αρrβ)− αρrγ
(7)

Which then means:

θπ =
γ

σ(1− αρr)(1− αρrβ)− αρrγ
(8)

Note that there is a useful check on your math here. If α = 0, so that the peg lasts one period

with certainty, these answers should collapse to what we had in the deterministic peg case for

H = 1. And they do. With α = 0, (7) becomes 1/σ and (8) becomes γ/σ, same as (5) and (6).

In analyzing (7)-(8), we can see that θx and θπ will be bigger the bigger is α (i.e. the longer is

the expected duration of the ZLB) – but only up to a point. In particular, there is going to be a

sign-flip at a big enough value of α – these coefficients will go from positive to negative. This sign

flip occurs at:

αρrγ > σ(1− αρr)(1− αρrβ)

This sign-flip is a “pathological” feature of the basic NK model and I’m only going to consider
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values of α that are sufficiently small that the coefficients for the output gap and inflation are

positive.

As I did in the deterministic case, I can construct impulse responses to a natural rate shock

at the ZLB. There is one subtle issue here, however. We define an impulse response as how the

expected future values of endogenous variables react to a shock. The impulse responses of inflation

and the output gap are therefore going to be αjρjθπ and αjρjθx for j = 0, . . . . ρj is the IRF of the

natural rate to a one-unit shock in period j. θπ and θx are the policy functions at the ZLB in that

period. Since inflation and output equal zero if the ZLB lifts, we can ignore those parts.

Things are a bit trickier in calculating the impulse response of the nominal interest rate. This

will not just be zero until the peg lifts in expectation. Even with α very close to one, there is

some probability that the peg will lift and the nominal rate will equal the natural rate. The

probability that the interest rate is still at zero at horizon j is αj . When j = 0, this is unity.

But when j > 0, this will not be unity, and so the expected path of the nominal rate will be

αj × 0 + (1 − αj) × rft+j = (1 − αj)ρjr, where 1 − αj is the probability that the peg has lifted by

horizon j. Given impulse responses of inflation and the nominal rate, we can calculate a response

of the nominal rate.

To avoid the “sign-flip” issue, I’m going to set σ = 3, keep the same values of β and γ, and

consider α consistent with expected duration of the ZLB of 2, 4, 8, and 12 quarters (corresponding

to values of α of 0.5, 0.75, 0.875, and 0.9167, respectively).

Figure 2: IRFs to Natural Rate Shock, Stochastic Peg Duration

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1
rf

0 5 10 15 20
0

2

4

6

8

10

12

14
x

0 5 10 15 20
0

2

4

6

8

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
i

0 5 10 15 20
-6

-4

-2

0

2
r

E(H) = 2
E(H) = 4
E(H) = 8
E(H) = 12

7



You can see here that similar stuff is at work as in the case of the deterministic peg. The longer

the peg lasts (in expectation), the more inflation and the output gap react. When the expected

duration is 12, for example, the output gap and inflation react quite a lot (and the real interest

rate goes down, which is a consequence of expected inflation rising and the nominal interest rate

not). Note that there are a couple of subtle differences relative to the deterministic case. First,

the responses under pegs of different expected durations never exactly lie on top of the no peg

case. This is because there is always some (small) probability of the peg lasting a very long time.

Second, the impulse response of the interest rate is not zero during the period of the expected peg.

This is because there is always some possibility that the peg lifts sooner than expected, and the

impulse response function is plotting how the nominal rate evolves in expectation. What is the case

is that, in expectation, the nominal rate is under-reacting relative to the natural rate, particularly

during “early” periods. Monetary policy is “too loose” (in expectation) for the first several periods

following the increase in the natural rate of interest. This is what generates the positive output

gap and inflation responses.

3 Applications: Productivity and Government Spending Shocks

Instead of thinking about the consequences of a natural rate shock in the abstract, let’s consider

two possible sources of fluctuations in the natural rate – a positive shock to productivity and a

positive shock to government spending. The former is pretty easy to analyze – it maps nicely into

the basic three-equation model described above. In the case of the government spending shock, we

can still write the three equation model in terms of xt, πt, and it, but we have to do some work

to get there (and some of the coefficients look different) because we will no longer have Ct = Yt in

equilibrium.

3.1 Productivity Shock

The key (non-linearized) equations of the model for understanding how this shock impacts the

natural rate of interest are the labor supply condition, the consumption Euler equation, the rela-

tionship between the real wage and real marginal cost, the resource constraint, and the aggregate

production function:
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θNχ
t = C−σ

t wt

mct =
wt

At

Yt =
AtNt

vPt

Yt = Ct

1 = Et

[
β

(
Ct+1

Ct

)−σ

(1 + it)Π
−1
t+1

]

The price-setting conditions are all separated from this, and can be written in linearized form

in terms of real marginal cost as:

πt =
(1− ϕ)(1− ϕβ)

ϕ
m̃ct + βEtπt+1

Focusing on the non-linearized conditions, we can eliminate wt and Ct:

θNχ
t = Y −σ

t mctAt

Yt =
AtNt

vPt

1 = Et

[
β

(
Yt+1

Yt

)−σ

(1 + it)Π
−1
t+1

]

The linearized versions of these are (linearized about a zero-inflation steady state, so price

dispersion is constant, with lowercase variables denoting log deviations where appropriate):

m̃ct = χnt + σyt − at

yt = at + nt

yt = Etyt+1 −
1

σ
(it − Etπt+1)

The flexible price equilibrium, denoted with a superscript f , is a situation in which real marginal

cost is constant, so m̃cft = 0. Combining these together, we have:

at = χ
(
yft − at

)
+ σyft

Hence:

yft =
1 + χ

σ + χ
at (9)

The natural rate of interest is defined as the real interest rate that would be consistent with
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the IS equation with flexible prices, so:

rft = σ
[
Ety

f
t+1 − yft

]
Combining the two, we have:

rft =
σ(1 + χ)

σ + χ
[Etat+1 − at]

Assume that productivity follows an AR(1), with autoregressive coefficient ρA. Then we have:

rft =
σ(1 + χ)(ρA − 1)

σ + χ
at

Now, since at = ρAat−1 + sAεA,t, we can write this as:

rft =
σ(1 + χ)(ρA − 1)

σ + χ
ρAat−1 +

σ(1 + χ)(ρA − 1)

σ + χ
sAεA,t

But since σ(1+χ)(ρA−1)
σ+χ at−1 = rft−1, we have:

rft = ρAr
f
t−1 +

σ(1 + χ)(ρA − 1)

σ + χ
sAεA,t (10)

Provided ρA < 1, what this tells us is that a positive shock to ρA (say sAεA,t = 1) causes the

natural rate of interest to decline. Note that we can write the log-deviation of real marginal cost

as:

m̃ct = χ(yt − at) + σyt − at = (σ + χ)yt − (1 + χ)at

But, from above, we can write (1 + χ)at = (σ + χ)yft , so we have:

m̃ct = (σ + χ)
(
yt − yft

)
= (σ + χ)xt

This means we can write the Phillips Curve as:

πt =
(1− ϕ)(1− ϕβ)

ϕ
(σ + χ)xt + βEtπt+1 = γxt + βEtπt+1 (11)

Then, in the IS equation, add and subtract yft and Ety
f
t+1 from both sides:

yt − yft = −yft + Etyt+1 − Ety
f
t+1 + Ety

f
t+1 −

1

σ
(it − Etπt+1)

But this can be written:

xt = Etxt+1 + Ety
f
t+1 − yft − 1

σ
(it − Etπt+1)

But since Ety
f
t+1 − yft = 1

σ r
f
t , we can write this as:
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xt = Etxt+1 −
1

σ

(
it − Etπt+1 − rft

)
(12)

Note that (12) is identical to (1), and (11) is identical to (2). We can use (10) as an exogenous

process for the natural rate of interest, though that is really being driven by the productivity shock.

Then we can use (9) to back out yft , but then once we know xt we can determine yt (and any of

the other variables we subbed out).

3.1.1 Impulse Responses

I’m going to take this model, summarized by (12) and (11), and solve it for different deterministic

interest rate peg durations: H = 0, H = 2, H = 4, andH = 8. I could also do this using a stochastic

duration, but that is subject to the sign-flip pathology for a sufficiently long peg. Outside of the

ZLB, I assume that the central bank targets inflation: πt = 0, which implies xt = 0 and it = rft .

But during the peg, it = 0 (i.e. is constant).

I need to specify values of parameters. I assume that β = 0.99, χ = 1, σ = 1, ρA = 0.9, and

ϕ = 0.75. This implies that the value of γ = 0.17. I assume that there is a one-unit shock to

productivity. In terms of the productivity shock, the process for rft is given by (10). The model,

as written, determines xt. I can back out yt = xt + yft , where yft = 1+χ
σ+χat. Given that I assumed

σ = 1, we just have yft = at. I can back out the real interest rate from the Fisher relationship:

rt = it − Etπt+1. Impulse responses are shown below.
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Figure 3: IRFs to Productivity Shock, Deterministic Peg of Duration H
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When H = 0, so there is no constraint on monetary policy, we have xt = πt = 0 at all horizons,

which implies it = rt = rft . A positive productivity shock causes rft to fall.

What happens when the interest rate is pegged for some period of time? Thanks to the lack

of endogenous state variables, once the peg lifts, inflation and the output gap are zero, and the

nominal rate equals the real rate which equals the natural rate.

But not during the peg. During the peg, the productivity shock (negative shock to rft ) causes

inflation to fall. With the nominal rate pegged, lower expected inflation causes the real interest

rate to rise. The higher real interest rate causes the output gap to fall, which means that output,

yt, goes up by less than potential, yft . The longer the peg, the more exacerbated this gets. As H

gets bigger, inflation falls more, which causes the real rate to rise more, which causes output, yt, to

rise less. In fact, when H = 8, for example, yt actually falls on impact (even though yft has risen).

Without a peg/ZLB, the central bank would like to cut the nominal rate when productivity

improves. The inability to do so means that monetary policy is “too tight,” which causes deflation

(πt declining) and output rising by too little.

3.2 Government Spending Shock

The key (non-linearized) equations of the model for understanding how a government spending

impacts the natural rate of interest are the labor supply condition, the consumption Euler equation,

the relationship between the real wage and real marginal cost, the resource constraint, and the
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aggregate production function:

θNχ
t = C−σ

t wt

mct =
wt

At

Yt =
AtNt

vPt

Yt = Ct +Gt

1 = Et

[
β

(
Ct+1

Ct

)−σ

(1 + it)Π
−1
t+1

]
lnGt = (1− ρG) lnG+ ρG lnGt−1 + sGεG,t

The price-setting conditions are all separated from this, and can be written in linearized form

in terms of real marginal cost as:

πt =
(1− ϕ)(1− ϕβ)

ϕ
m̃ct + βEtπt+1

The linearized production function is:

yt = at + nt

Let ω = G/Y as the steady state government spending share of output. The linearized resource

constraint is:

yt = (1− ω)ct + ωgt

Linearized real marginal cost is the same as before:

m̃ct = w̃t − at

Combining this with the linearized labor supply condition, we have:

χnt = −σct + m̃ct + at

Now eliminate nt and ct from the production function and resource constraint:

χ(yt − at) = −σ

(
yt

1− ω
− ω

1− ω
gt

)
+ m̃ct + at

Solve for m̃ct and group like terms:

m̃ct =

(
χ+

σ

1− ω

)
yt −

σω

1− ω
gt − (1 + χ)at
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Which may be written:

m̃ct =

(
χ(1− ω) + σ

1− ω

)
yt −

σω

1− ω
gt − (1 + χ)at

Now, to think about the flexible price equilibrium, note that m̃cft = 0. This means that:(
χ(1− ω) + σ

1− ω

)
yft =

σω

1− ω
gt + (1 + χ)at

But this means:

m̃ct =

(
χ(1− ω) + σ

1− ω

)
xt

Where xt = yt − yft . But this means we can write the NKPC as:

πt =
(1− ϕ)(1− ϕβ)

ϕ

(
χ(1− ω) + σ

1− ω

)
xt + βEtπt+1 (13)

This is the same form of the expression we had earlier, but the coefficient γ = (1−ϕ)(1−ϕβ)
ϕ

(
χ(1−ω)+σ

1−ω

)
on the output gap is slightly different due to ω > 0 (which means ct ̸= yt).

Now, let’s go to the Euler equation. Linearized, we have:

ct = Etct+1 −
1

σ
(it − Etπt+1)

Now plug in the linearized resource constraint:

1

1− ω
yt −

ω

1− ω
gt =

1

1− ω
Etyt+1 −

ω

1− ω
Etgt+1 −

1

σ
(it − Etπt+1)

This can be written:

yt = Etyt+1 − ω (Etgt+1 − gt)−
1− ω

σ
(it − Etπt+1)

Now, add and subtract yft and Ety
f
t+1 from both sides:

yt − yft + yft = Etyt+1 − Ety
f
t+1 + Ety

f
t+1 − ω (Etgt+1 − gt)−

1− ω

σ
(it − Etπt+1)

This may be written in terms of the gap as:

xt = Etxt+1 + Ety
f
t+1 − yft − ω (Etgt+1 − gt)−

1− ω

σ
(it − Etπt+1)

Now, let’s think about what rft . It is the real interest rate where the IS equation holds with

flexible prices. In particular:

yft = Ety
f
t+1 − ω (Etgt+1 − gt)−

1− ω

σ
rft
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Therefore:

1− ω

σ
rft = Ety

f
t+1 − yft − ω (Etgt+1 − gt)

But this means we can write the IS equation as:

xt = Etxt+1 −
1− ω

σ

(
it − Etπt+1 − rft

)
(14)

Note that (13) and (14) are exactly the same form as in the basic three-equation model without

government spending; it’s just that the slope coefficient in the NKPC is slightly different (it now

depends on ω) and the response of the output gap to the interest rate gap is slightly different (it

also depends on ω).

Now, to complete the three-equation representation of the model, we need to map gt into rft .

From above, we have:

rft =
σ

1− ω

(
Ety

f
t+1 − yft

)
− σω

1− ω
(Etgt+1 − gt)

Given that we are assuming gt obeys an AR(1) process, this can be written:

rft =
σ

1− ω

(
Ety

f
t+1 − yft

)
+

σω(1− ρG)

1− ω
gt

From above, we know that:

yft =
σω

χ(1− ω) + σ
gt +

(1 + χ)(1− ω)

χ(1− ω) + σ
at

Given that both gt and at follow AR(1) processes, we know:

Ety
f
t+1 =

σωρG
χ(1− ω) + σ

gt +
(1 + χ)(1− ω)ρA
χ(1− ω) + σ

at

Hence:

Ety
f
t+1 − yft =

σω(ρG − 1)

χ(1− ω) + σ
gt +

(1 + χ)(1− ω)(ρA − 1)

χ(1− ω) + σ
at

We can therefore write:

rft =
σ

1− ω

σω(ρG − 1)

χ(1− ω) + σ
gt +

σ

1− ω

(1 + χ)(1− ω)(ρA − 1)

χ(1− ω) + σ
at +

σω(1− ρG)

1− ω
gt

This can be written:

rft =
σω(1− ρG)

1− ω

(
1− σ

χ(1− ω) + σ

)
gt +

σ

1− ω

(1 + χ)(1− ω)(ρA − 1)

χ(1− ω) + σ
at

Which can be simplified further:

15



rft =
σω(1− ρG)

1− ω

(
χ(1− ω)

χ(1− ω) + σ

)
gt +

σ

1− ω

(1 + χ)(1− ω)(ρA − 1)

χ(1− ω) + σ
at

rft =
σωχ(1− ρG)

χ(1− ω) + σ
gt +

σ(1 + χ)(1− ω)(ρA − 1)

χ(1− ω) + σ
at

It is helpful to define:

rfG,t =
σωχ(1− ρG)

χ(1− ω) + σ
gt

rfA,t =
σ(1 + χ)(1− ω)(ρA − 1)

χ(1− ω) + σ
at

So:

rft = rfG,t + rfA,t (15)

With:

rfG,t = ρGr
f
G,t−1 +

σωχ(1− ρG)

χ(1− ω) + σ
sGεG,t (16)

rfA,t = ρAr
f
A,t−1 +

σ(1 + χ)(1− ω)(ρA − 1)

χ(1− ω) + σ
sAεA,t (17)

We see here that positive shocks to government spending raise the natural rate of interest (as

long as ρG < 1), and positive shocks to productivity lower the natural rate of interest (as long as

ρA < 1). Note that (17) is identical to (10) when ω = 0.

3.2.1 Impulse Responses

I’m going to focus on impulse responses to a government spending shock for different peg values,

just as I did before. I again need to parameterize the model, but there are no more parameters

to specify. The model is characterized by an exogenous process for the natural rate, (16) – given

linearity, I do not need to worry about the productivity shock. I assume that ρG = 0.9 and consider

a one-unit shock to government spending. I assume the same parameter values as above: β = 0.99,

ϕ = 0.75, and χ = σ = 1. I need to take a stand on the steady-state share of government spending

in output, ω. I assume this is ω = 0.20. Note that, due to the presence of ω ̸= 0, the slope on the

Phillips Curve is actually slightly different than in the productivity shock case (γ = 0.19).
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Figure 4: IRFs to Government Spending Shock, Deterministic Peg of Duration H
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The figure above shows IRFs. yft and rft are written as functions of exogenous government

spending. The model, as specified, finds solutions for xt and πt. I can back out yt = xt + yft , and

then also ct =
yt

1−ω − ω
1−ωgt. The real interest rate is again backed out using the Fisher relationship.

When H = 0, the central bank is implementing a strict inflation target. This ensures that

xt = πt = 0 at all horizons, so it = rft . The government spending shock raises rft . When H = 0, yt

increases because yft increases, but ct declines.

When H > 0, we see something similar as in the case of the productivity shock, but sort of in

reverse given that the government spending shock moves the natural rate of interest in the opposite

direction. The central bank would like to raise the nominal rate to implement the strict inflation

target. But, because of the peg/ZLB, it cannot. This makes monetary policy “too loose” following

the shock. Inflation raises, which causes the real interest rate to decline (rather than rise). This

stimulates consumption (it falls less than it would when H = 0) and output rises more. These

effects are, again, exacerbated the longer is the peg – the longer the ZLB lasts, the more inflation

rises, the more the real interest rate declines, and therefore the more output goes up. Indeed, for

H = 8, for example, consumption actually rises (rather than declines).

We can calculate the fiscal multiplier from these impulse responses. Recall the fiscal multiplier is

defined (on impact) as dYt/dGt (or the sum of this ratio over some horizon). The impulse responses

as shown are in logs – d lnYt/d lnGt = dyt/dgt. The ratio of impulse responses in the logs has the

interpretation of an elasticity. To put it in “levels,” we can post-multiply by the ratio of output to
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government spending in steady state, which is 1/ω.

0 2 4 8
Impact Multiplier 0.56 0.65 0.77 1.3
Sum Multiplier (20 periods) 0.56 0.57 0.62 0.85

ZLB Length

The table above calculates the multiplier (either the impact or sum multiplier) for different peg

lengths. Under the inflation target with no peg, the impact and cumulative sum multipliers are

the same at 0.56. Consumption is crowded out, so output rises by less than government spending

does. When the peg gets longer, output reacts more and more. For a long enough duration, the

multiplier can exceed one (so consumption is crowded in, as shown in the impulse response graphs).

3.3 The Costs of the ZLB

As we saw in our discussion of optimal monetary policy, a central bank is interested in stabilizing

fluctuations in both the output gap and inflation. The ZLB takes away the central bank’s principal

policy instrument (the short-term nominal interest rate) and makes it harder to do this. In fact, as

we see in the exercises above, when the nominal interest rate cannot react for a while, both inflation

and the output gap react more to exogenous shocks than when the central bank is unconstrained.

This is bad.

In reality, what causes the ZLB to bind (i.e. for the interest rate to be pegged) is the fact that

nominal interest rates cannot go (much) below zero. This fact has led some to call for a higher

average inflation target. The idea is simple – the steady state nominal interest rate is increasing

one-to-one in the steady state inflation rate. A higher steady state inflation rate gives a central

bank “more wiggle room” before hitting zero. But raising the inflation target is not a free lunch –

it moves the economy further away from the Friedman rule, and creates first-order price dispersion

effects that might be undesirable.

Policymakers have thought about other ways to combat the problem of the ZLB rather than just

raising the inflation target. One we studies above – use fiscal policy, rather than monetary policy,

at the ZLB. As we showed above, fiscal expansion might be particularly effective at stimulating

output at the ZLB. Another option is to use different kinds of tools. Previously “unconventional”

monetary policy tools include forward guidance and quantitative easing (QE). Forward guidance

essentially involves promising lower interest rates after the ZLB has lifted. It is not hard to see

why forward guidance might be effective in this environment. Solving the IS equation forward, we
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have:

xt = − 1

σ
Et

∞∑
s=0

(
rt+s − rft+s

)
In the exercises we did above, we have rt+k = rft+k once the ZLB lifts. The reason the ZLB is

costly is that monetary policy is either “too tight” (real interest rate too high relative to the natural

rate during the ZLB, so xt < 0) or “too loose” (real rate too low relative to the natural rate during

the ZLB, so xt > 0). The most plausible reason the ZLB would bind is that rft is low (meaning the

central bank would like to push it < 0). We will end up with policy being “too tight.” In principle,

this could be counteracted by promising to set rt+k < rft+k for some period of time after the ZLB

has lifted. This “eases” policy in the future, to counteract the tight policy in the present due to the

ZLB. This is what forward guidance entails – promising “loose” policy beyond the ZLB period to

attempt to counteract the adverse effects of the ZLB on the output gap and inflation. In principle,

forward guidance can work extremely well in the basic NK model. The output gap only depends

on the sum of real interest rate gaps. A policymaker can counteract the tight policy due to the

ZLB by promising loose policy in the future. Of course, this requires commitment, and is subject

to the time inconsistency problem. It’s also the case that most people feel like forward guidance is

too effective in this model – the so-called “forward guidance puzzle.”1

As written, it is not possible to use the New Keynesian model to think about quantitative

easing. QE involves purchasing long-term bonds with the attempt to push up their price (and push

down long-term interest rates). To think sensibly about QE, we need a model with short- and

long-term bonds, and we need some kind of friction to allow QE to influence long-term interest

rates independent of the path of short-term interest rates. I have a paper that does just this along

with Cynthia Wu.2

3.4 Alternative Solution Methodologies

What I have done to account for the ZLB is to use two (relatively) simple assumptions about the

nominal interest rate being pegged in a linearized model. This is useful for intuition, but it has

some obvious drawbacks. In either case, because of linearity, we are ruling out “precautionary”

behavior wherein people change their actions in anticipation of the economy possibly hitting the

ZLB. We are also ruling out concerns about the ZLB ever binding again in the future once it lifts.

A slightly more sophisticated approach (which does not deal with either of these issues) is to the

use the “occbin” package (Guerrieri and Iacoviello (2015), ”OccBin: A Toolkit for Solving Dynamic

Models with Occasionally Binding Constraints Easily” Journal of Monetary Economics 70: 22-38).

This procedures is compatible with Dynare, and gives a piecewise linear solution. This is easier to

work with and more adaptable than what I did above, but it’s not fundamentally different – what I

1See Del Negro, Giannoni, and Patterson (2023). “The Forward Guidance Puzzle.” Journal of Political Economy:
Macroeconomics 1(1): 43-79.

2See Sims, Wu, and Zhang (2023): “The Four-Equation New Keynesian Model.” Review of Economics and
Statistics 105(4): 931-947.
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did above (in the stochastic peg case) is also a piecewise linear solution. To capture precautionary

effects and the like, one needs to use a non-linear solution methodology to solve the model (which

is feasible for a small-scale model but numerically challenging when and if the model gets more

complicated).
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