ACMS 22550 Applied Mathematics Method I tutorial Week 2: Aug 30th - Sep 3rd

Ernie Tsybulnik¹ and Guoxiang Grayson Tong¹

¹Ph.D. student, Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA, 46556

1 Review and extension

1.1 Useful tools

- 1. If sequences $\{a_n\}$ and $\{b_n\}$ are both convergent sequences with $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then:
 - (a) $\lim_{n \to \infty} (a_n + b_n) = a + b$
 - (b) $\lim_{n\to\infty} (a_n b_n) = ab$

1.2 The squeeze theorem

Theorem 1. Suppose that for all n > N, $a_n \le b_n \le c_n$, and

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = \alpha$$

then $\lim_{n\to\infty} b_n = \alpha$

1.3 Preliminary test

- 1. If $\lim_{n\to\infty} a_n \neq 0$, the series $\sum_{n=1}^{\infty} a_n$ diverges
- 2. If $\lim_{n\to\infty} a_n = 0$, the series $\sum_{n=1}^{\infty} a_n$ requires further testing
- 3. If the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$

1.4 The absolute convergence theorem

Theorem 2. Absolute convergent series converges: If $\sum_{n=1}^{\infty} |a_n| < \infty$, then $\sum_{n=1}^{\infty} a_n < \infty$

1.5 The absolute convergence

Definition 1. The series $\sum_{n=1}^{\infty} a_n$ is said to converge absolutely if $\sum_{n=1}^{\infty} |a_n| = a$, a should be definite, not changing, not ∞

1.6 The conditional convergence

Definition 2. The series $\sum_{n=1}^{\infty} a_n$ is said to converge conditionally if it converges but not absolutely.

A classical example of the conditional convergent series: the alternating harmonic series:

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$

Now prove it!

2 Exercises

1. The "shifting" in series:

$$\sum_{n=2}^{20} a_n = \sum_{k=0}^{18} ?$$

- 2. Evaluate $\sum_{k=0}^{n} 7^{-k}$, and what about $n \to \infty$
- 3. Partial sums $s_1 = a_1, s_2 = a_1 + a_2$, and so forth are known to be given by:

$$s_n = \frac{n}{n+2}$$

Find a_1, a_2, a_n and $\sum_{n=1}^{\infty} a_n$

- 4. Suppose $\sum_{n=0}^{\infty} a_n$ is proved convergent by the ratio test, now prove $\sum_{n=0}^{\infty} na_n$ is also convergent
- 5. Show that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges by using the followings:

(a)
$$\frac{1}{n^2} < \frac{1}{n(n-1)}$$

(b) $\frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$

3 Homework hints

1. P3: (14)

How a broken computer program gives $\frac{1}{6} = \sum_{n=0}^{\infty} (-5)^n$? Hint: Is this a (convergent) geometric series?

2. P5: (7)

Find $\lim_{n\to\infty} (1+n^2) \overline{\log(n)}$ Hint: What is $e^{\log(n)}$?

3. P5: (8)

Find $\lim_{n\to\infty} \frac{(n!)^2}{(2n)!}$ **Hint:** Write out the factorial!

4. P8: (7)

Find $a_n, S_n, R_n \text{ as } n \to \infty$ $\frac{3}{1\cdot 2} - \frac{5}{2\cdot 3} + \frac{7}{3\cdot 4} - \frac{9}{4\cdot 5} + \cdots$

Hint: After having a_n , what kind of series is this? Is it convergent? Write out a few terms to find S_n

5. P11: (2)

Show the harmonic series is divergent by the comparison test with $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \cdots$ **Hint:** Is the given series divergent? What is the sum of it? Then how to apply the comparison rule?

6. P11: (3)

Prove the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^2}$

Hint: Again, by the comparison test, find some convergent series you know, then group the specific terms to compare with $\sum_{n=1}^{\infty} \frac{1}{n^2}$. Very similar to P11(2).

7. P13:(9)

Using integral test to find whether $\sum_{n=1}^{\infty} \frac{1}{n^2-4}$ converges? **Hint:** Apply "Partial-Fraction Decomposition", *i.e.*

$$\frac{1}{n^2 - 4} = \frac{1}{(n-2)(n+2)} = \frac{A}{(n-2)} + \frac{B}{(n+2)}$$

8. P13:(11)

Using integral test to find whether $\sum_{n=1}^{\infty} \frac{1}{n(1+\log(n))^{1.5}}$ converges? **Hint:** Need at least two integration by substitutions.

9. P14:(30)

Prove the ratio test

Hint: Follow (exactly) the hints on the textbook. The key is the geometric series to be obtained. Another tools you may need:

- (a) The absolute convergence theorem
- (b) The preliminary test
- (c) The comparison test

Warning page!

4 Solutions for exercises

1.

2.

$$\sum_{n=2}^{20} a_n = \sum_{k=0}^{18} a_{k+2}$$
$$\frac{7}{6} (1 - \frac{1}{7^n}), \quad \frac{7}{6}$$

3.

$$a_{1} = \frac{1}{3}, a_{2} = \frac{1}{6}$$
$$a_{n} = s_{n} - s_{n-1} = \frac{n}{n+2} - \frac{n-1}{n+1}$$
$$\sum_{n=1}^{\infty} a_{n} = \lim_{n \to \infty} s_{n} = 1$$

4. *Proof.* Set $b_n = na_n$, apply ratio test again, we get:

$$\rho = \lim_{n \to \infty} \rho_n = \lim_{n \to \infty} \left| \frac{b_{n+1}}{b_n} \right| = \lim_{n \to \infty} \left| \left(\frac{n+1}{n} \right) \frac{a_{n+1}}{a_n} \right|$$

Since $\lim_{n\to\infty} \frac{n+1}{n} = 1$ and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$, so we have $\rho < 1$.

5. *Proof.* All we need to do is to verify the series $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}$ converges, then we can use the comparison test. Note that

$$\frac{1}{n(n-1)} = \frac{1}{n-1} - \frac{1}{n}$$

Thus $\sum_{n=2}^{k} \frac{1}{n(n-1)} = 1 - \frac{1}{k}$, so converging as $k \to \infty$.

5 Reference

- 1. Calculus With Applications, Peter D. Lax and Maria Shea Terrell, Undergraduate Texts in Mathematics book series (UTM), 2014
- 2. Mathematical Methods in the Physical Sciences, Mary L. Boas, Wiley, 3rd edition, 2005