ACMS 22550 Applied Mathematics Method I tutorial Week 1: Aug 23rd - Aug 27th
 Guoxiang Grayson Tong ${ }^{1}$
 ${ }^{1}$ Ph.D. student, Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA, 46556

1 Sequences

A sequence $\left\{a_{n}\right\}_{1}^{\infty}$ is convergent if $\lim _{n} a_{n}=a, a$ should be definite, which means it can not change or be ∞

2 Infinite series

2.1 Geometric series

1. n-Sum of the geometric series with the first term a and the common ratio r :

$$
\begin{equation*}
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \tag{1}
\end{equation*}
$$

2. Convergence of a geometric series if $|r|<1$:

$$
\begin{equation*}
S=\lim _{n \rightarrow \infty} S_{n}=\frac{a}{1-r} \tag{2}
\end{equation*}
$$

2.2 The absolute convergence theorem

Theorem 1. Absolute convergent series converges: If $\sum_{n}^{\infty}\left|a_{n}\right|<\infty$, then $\sum_{n}^{\infty} a_{n}<\infty$

2.3 Preliminary test

Theorem 2. If the terms of an infinite series do not converge to zero, the series diverges. If do, need further test.

2.4 Convergence tests for series with positive terms

1. The comparison test:
(a) If positive series $\sum_{i}^{\infty} m_{i}$ converges and $\left|a_{n}\right| \leq m_{n}$ for $n \geq N$, then a_{n} converges
(b) If positive series $\sum_{i}^{\infty} d_{i}$ diverges and $\left|a_{n}\right| \geq d_{n}$ for $n \geq N$, then a_{n} diverges
2. The integral test: for monotonically decreasing positive series:
(a) $0 \leq a_{n+1} \leq a_{n}$ for $n>N$, then $\sum_{n} a_{n}$ converges if $\int^{\infty} a_{n}(n) d n<\infty$
(b) $0 \leq a_{n+1} \leq a_{n}$ for $n>N$, then $\sum_{n} a_{n}$ diverges if $\int^{\infty} a_{n}(n) d n=\infty$
3. The ratio test: Define $\rho_{n}=\left|\frac{a_{n+1}}{a_{n}}\right|=\rho_{n}$ and $\rho=\lim _{n}^{\infty} \rho_{n}$
(a) $\rho<1$: Convergence
(b) $\rho=1$: Need a different test
(c) $\rho>1$: Divergence
4. Special comparison test
(a) If $\sum_{n=1}^{\infty} b_{n}$ is positive convergent, $a_{n} \geq 0$ and $\lim _{n} \frac{a_{n}}{b_{n}}$ is finite, then $\sum_{n}^{\infty} a_{n}$ converges
(b) If $\sum_{n=1}^{\infty} d_{n}$ is positive divergent, $a_{n} \geq 0$ and $\lim _{n} \frac{a_{n}}{b_{n}} \neq 0$ then $\sum_{n}^{\infty} a_{n}$ diverges

2.5 Alternating series

Theorem 3. An alternating series converges if $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ and $\lim _{n \rightarrow \infty} a_{n}=0$

3 Power series

General power series as a function of x goes like:

$$
\begin{equation*}
\sum_{n=0}^{\infty} a_{n}(x-a)^{n}=a_{0}+a_{1}(x-a)+a_{2}(x-a)^{2}+\cdots \tag{3}
\end{equation*}
$$

Whether power series converges or not depends on the value x to be evaluated. we can use ratio test to determine the "convergence interval".

3.1 Exercises

1. Determine the convergence of the following sequences:

$$
A:\left\{(-1)^{n} \frac{n^{2}-1}{2 n^{3}+1}\right\}_{n=1}^{\infty} \quad B:\left\{e^{\frac{1}{n}}\right\}_{n=1}^{\infty} \quad C:\left\{\frac{n-1}{\log (n)}\right\}_{n=1}^{\infty}
$$

2. Determine the convergence of the following series:

$$
A: \sum_{n=1}^{\infty} \frac{2 n^{2}+7}{\sqrt{n^{7}+2}} \quad B: \sum_{n=2}^{\infty} \frac{2^{\frac{1}{n}}}{n} \quad C: \sum_{n=1}^{\infty} \frac{\cos (n)}{n^{2}}
$$

3. Find the sum of the following series:

$$
\sum_{n=1}^{\infty}\left[\frac{n}{2^{n-1}}-\frac{n+1}{2^{n}}\right]
$$

4. Which of the following series is absolutely convergent?

$$
\begin{aligned}
& A: \sum_{n=1}^{\infty}\left[\frac{(-1)^{n-1}}{n^{3}+1}\right] \quad B: \sum_{n=1}^{\infty}\left[\frac{(-1)^{n} n!}{n^{3}}\right] \quad C: \sum_{n=1}^{\infty}\left[\frac{(-1)^{n-1}}{\sqrt{n}}\right] \\
& D: \sum_{n=1}^{\infty}\left[\frac{(-1)^{n-1} \log (n+1)}{n}\right] \quad E: \sum_{n=1}^{\infty}\left[\frac{(-1)^{n-1} \pi^{n}}{3^{n}}\right]
\end{aligned}
$$

5. Find the sum of the following series (Hint: use known power series)

$$
\sum_{n=0}^{\infty}\left[\frac{(-1)^{n} \pi^{2 n}}{(2 n)!}\right]
$$

6. Find the power series representation of the following function centered at 0

$$
f(x)=\sin \left(2 x^{2}\right)
$$

7. Determine the convergence of the following series:

$$
A: \sum_{n=2}^{\infty}\left[\frac{(-1)^{n}}{n}\right] \quad B: \sum_{n=2}^{\infty}\left[\frac{n^{2}}{\log (n)}\right] \quad C: \sum_{n=1}^{\infty}\left[\frac{3^{n}}{2(n!)}\right]
$$

8. Compute the radius of convergence of the power series

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}(x-1)^{n}
$$

9. Find the power series expansion of the following expression:

$$
F(x)=\int \frac{1}{\sqrt{1+x^{2}}} d x
$$

Warning!

4 Solutions for exercises

1. A: Converge, B: Converge, C: Diverge
2. A: Converge, B: Diverge, C: Converge
3. 1
4. A
5. -1
6. $\sum_{n=0}^{\infty}(-1)^{n} 2^{2 n+1} \frac{x^{4 n+2}}{(2 n+1)!}$
7. A: Converge, B: Diverge, C: Converge
8. 0.5
9. $x-\frac{x^{3}}{6}+\frac{3 x^{5}}{40}$
