Money Demand

ECON 30020: Intermediate Macroeconomics

Prof. Eric Sims

University of Notre Dame

Fall 2024

Readings

GLS Ch. 14

What is Money?

Might seem like an obvious question but really not so clear

Money is an <u>asset</u> – it's a <u>stock</u> that can be used to transfer resources across time

Money a special kind of asset in that it can be used in exchange

Functions of Money

With most things we define them according to intrinsic characteristics (e.g., coffee is a dark, liquid substance)

With money we instead give a functional definition

Money is any asset that serves the following three functions:

- 1. Medium of exchange
- 2. Store of value
- 3. Unit of account

Medium of Exchange

The most important role played by money is its role as a medium of exchange

This solves the "double coincidence of wants" problem associated with barter

Bonds and capital can serve as stores of values (any asset does so, so money is not unique), and anything can serve as a unit of account in principle

But money is unique in its role as medium of exchange

Money's role as a medium of exchange has been critical to the historical growth in economic activity via specialization

<u>Fiat money</u> is the best medium of exchange, so long as people believe it has value

Including Money in the Neoclassical Model

Is not so easy

Why? Model only features one good (e.g. fruit). Makes medium of exchange role uninteresting

We will include money essentially as aan asset (i.e., a store of value) and will use money as a nominal unit of account

But money is a crummy store of value – bonds pay interest, money does not

We will therefore take a reduced-form shortcut and assume that the household receives utility from holding money

New Nominal Variables

Real variables are denominated in units of goods (i.e., fruit)

Nominal variables are denominated in units of money (i.e., dollars)

New variables:

- ▶ M_t : stock of money held between periods t and t+1 (i.e. store of value like S_t))
- \triangleright P_t : price of goods measured in units of money
- $ightharpoonup i_t$: nominal interest rate (as a rate, this is actually unitless)

Nominal Budget Constraints

$$P_tC_t + P_tS_t + M_t \le P_tw_tN_t - P_tT_t + P_tD_t$$

$$\begin{aligned} & P_{t+1}C_{t+1} + P_{t+1}S_{t+1} - P_tS_t + M_{t+1} - M_t \le \\ & P_{t+1}w_{t+1}N_{t+1} - P_{t+1}T_{t+1} + i_tP_tS_t + P_{t+1}D_{t+1} + P_{t+1}D_{t+1}^I \end{aligned}$$

Terminal conditions: $S_{t+1} = 0$ and $M_{t+1} = 0$. Writing constraints in real terms:

$$C_t + S_t + \frac{M_t}{P_t} = w_t N_t - T_t + D_t$$

$$C_{t+1} = w_{t+1}N_{t+1} - T_{t+1} + D_{t+1} + (1+i_t)\frac{P_t}{P_{t+1}}S_t + D_{t+1}' + \frac{M_t}{P_{t+1}}$$

 $\frac{M_t}{P_t}$: real money balances

Fisher Relationship

The Fisher relationship connects the real and nominal interest rates:

$$1 + r_t = (1 + i_t) \frac{P_t}{P_{t+1}}$$

Expected inflation between t and t + 1:

$$1 + \pi_{t+1}^{\mathsf{e}} = \frac{P_{t+1}}{P_t}$$

Fisher relationship is then approximately:

$$r_t = i_t - \pi_{t+1}^e$$

We will treat expected one period ahead inflation rate, π_{t+1}^e , as exogenous. Movements and nominal and real rates are the same for a given rate of expected inflation

The Real Intertemporal Budget Constraint

Can write t + 1 constraint as:

$$C_{t+1} = w_{t+1}N_{t+1} - T_{t+1} + D_{t+1} + D_{t+1}^{I} + (1+r_t)S_t + \frac{1+r_t}{1+i_t}\frac{M_t}{P_t}$$

Solve out for S_t , combining with period t constraint:

$$C_{t} + \frac{C_{t+1}}{1 + r_{t}} + \frac{i_{t}}{1 + i_{t}} \frac{M_{t}}{P_{t}} = w_{t} N_{t} - T_{t} + D_{t} + \frac{w_{t+1} N_{t+1} - T_{t+1} + D_{t+1}^{I} + D_{t+1}^{I}}{1 + r_{t}}$$

Exactly the same as before, just this additional "expenditure" category of $\frac{M_t}{P_t}$ – how many period t goods held in the form of money

Preferences

Note that money is held <u>across</u> periods, not within a period (i.e. it is a stock variable, not a flow)

Assume household receives a utility flow from its holding of real balances via the function $v(\cdot)$. Increasing and concave (e.g., log)

This utility flow is received in period t. Lifetime utility:

$$U = u(C_t, 1 - N_t) + v\left(\frac{M_t}{P_t}\right) + \beta u(C_{t+1}, 1 - N_{t+1})$$

Optimality Conditions

FOC for consumption and labor exactly the same as before:

$$u_{C}(C_{t}, 1 - N_{t}) = \beta(1 + r_{t})u_{C}(C_{t+1}, 1 - N_{t})$$

$$u_{L}(C_{t}, 1 - N_{t}) = w_{t}u_{C}(C_{t}, 1 - N_{t})$$

New FOC for money:

$$v'\left(\frac{M_t}{P_t}\right) = \frac{i_t}{1 + i_t} u_C(C_t, 1 - N_t)$$

Interpretation ... marginal benefit equals marginal cost!

If no utility benefit from holding money ($v'(\cdot)=0$), then could only hold if $i_t=0$: money dominated as a store of value by bonds if $i_t>0$

Optimal Decision Rules

Presence of money does not impact optimal decision rules for consumption or labor supply:

$$C_t = C^d(Y_t - G_t, Y_{t+1} - G_{t+1}, r_t)$$

 $N_t = N^s(w_t, \theta_t)$

Cutting a few corners (i.e. treating C_t and Y_t as interchangebale), optimal decision rule for money is:

$$M_t = P_t M^d(i_t, Y_t)$$

Money Demand Function

Equivalently, using the Fisher relationship:

$$M_t = P_t M^d (r_t + \pi_{t+1}^e, Y_t)$$

This is our <u>money demand function</u> – demand for real balances is decreasing in the nominal rate and increasing in total expenditure

Government

Government "prints" money, and we take this to be exogenous. Period t budget constraint:

$$P_t G_t \le P_t T_t + P_t B_t + M_t$$

Government can use money as an additional "revenue" source (way to finance spending). Period t+1 constraint:

$$P_{t+1}G_{t+1} + i_t P_t B_t + M_t \le P_{t+1}T_{t+1} + P_{t+1}B_{t+1} - P_t B_t$$

Government essentially has to "buy back" in period t+1 the money it issues in period t. Terminal condition: $B_{t+1}=0$, implying:

$$P_{t+1}G_{t+1} + (1+i_t)P_tB_t + M_t \le P_{t+1}T_{t+1}$$

Government's IBC

In real terms, the two flow budget constraints for the government are:

$$G_{t} = T_{t} + B_{t} + \frac{M_{t}}{P_{t}}$$

$$G_{t+1} + (1+i_{t})\frac{P_{t}}{P_{t+1}}B_{t} + \frac{M_{t}}{P_{t+1}} = T_{t+1}$$

Combining the two and using the Fisher relationship, we get:

$$G_t + \frac{G_{t+1}}{1+r_t} = T_t + \frac{T_{t+1}}{1+r_t} + \frac{i_t}{1+i_t} \frac{M_t}{P_t}$$

Similar to before, but additional "revenue" category related to money (what we call seignorage). Analogous to household IBC which features the same term but as an expenditure category

When combining firm and household IBCs, these terms cancel

Equilibrium Conditions

$$C_{t} = C^{d}(Y_{t} - G_{t}, Y_{t+1} - G_{t+1}, r_{t})$$

$$N_{t} = N^{s}(w_{t}, \theta_{t})$$

$$N_{t} = N^{d}(w_{t}, A_{t}, K_{t})$$

$$I_{t} = I^{d}(r_{t}, A_{t+1}, f_{t}, K_{t})$$

$$Y_{t} = A_{t}F(K_{t}, N_{t})$$

$$Y_{t} = C_{t} + I_{t} + G_{t}$$

$$M_{t} = P_{t}M^{d}(i_{t}, Y_{t})$$

$$r_{t} = i_{t} - \pi_{t+1}^{e}$$

Classical Dichotomy

Eight endogenous variables: Y_t , C_t , I_t , N_t , w_t , r_t , P_t , and i_t

New exogenous variables: M_t and π_{t+1}^e

First six equations feature six real endogenous variables and no nominal variables

- Means that the real endogenous variables are determined independently of nominal variables
- ► This is known as the *classical dichotomy*
- Do not need to know nominal variables to determine real variables
- Converse not true: nominal variables will be affected by real variables

Graphing the Equilibrium

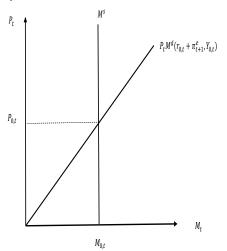
Can use the <u>same</u> five-part graph as before to determine equilibrium of the real side of the economy

The real interest rate, r_t , and output, Y_t , are relevant for money demand

Once we know r_t and Y_t , along with the exogenous quantity of money supplied, can determine P_t

Given an exogenous π_{t+1}^e , given r_t can determine i_t (i_t and r_t always move in same direction absent a change in π_{t+1}^e)

Money Market Equilibrium



Looks funny to have "demand" upward-sloping, but P_t is price of goods in terms of money, so $\frac{1}{P_t}$ is price of money in terms of goods. Demand decreasing in $\frac{1}{P_t}$

Monetary Neutrality

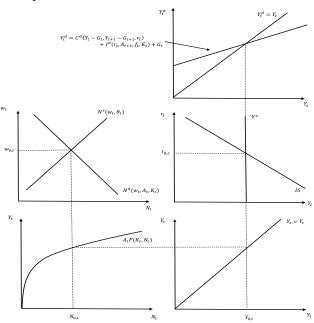
Increase in M_t does not affect first six equations – no effect of change in M_t on any real endogenous variable

We say that money is neutral

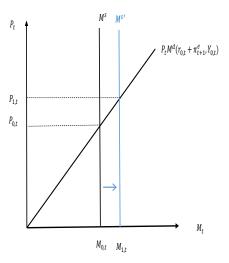
Useful medium-run benchmark, but in the short run nominal rigidities may break monetary neutrality

In this model, only effect of an increase in M_t is an increase in P_t

Increase in M_t



Increase in M_t



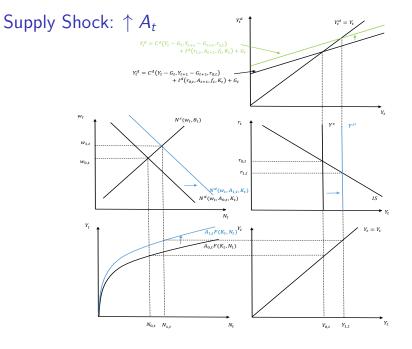
Real Shocks Affect Nominal Variables

Increase in A_t : lowers r_t and raises Y_t , both of which pivot money demand to the right, and hence lower P_t

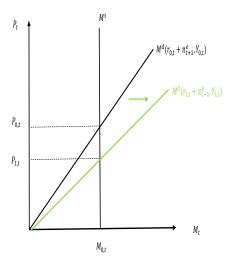
Increase in θ_t : raises r_t and lowers Y_t , both of which pivot money demand to the left, and hence raise P_t

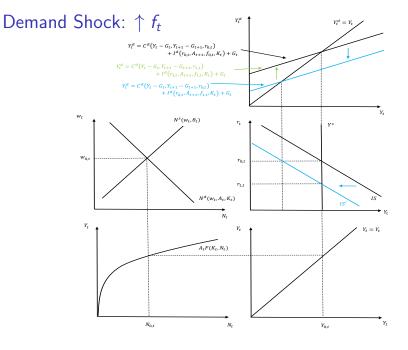
Positive "demand" shocks (increases in A_{t+1} or G_t , or decreases in f_t or G_{t+1}): raise r_t , no effect on Y_t . Hence, money demand shifts left, and price level rises

Increase in π^e_{t+1} : i_t rises by same amount. Money demand pivots in, so price level increases. "Self-fulfilling" inflation

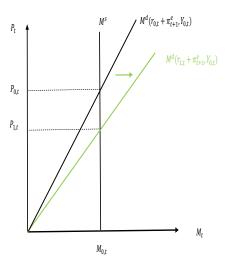


Increase in A_t





Increase in f_t



Qualitative Effects

	Exogenous Shock							
Variable	$\uparrow A_t$	$\uparrow \theta_t$	$\uparrow f_t$	$\uparrow A_{t+1}$	$\uparrow G_t$	$\uparrow G_{t+1}$	$\uparrow M_t$	$\uparrow \pi^{e}_{t+1}$
Y_t	+	-	0	0	0	0	0	0
C_t	+	-	+	?	-	-	0	0
I_t	+	-	-	?	-	+	0	0
N_t	+	-	0	0	0	0	0	0
w_t	+	+	0	0	0	0	0	0
r_t	-	+	-	+	+	-	0	0
i _t	-	+	-	+	+	-	0	+
P_t	-	+	-	+	+	-	+	+