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1 Review and extension

1.1 Useful tools

1. If sequences {an} and {bn} are both convergent sequences with limn→∞ an = a and limn→∞ bn = b,
then:

(a) limn→∞(an + bn) = a+ b

(b) limn→∞(anbn) = ab

1.2 The squeeze theorem

Theorem 1. Suppose that for all n > N , an ≤ bn ≤ cn, and

lim
n→∞

an = lim
n→∞

cn = α

then limn→∞ bn = α

1.3 Preliminary test

1. If limn→∞ an 6= 0, the series
∑∞

n=1 an diverges

2. If limn→∞ an = 0, the series
∑∞

n=1 an requires further testing

3. If the series
∑∞

n=1 an converges, then limn→∞ an = 0

1.4 The absolute convergence theorem

Theorem 2. Absolute convergent series converges: If
∑∞

n |an| <∞, then
∑∞

n an <∞

1.5 The absolute convergence

Definition 1. The series
∑∞

n=1 an is said to converge absolutely if
∑∞

n=1 |an| = a, a should be definite, not
changing, not ∞

1.6 The conditional convergence

Definition 2. The series
∑∞

n=1 an is said to converge conditionally if it converges but not absolutely.
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A classical example of the conditional convergent series: the alternating harmonic series:

∞∑
n=1

(−1)n+1 1

n

Now prove it!
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2 Exercises

1. The “shifting” in series:
20∑

n=2

an =

18∑
k=0

?

2. Evaluate
∑n

k=0 7−k, and what about n→∞

3. Partial sums s1 = a1, s2 = a1 + a2, and so forth are known to be given by:

sn =
n

n+ 2

Find a1, a2, an and
∑∞

n=1 an

4. Suppose
∑∞

n=0 an is proved convergent by the ratio test, now prove
∑∞

n=0 nan is also convergent

5. Show that
∑∞

n=1
1
n2 converges by using the followings:

(a) 1
n2 <

1
n(n−1)

(b) 1
n(n−1) = 1

n−1 −
1
n

3



3 Homework hints

1. P3: (14)

How a broken computer program gives 1
6 =

∑∞
n=0(−5)n?

Hint: Is this a (convergent) geometric series?

2. P5: (7)

Find limn→∞(1 + n2)

1

log(n)

Hint: What is elog(n)?

3. P5: (8)

Find limn→∞
(n!)2

(2n)!

Hint: Write out the factorial!

4. P8: (7)

Find an, Sn, Rn as n→∞
3
1·2 −

5
2·3 + 7

3·4 −
9
4·5 + · · ·

Hint: After having an, what kind of series is this? Is it convergent? Write out a few terms to find Sn

5. P11: (2)

Show the harmonic series is divergent by the comparison test with 1 + 1
2 + 1

4 + 1
4 + · · ·

Hint: Is the given series divergent? What is the sum of it? Then how to apply the comparison rule?

6. P11: (3)

Prove the convergence of
∑∞

n=1
1
n2

Hint: Again, by the comparison test, find some convergent series you know, then group the specific
terms to compare with

∑∞
n=1

1
n2 . Very similar to P11(2).

7. P13:(9)

Using integral test to find whether
∑∞

n=1
1

n2−4 converges?

Hint: Apply “Partial-Fraction Decomposition”, i.e.

1

n2 − 4
=

1

(n− 2)(n+ 2)
=

A

(n− 2)
+

B

(n+ 2)
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8. P13:(11)

Using integral test to find whether
∑∞

n=1

1

n(1 + log(n))1.5
converges?

Hint: Need at least two integration by substitutions.

9. P14:(30)

Prove the ratio test

Hint: Follow (exactly) the hints on the textbook. The key is the geometric series to be obtained.
Another tools you may need:

(a) The absolute convergence theorem

(b) The preliminary test

(c) The comparison test
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Warning page!
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4 Solutions for exercises

1.
20∑

n=2

an =

18∑
k=0

ak+2

2.
7

6
(1− 1

7n
),

7

6

3.

a1 =
1

3
, a2 =

1

6

an = sn − sn−1 =
n

n+ 2
− n− 1

n+ 1
∞∑

n=1

an = lim
n→∞

sn = 1

4. Proof. Set bn = nan, apply ratio test again, we get:

ρ = lim
n→∞

ρn = lim
n→∞

|bn+1

bn
| = lim

n→∞
|(n+ 1

n
)
an+1

an
|

Since limn→∞
n+1
n = 1 and limn→∞

an+1

an
< 1, so we have ρ < 1.

5. Proof. All we need to do is to verify the series
∑∞

n=2
1

n(n−1) converges, then we can use the comparison

test. Note that
1

n(n− 1)
=

1

n− 1
− 1

n

Thus
∑k

n=2
1

n(n−1) = 1− 1
k , so converging as k →∞.
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