# Equilibrium with Production and Endogenous Labor Supply ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims

University of Notre Dame

Fall 2024



GLS Chapter 12

# Production and Labor Supply

We continue working with a two period, optimizing, equilibrium model of the economy

No uncertainty over future, although it would be straightforward to entertain this

Model augmented along the following two dimensions:

- We model production and an investment decision
- Model endogenous labor supply

The production side is very similar to the Solow model

#### Firm

There exists a representative firm. The firm produces output using capital,  $K_t$ , and labor,  $N_t$ , according to the following production function:

$$Y_t = A_t F(K_t, N_t)$$

 $A_t$  is exogenous productivity variable. Abstract from trend growth

 $F(\cdot)$  has the same properties as assumed in the Solow model – increasing in both arguments, concave in both arguments, both inputs necessary. For example:

$$Y_t = A_t K_t^lpha N_t^{1-lpha}$$
,  $0 < lpha < 1$ 

# Capital Accumulation

Slightly differently than the Solow model, we assume that the firm makes the capital accumulation decisions

We assume that the firm must borrow from a financial intermediary in order to finance its investment

"Equity" versus "debt" finance would be equivalent absent financial frictions, which we will model

Furthermore, ownership of capital wouldn't make a difference absent financial frictions (i.e. firm makes capital accumulation decision vs. household owning capital and leasing it to firms)

Current capital,  $K_t$ , is predetermined and hence exogenous. Capital accumulates according to:

$$K_{t+1} = I_t + (1 - \delta)K_t$$

### Prices Relevant for the Firm

Firm hires labor in a competitive market at (real) wage  $w_t$  (and  $w_{t+1}$  in the future)

Firm borrows to finance investment at

$$r_t^I = r_t + f_t$$

 $r_t^{I}$  is the interest rate relevant for the firm, while  $r_t$  is the interest rate relevant for the household

 $f_t$  is (an exogenous) variable representing a financial friction. We will refer to this as a credit spread

During financial crises observed credit spreads rise significantly

### Dividend

The representative household owns the firm. The firm returns any difference between revenue and cost to the household each period in the form of a dividend

Dividend is simply output less cost of labor in period t (since borrowing cost of investment is borne in future)

$$D_t = Y_t - w_t N_t$$

### Future Dividend and Terminal Condition

Terminal condition for the firm: firm wants  $K_{t+2} = 0$  (die with no capital). This implies  $I_{t+1} = -(1-\delta)K_{t+1}$ , which we can think of as the firm "liquidating" its remaining capital after production in t+1

This is an additional source of revenue for the firm in t + 1. In addition, firm has to pay interest plus principal on its borrowing for investment in t:

$$D_{t+1} = Y_{t+1} + (1-\delta)K_{t+1} - w_{t+1}N_{t+1} - (1+r_t')I_t$$

#### Firm Valuation

Value of the firm: PDV of flow of dividends:

$$V_t = D_t + \frac{1}{1+r_t} D_{t+1}$$

The relevant interest rate for discounting future profit is  $r_t$ , not  $r_t^I$ 

This is because household earns the firm and discounts future dividend

#### Firm Problem

Firm problem is to pick  $N_t$  and  $I_t$  to maximize  $V_t$  subject to accumulation equation:

$$\max_{N_t, I_t} V_t = D_t + \frac{1}{1 + r_t} D_{t+1}$$
  
s.t.  
$$K_{t+1} = I_t + (1 - \delta) K_t$$
  
$$D_t = A_t F(K_t, N_t) - w_t N_t$$

 $D_{t+1} = A_{t+1}F(K_{t+1}, N_{t+1}) + (1-\delta)K_{t+1} - w_{t+1}N_{t+1} - (1+r_t')I_t$ 

#### First-Order Conditions

$$w_{t} = A_{t}F_{N}(K_{t}, N_{t})$$
  
1 +  $r_{t}' = A_{t+1}F_{K}(K_{t+1}, N_{t+1}) + (1 - \delta)$ 

Intuition: MB = MC

Wage condition exactly same as Solow model expression for wage

Investment condition can be re-written in terms of earlier notation by noting  $R_{t+1} = A_{t+1}F_{\mathcal{K}}(K_{t+1}, N_{t+1})$  and:

$$R_{t+1} = r_t^I + \delta = r_t + f_t + \delta$$

Return on capital,  $R_{t+1}$ , closely related to real interest rate,  $r_t$ 

# Diversion: Debt vs. Equity Finance

We are assuming firm finances investment via debt. Equity finance:

$$D_t = Y_t - w_t N_t - I_t$$

$$D_{t+1} = Y_{t+1} + (1 - \delta)K_{t+1} - w_{t+1}N_{t+1}$$

Debt: lower dividend in future. Equity: lower dividend in present FOC w/ equity:

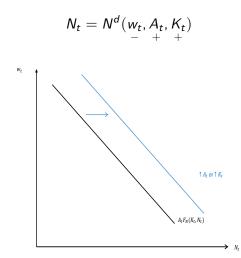
$$1 + r_t = A_{t+1} F_{\mathcal{K}}(K_{t+1}, N_{t+1}) + (1 - \delta)$$

Firm would prefer equity if  $f_t > 0$ ; otherwise, firm is indifferent (Modigliani-Miller 1958)

We assume some underlying <u>friction</u> prevents firm's ability to issue debt

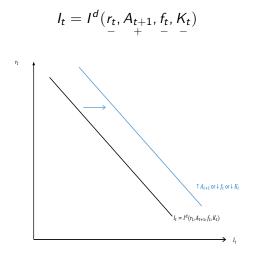
### Labor Demand

Labor FOC implicitly characterizes a downward-sloping labor demand curve:



#### Investment Demand

Second first order condition implicitly defines a demand for  $K_{t+1}$ , which can be used in conjunction with the accumulation equation to get an investment demand curve:



### Household

There exists a representative household. Households gets utility from consumption and <u>leisure</u>, where leisure is  $L_t = 1 - N_t$ , with  $N_t$  labor and available time normalized to 1

$$U = u(C_t, 1 - N_t) + \beta u(C_{t+1}, 1 - N_{t+1})$$

Example flow utility functions:

$$\begin{split} u(C_t, 1 - N_t) &= \ln C_t + \theta_t \ln(1 - N_t) \\ u(C_t, 1 - N_t) &= \ln \left[ C_t + \theta_t \ln(1 - N_t) \right] \end{split}$$

Here,  $\theta_t$  is an exogenous "labor supply shock" governing utility from leisure (equivalently, disutility from labor)

Notation:  $u_C$  denotes marginal utility of consumption,  $u_L$  marginal utility of leisure (marginal utility of labor is  $-u_L$ )

### **Budget Constraints**

Household faces two flow budget constraints, conceptually the same as before, but now income is partly endogenous:

$$C_t + S_t \le w_t N_t + D_t$$
  
 $C_{t+1} + S_{t+1} - S_t \le w_{t+1} N_{t+1} + D_{t+1} + D_{t+1}^{l} + r_t S_t$ 

Household takes  $D_t$ ,  $D_{t+1}$ , and  $D'_{t+1}$  (dividend from financial intermediary) as given (ownership different than management)

Terminal condition:  $S_{t+1} = 0$ . Gives rise to IBC:

$$C_t + \frac{C_{t+1}}{1+r_t} = w_t N_t + D_t + \frac{w_{t+1}N_{t+1} + D_{t+1} + D_{t+1}'}{1+r_t}$$

#### **First-Order Conditions**

Do the optimization in the usual way. The following first order conditions emerge:

$$u_{C}(C_{t}, 1 - N_{t}) = \beta(1 + r_{t})u_{C}(C_{t+1}, 1 - N_{t+1})$$

This is the usual Euler equation, only looks different to accommodate utility from leisure

$$u_L(C_t, 1 - N_t) = w_t u_C(C_t, 1 - N_t)$$
$$u_L(C_{t+1}, 1 - N_{t+1}) = w_{t+1} u_C(C_{t+1}, 1 - N_{t+1})$$

Discussion and intuition

#### **Optimal Decision Rules**

Can go from first order conditions to optimal decision rules

Cutting a few corners, we get the same consumption function as before:

$$C_t = C^d(Y_t, Y_{t+1}, r_t) + -$$

Or, if there were government spending, with Ricardian Equivalence we'd have:

$$C_t = C^d (Y_t - G_t, Y_{t+1} - G_{t+1}, r_t)$$

# Labor Supply

First-order condition for  $N_t$  can be characterized by an indifference curve / budget line diagram similar to the two period consumption case

Things are complicated for a few reasons:

- Competing income and substitution effects of w<sub>t</sub>
- Non-wage income and expectations about future income (including through an interest rate channel) can affect current labor supply

# Labor Supply with GHH Preferences

Labor supply can actually be quite complicated

We will sweep most of this stuff under rug: no income effects and other things (other than exogenous variable  $\theta_t$ ) are ignored

Can be motivated explicitly with preference specification due to Greenwood, Hercowitz, and Huffman (1988):

$$u(C_t, 1 - N_t) = \ln \left[C_t + \theta_t \ln(1 - N_t)\right]$$

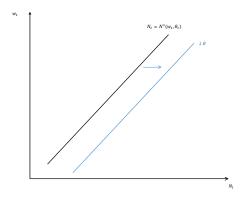
FOC becomes:

$$\frac{\theta_t}{1-N_t} = w_t$$

# Labor Supply Curve

Labor supply function under these assumptions:

$$N_t = N^s(w_t, \theta_t) + -$$



# **Financial Intermediary**

Will not go into great detail

In period t, takes in deposits,  $S_t$ , from household; issues loans in amount  $I_t$  to firm

Pays  $r_t$  for deposits, and earns  $r'_t = r_t + f_t$  on loans

 $f_t$  is exogenous, and  $f_t > 0$  means intermediary earns profit in t + 1, which is returned to household as dividend:

$$D_{t+1}^{I} = (r_t + f_t)I_t - r_tS_t$$

# Market-Clearing

Market-clearing requires  $S_t = I_t$  (i.e. funds taken in by financial intermediary equal funds distributed to firm for investment)

This implies:

$$Y_t = C_t + I_t$$

If there were a government levying (lump sum) taxes on household period t resource constraint would just be:

$$Y_t = C_t + I_t + G_t$$

# Equilibrium

The following conditions must all hold in period *t* in equilibrium:

$$C_{t} = C^{d}(Y_{t}, Y_{t+1}, r_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$N_{t} = N^{d}(w_{t}, A_{t}, K_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, f_{t}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$Y_{t} = C_{t} + I_{t}$$

Endogenous:  $C_t$ ,  $N_t$ ,  $Y_t$ ,  $I_t$ ,  $w_t$ , and  $r_t$ 

Exogenous:  $A_t$ ,  $A_{t+1}$ ,  $K_t$ ,  $f_t$ ,  $\theta_t$ . Will talk about  $Y_{t+1}$  and  $K_{t+1}$  later

Four optimal decision rules, two resource constraints: income = production and income = expenditure

# Competitive Equilibrium

There are now <u>two</u> prices –  $r_t$  (intertemporal price of goods) and  $w_t$  (price of labor)

Different ways to think about what the markets are. One is clear – market for labor, which  $w_t$  adjusts to clear (i.e. labor supply = demand)

Can think about either market for goods (i.e.  $Y_t = C_t + I_t$ ) or a loanable funds market  $S_t = I_t$  as being the other market, which  $r_t$  adjusts to clear. We will focus on market for goods

Endowment economy special case of this if  $N_t$  and  $I_t$  are held fixed

Will be possible to do some consumption smoothing in equilibrium here, however. Suppose household wants to increase  $S_t$ . It can do this if  $r_t$  falls to incentivize more  $I_t$  (whereas in endowment economy  $I_t = 0$ , so  $S_t$  must remain fixed at 0).