
1680 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 3, MARCH 2024

Multimodal Mental Health Digital Biomarker
Analysis From Remote Interviews Using Facial,
Vocal, Linguistic, and Cardiovascular Patterns
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Abstract—Objective: Psychiatric evaluation suffers
from subjectivity and bias, and is hard to scale due to
intensive professional training requirements. In this work,
we investigated whether behavioral and physiological
signals, extracted from tele-video interviews, differ in
individuals with psychiatric disorders. Methods: Temporal
variations in facial expression, vocal expression, linguistic
expression, and cardiovascular modulation were extracted
from simultaneously recorded audio and video of remote
interviews. Averages, standard deviations, and Markovian
process-derived statistics of these features were computed
from 73 subjects. Four binary classification tasks were
defined: detecting 1) any clinically-diagnosed psychiatric
disorder, 2) major depressive disorder, 3) self-rated
depression, and 4) self-rated anxiety. Each modality was
evaluated individually and in combination. Results: Statis-
tically significant feature differences were found between
psychiatric and control subjects. Correlations were found
between features and self-rated depression and anxiety
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scores. Heart rate dynamics provided the best unimodal
performance with areas under the receiver-operator curve
(AUROCs) of 0.68–0.75 (depending on the classification
task). Combining multiple modalities provided AUROCs of
0.72–0.82. Conclusion: Multimodal features extracted from
remote interviews revealed informative characteristics of
clinically diagnosed and self-rated mental health status.
Significance: The proposed multimodal approach has the
potential to facilitate scalable, remote, and low-cost assess-
ment for low-burden automated mental health services.

Index Terms—Telehealth, digital biomarker, multimodal,
depression, anxiety, mental health, remote photoplethy-
smography, computer vision, foundation model, machine
learning.

I. INTRODUCTION

THE World Health Organization estimated that 13% of the
world population, or close to one billion people world-

wide, live with a mental disorder, where most of them do
not have access to effective care [1]. In addition to being the
second most common cause of years of life lived with disability
worldwide [2], this crisis of psychiatric disorders translates to
an economic burden of $280 billion every year in the United
States alone [3]. To reduce the financial cost and to delay the
transition into often chronic or life-long psychiatric conditions,
it is critical to gain a better understanding and to provide an
objective, fast, and accessible evaluation of those disorders to
enable early and effective interventions. However, the present
diagnosis and phenotyping of psychiatric disorders fail to fully
satisfy this dire need due to its subjectivity and biases, and access
to psychiatric care is limited even in high-income countries such
as the US [4].

The current clinical practice diagnoses psychiatric disorders
such as depression and anxiety disorder using the subjective
clinical evaluation of signs and symptoms specified by the Diag-
nostic and Statistical Manual of Mental Disorders (DSM-5) [5]
or the International Classification of Diseases, 10th revision [6].
These diagnostic criteria often suffer from low inter-rater reli-
ability. In the DSM-5 field trials [7], inter-rater reliability (Co-
hen’s kappa, κ) was just 0.28 for a diagnosis of major depressive
disorder (MDD) and 0.20 for general anxiety disorder (GAD).
Factors such as differences in training, biases (race, gender, cul-
ture), and interview style were the most common explanations
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for discrepancies between raters [8], [9]. Self-rated question-
naires such as General Anxiety Disorder-7 (GAD-7) [10], and
Patient Health Questionnaire-9 (PHQ-9) [11] are also widely
used in practice for initial screening and symptom monitoring
purposes. Naturally, these scales are highly subjective as they are
self-reported: the symptoms reported tend to be over-reported
and more severe than observer ratings and highly depend on the
subjective response processes [12].

The rapid development of objective automated digital assess-
ment tools could potentially aid clinicians in diagnosing and
evaluating mental illness [13]. Those tools help address the
potential bias and inaccuracy of the current diagnosing practices
by providing an objective and more quantified measurement of
behavioral and physiological symptoms. Research groups have
developed tools using various types of data modality, validated in
numerous mental health populations, including depression [14],
[15], anxiety [16], schizophrenia [17], and posttraumatic stress
disorder (PTSD) [18]. Diverse modalities of signals have been
investigated, including behavioral signals, such as facial and
body movements [14], [15], [19], [20], speech acoustics [21],
[22], [23], verbal or written content [24], sleep [25] and ac-
tivity [18], [26] patterns, as well as physiological signals such
as cardiovascular (heart rate [18], [27], electrocardiogram [23],
[28]) and neural signals (electroencephalogram [29], [30], func-
tional magnetic resonance imaging [31], [32] and functional
near-infrared spectroscopy [33]). The multimodal approach, or
the combination of multiple types of signals, has been widely
adopted to improve the accuracy and robustness of those au-
tomated assessments [34], [35]. For example, [36], [37] com-
bined behavioral signals, including cues from video, audio, and
text, while others [18], [38] found the combination and inter-
action between physiological and behavioral signals useful in
evaluating disorders.

While the findings in the above studies were promising, there
remain unsolved challenges: data in most of them were collected
within a lab-controlled environment and/or with specialized
hardware, which prohibits potential future access and might not
be able to generalize to actual clinical practice. The increasing
use of telemedicine in psychiatry in recent years, which was
further accelerated by the COVID-19 pandemic [39], provided
a promising approach to improve the access and effect of psy-
chiatric care [40], [41], [42], while at the same time presented
an unprecedented opportunity of data collection for objective
psychiatric assessments development without the limitation of
geographical location and specialized hardware [43]. This begs
the question of whether data collected remotely, such as in [44],
[45], and in our previous research protocol [13], can provide
a comparable level of information as the data collected in a
lab-controlled environment.

To address those challenges, we investigated whether each
and the combination of behavioral and physiological signals,
extracted from audio-visual recordings of remote telehealth
interviews, which were collected using heterogeneous generic
electronic devices (laptops, tablets, or smartphones), were infor-
mative in assessing the multiple facets of psychiatric disorders
of control subjects and subjects with mental health conditions
(MHC). Specifically, we evaluated the differences in the be-
havioral and physiological features between different diagnostic
groups and studied whether mental health conditions could be
accurately assessed using those features. Classification instead
of regression tasks were utilized because Mini-International

Neuropsychiatric Interview (MINI) [46] was used as the pri-
mary diagnosing tool in this study, which resulted in binary
categorizations (control vs. MHC).

The main contributions of this work are as follows:
(1) We showed that audio-visual recordings of remote interviews
collected fully remotely and without device limitation could be
used to assess mental health states, with similar performance
compared to the performance shown in previous studies
where data were collected from lab-controlled environments.
(2) We proposed a multimodal machine learning analysis
framework, where we extracted both hand-crafted features
and self-supervised-learned representations of facial, vocal,
linguistic, and remote photoplethysmography (rPPG) patterns
using signal processing approaches and state-of-the-art deep
learning models, including convolutional neural networks
(CNN) and transformer-based [47] foundation models. (3) Using
those features and derived temporal dynamics, we compared
the performance of features extracted from different modalities,
with different models, and the performance of the combined fea-
tures of multiple modalities, in classifying states of depression,
anxiety, and absence of any diagnosed disorder using both self-
reported scales (PHQ-9, GAD-7) and clinical diagnoses made
by clinicians.

II. DATASET

A. Participants

The overall recruitment protocol can be found in Cotes
et al. [13], which was designed to recruit three outpatient groups:
50 schizophrenia patients, 50 unipolar major depressive disorder
patients, and 50 individuals with no psychiatric history. Due
to the difficulty of recruiting enough in-person schizophrenia
subjects during COVID-19, in this work, we focused on ana-
lyzing subjects recruited as control and depressed subjects. A
total of 84 subjects were recruited as of July 17th, 2023, exclud-
ing schizophrenia subjects. The Emory University Institutional
Review Board and the Grady Research Oversight Committee
granted approval for this study (IRB# 00105142). Interviewees
were recruited from Research Match (researchmatch.org), a
National Institutes of Health-funded online recruitment strategy
designed to connect potential participants to research studies,
and through Grady’s Behavioral Health Outpatient Clinic utiliz-
ing a database of interested research participants. Participants
were aged 18− 65 and were native English speakers. For the
initial screening, interviewees were recruited for either a control
group (no history of mental illness within the past 12 months)
or a group currently experiencing depression. All diagnoses and
group categorizations were verified and finalized by the over-
seeing psychiatrist and clinical team after the semi-structured
interview.

Two subjects did not meet the inclusion criteria based on
the information shared during the interview. Interviews from
four subjects were accidentally interrupted or unrecorded due
to technical issues with the subjects’ devices, and the recorded
audio or video files from five subjects were corrupted or led to
signal extraction errors in certain modalities (for example, rPPG
extraction error due to large percentage of facial occupation
due to large yaw angle). Hence, data from 73 subjects were
included in the analyses. Table I shows the demographics of
those included participants.
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TABLE I
DEMOGRAPHICS OF THE SUBJECTS GROUPED BY DIAGNOSES

B. Interviews and Measurements

The study team created the interview guide and protocol
and have components that simulate a psychiatric intake inter-
view [13]. All interviews were conducted remotely via Zoom’s
secure, encrypted, HIPAA-compliant telehealth platform. Both
Video and Audio were recorded. The remote interview was
divided into three parts: 1) A semi-structured interview com-
posed of a series of open-ended questions, a thematic appercep-
tion test [48], phonetic fluency test [49], and semantic fluency
test [50], 2) a sociodemographic section, and 3) clinical assess-
ments which included the MINI 6.0 [46], McGill Quality of
Life Questionnaire [51], General Anxiety Disorder-7 [10], and
Patient Health Questionnaire-9 [11].

C. Categorization

Subjects were categorized into four different two-class cate-
gorizations based on self-rated scales or clinicians’ diagnoses
to evaluate feature performances in classifying categorizations
generated from under different assessment procedures. The men-
tal health assessment task was formulated as classification tasks
to align with the clinical practices and mental health screening
paradigms.

1) The first and primary categorization is control (n = 22)
vs. subjects with mental health conditions (MHC, n= 51)
based on diagnoses made using MINI. The character-
istics of the two groups can be found in Table I. The
latter included subjects diagnosed with any mental health
condition currently or a history of diagnosis within 12
months, including disorders like MDD, comorbid or pri-
mary GAD, PTSD, panic disorder, social anxiety, agora-
phobia, psychotic disorders, manic illnesses, personality
disorders, and obsessive-compulsive disorder. The con-
trol group included the remaining subjects, who could
have mild suicidality, mild agoraphobia, mild substance
abuse and dependence, or a remote history (not in the
previous 12 months) of MDD and not currently on an
antidepressant medication.
The following three categorizations only included a sub-
set of subjects due to inclusion/exclusion criteria and
missing self-rating results. The self-reported scales were

also dichotomized to align with the primary catego-
rization for easier performance comparison and cross-
categorization analysis.

2) The second categorization is non-MDD-control (n = 18)
vs. MDD (n = 38, past or current). Since both groups
in the first categorization are heterogeneous, we used
this categorization to assess further whether differences
could be found between controls and subjects with past
or current MDD, which were diagnosed using MINI and
supported by self-reported PHQ-9 scores. In this case,
we defined non-MDD-control as subjects with no life-
time history of MDD or other mental health conditions
(but could have mild suicidality, mild agoraphobia, mild
substance abuse and dependence), while the MDD sub-
jects have primary diagnoses of MDD but could include
comorbid GAD, PTSD, panic disorder, social anxiety,
agoraphobia, and substance use disorder.

3) The third categorization is moderately depressed (PHQ-9
scores > 10, n = 24) vs. rest (PHQ-9 scores <= 10,
n = 43). PHQ-9 scores were not reported for six subjects,
resulting in 67 subjects in this categorization. To evalu-
ate performance in classifying the severity of self-rated
depression symptoms, we used a PHQ-9 score-based
categorization and adopted a cutoff of 10, which indicates
moderate depression [11].

4) The fourth categorization is moderate anxiety (GAD-7
scores > 10, n = 16) vs. rest (GAD-7 scores <= 10,
n = 49). GAD-7 scores were not reported for 8 subjects,
resulting in 65 subjects in this categorization. Similar to
the third categorization, we used a GAD-7 score-based
categorization and adopted a cutoff of 10, which indicates
moderate anxiety and a reasonable cut for identifying
cases of GAD [10], to evaluate performance in classifying
the severity of self-rated anxiety symptoms.

III. METHODS

A. Multimodal Feature Extraction

Fig. 1 shows the proposed multimodal analysis framework
that extracts visual, vocal, language, and rPPG time series signals
at the frame or segment level, summarizes those time series
with statistical and temporal dynamic features at the subject
level (except for text embedding from the large language model,
where the model directly generated subject-level embedding),
and evaluates the performance of these features in clinical di-
agnoses or self-rated severity classification tasks described in
Section II-C.

1) Facial Expressions and Visual Patterns: We followed the
CNN-based facial expression analysis framework we proposed
in our previous work [14], [57]. For each frame of the recordings
sample at 1 Hz (one frame per second), the face of the partic-
ipant is detected with RetinaFace [58] using a ResNet-50 [59]
backbone network trained on the “WIDER” face dataset [60].
The face detector achieved an accuracy of 95.5% on the “Easy”
validation set in WIDER face dataset, where the faces were
already much more difficult to detect than the faces in our
use case. The segmented face was fed into another CNN with
VGG19 [61] structure, which was trained on the “AffectNet”
dataset [62], to estimate facial emotion probabilities of seven
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Fig. 1. Overview of the processing pipeline. Color-dashed boxes denote features from different modalities, including physiological, visual, audio,
and language features. The audiovisual recordings were first preprocessed with face detection and segmentation for each frame, automatic
transcription of the patient-side audio, and audio resampling and segmentation. Then, low-level and subject-level features from various modalities
were extracted and used for the classification of mental health conditions. Abbreviations are as follows: “AWS” denotes the Amazon web services,
“rPPG” denotes the remote photoplethysmogram extracted from the face [52], “DinoV2” [53], “WavLM” [54], “LLAMA” [55] and “RoBERTa”[56] are
the foundation models for each modality; “HMM” denotes the hidden Markov model; “MHC” refers to subjects with mental health conditions; “MDD”
refers to subjects with major depressive disorder; “PHQ” and “GAD” refers to the Patient Health Questionnaire-9 and General Anxiety Disorder-7
scores, respectively. Please refer to Section II-C for more details.

categories, including being neutral, happy, sad, surprised, fear-
ful, disgusted, and angry. AffectNet dataset and Radboud Faces
Database (RaFD) [63] was used to test this facial emotion
classifier. An accuracy of 63.3% was achived in the Affect-
Net evaluation set and an accuracy of 90.1% was achived
in RaFD.

To include facial behaviors less affected by cultural differ-
ences, we adopted JAA-Net [64] to recognize 49 facial land-
marks and 12 facial action units [65] (AUs, or the individual
components of facial muscle movement) expressed in the frame.
JAA-Net is a deep learning model that combines CNN and adap-
tive attention module, and it achieved an average AU detection
accuracy of 78.6% (including AU1, 2, 4, 6, 7, 10, 12, 14, 15,
17, 23, 24) and face alignment mean error of 3.8% inter-ocular
distance on BP4D dataset [66] with three-fold cross-validation.

In addition to manually-defined facial expression signals,
including facial emotions, AUs, and facial landmark movements,
a self-supervised large vision foundation model named
“DINOv2” [53] was also used to extract general visual
embedding of the segmented facial area. While video foundation
models have better performance in short-video clips, the image
foundation model was used because the average length of the
video recorded in this study was significantly longer (one hour
vs. a few seconds). DINOv2 is a vision transformer (ViT) [67]
with one billion parameters trained on 1.2B unique images
that achieved decent performance on video classification
tasks with linear evaluation, including an accuracy of 90.5%
on “UCF-101” dataset [68]. A 1024-dimensional visual
embedding was generated from frames sampled at 1 Hz using
the “ViT-L/14” [67] model.

2) Language Sentiments and Representations: The patient-
side audio files were transcribed into texts using Amazon
Transcribe on HIPAA-compliant Amazon web services (AWS)
at Emory, following the protocol detailed in our previous
study [69]. Similar to the audio analysis, only patient-side
transcripts during the semi-structured interview section were
used to avoid using subjects’ answers to sociodemographic or
clinical assessment questions.

We have previously found different word use patterns in
subjects with and without MDD using the linguistic inquiry
and word count (version LIWC-22) dictionary [70]. Here large
language models (LLMs) were used to identify the sentiments
and extract general representations to better understand the
subjects’ linguistic patterns. More specifically, three LLMs were
used: (1) At the utterance level, a distilled RoBERTa model [56],
[71] finetuned on 80% of 20 k emotional texts (the rest 20%
was used as the test set with an average accuracy of 66%)
was used to recognize one of seven emotions including neutral,
happiness, sadness, surprise, fear, disgust, and anger. (2) Also
at the utterance level, another RoBERTa-based model finetuned
on 15 diverse review datasets with a leave-one-dataset-out ac-
curacy of 93.2% [72] was used to recognize positive or neg-
ative sentiment. Such fine-tuned utterance-level deep learning
models have been found to generate effective representations in
related contexts such as anxiety [73]. (3) LLAMA-65B [55], one
of the state-of-the-art open-sourced decoder-only transformer
models with 65 billion parameters which were trained on over
one trillion tokens of texts, was used to generate an 8196-
dimensional text embedding for the entire transcripts during the
semi-structured interview.
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3) Vocal Features and Representations: Both manually de-
fined acoustic features and general audio representations were
extracted from audio files. Only patient-side audio during the
semi-structured interview section was used to avoid the potential
information leak directly from subjects’ answers to sociodemo-
graphic or clinical assessment questions in MINI or in self-rated
questionnaires described in Section II-B.

For manually defined features, PyAudioAnalysis [74] package
was used to extract acoustic features at each 100 ms win-
dow with 50% overlap, including zero crossing rate, energy,
entropy of energy, spectral centroid/spread/entropy/flux/rolloff,
Mel frequency cepstral coefficients, and 12 chroma vector and
corresponding standard deviations. WavLM [54], which is a
self-supervised audio foundation model with 316 M parame-
ters (“WavLM Large”) trained on 94 k hours of audio, was
used to extract general audio representations. It has shown
state-of-the-art performance in the universal speech represen-
tation benchmark [75]. Recorded audio files were first resam-
pled to 16 k Hz and then segmented into non-overlapping
20 ms segments following [54]. A 1024-dimensional audio
embedding was generated for each 20 ms segment using
WavLM.

4) Remote PPG Cardiovascular Features: Remote PPG sig-
nals were extracted from the video recordings using the pyVHR
package [52], [76]. The facial skin areas were recognized in each
frame using a CNN, 100 regions of interests (ROIs) were sam-
pled, and the pixel values were averaged across the pixels in each
ROI for each RGB channel, respectively. Then, an unsupervised
method, named orthogonal matrix image transformation [77],
was used to transform RGB values in one ROI to an estimated
25 Hz rPPG signal based on QR decomposition. The power
spectral density of rPPGs at each ROI was computed in six
seconds windows sliding every second, and the medians of the
inverse of peak frequency (60/peak frequency) were used to
estimate heart rates at every second.

Lastly, the averaged estimated rPPGs at each ROI were used
to extract cardiovascular dynamic features using PhysioNet Car-
diovascular Signal Toolbox [78] with a 300 s window and a 30 s
sliding window. The cardiovascular dynamic features included
time and frequency domain heart rate variability, acceleration
and deceleration capacity, entropy measures, and heart rate
turbulence measures. Highly tolerant rejecting thresholds were
set to avoid rejecting high percentage of data, including setting
lowest tolerable mean signal quality index (as defined in [78])
to be 0.1, allowing certain R-R intervals to be longer than ten
seconds, allowing two neighboring R-R intervals to have a length
difference of more than one second, and allowing a 30 seconds
gap at the beginning of the PPG signals.

B. Subject-Level Features and Temporal Analyses

Due to the high dimensionality of the low-level features and
the limited number of subjects, only two simple statistics of the
time series extracted above were used as subject-level features to
avoid potential overfitting as explored in our previous work [14].
Both average and standard deviations over time were calculated
for lower-dimensional (< 100) time series, including time series
of facial expressions (facial emotions, AUs, and facial landmark
locations sampled at 1 Hz), acoustic features (sampled at 20 Hz),
language sentiments (sampled at each utterance), and estimated
heart rates (sampled at 1 Hz). Only averages were calculated for
higher-dimensional (> 100) time series, including time series

of WavLM audio embedding and DINOv2 visual embedding.
LLAMA-65B embedding of the entire semi-interviews was
directly used as subject-level features.

In addition to nonparametric statistics, hidden Markov
models (HMM) were used to model the dynamics of the low
dimensional time series, and statistics (duration and frequency
of inferred states) of the unsupervisely learned HMMs were used
as subject-level features. An HMM with a Gaussian observation
model and four states was learned for each modality separately
using SSM package [79]. The number of states was selected be-
cause it represents the smallest number of states needed to model
known different states: asymptomatic, symptomatic, uncertain,
and padding states. It is worth noting that the states learned from
the data do not directly correspond to those four states, nor do we
aim to directly interpret those learned states. Instead, we used
the downstream analysis of the duration and frequency of the
states as an approximate modeling of the dynamics of the time
series.

Each time series of one modality from one subject k, Xk, was
considered as one noisy observation, where it is padded with
zeros to the maximum temporal length Tmax found from X1

to XN (N = 73). i.e., Xk is a Tk × d with a feature dimension
of d and a temporal length of Tk was padded (Tmax − Tk)× d
zeros at the end, so all Xk has the same shape of Tmax × d.
The modality-specific HMM was then fitted on X , and the
most likely hidden states Zk with the shape of Tmax × 4 were
inferred for each sequence Xk. Lastly, the time steps spent
and the frequency (non-neighboring occurrences) of all four
states were calculated for each subject and used as subject-level
dynamic features.

C. Classification Analyses

We evaluated features generated from the above-described
processes in four two-class classification tasks described in
Section II-C. Classification performances were measured by
the average area under the receiver operating characteristic
(AUROC) and the average accuracy in 100 repeated five-fold
cross-validations. In each repetition, subjects were randomly
split into five approximately equally sized folds. A cross-
validation was performed on those folds, where in each one
of the five validations, four folds were used for training and
hyper-parameter tuning and one fold left was held out for
testing.

1) Demographic Variables: Demographic variables, includ-
ing one-hot-encoded race, one-hot-encoded gender, age, and
years of education, were combined into a demographic feature
vector for each subject and also evaluated as a benchmark in
unimodal classification. However, demographic features were
not considered in the multimodal classification.

2) Unimodal Evaluation: For each type of feature (as shown
on each row in Table II extracted from different modalities,
statistics (averages and standard deviations) and HMM-derived
features were evaluated separately using logistic regression
(LR) with l2 regularization or a gradient boosting decision
tree (GBDT) classifier, depending on the dimensionality of the
features, where LR was used for features with fewer than 100
dimensions. For GBDT, a default of 100 base decision tree
estimators and a maximum depth of two were set across all
types of features.

3) Multimodal Fusion: Both early and late fusion of different
modalities were considered. For early fusion, features from all
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TABLE II
CLASSIFICATION PERFORMANCE OF CLINICAL DIAGNOSES AND SELF-RATED DEPRESSION/ANXIETY SEVERITY

modalities were concatenated into a single feature vector as
the input to a GBDT classifier. For late fusion, the majority
vote of each unimodal classifier was used as the multimodal
classification results. To avoid noise from classifiers without
classification power, we also compared the majority voting
results from classifiers that showed non-random (defined as
AUROC > 0.5) performance in the validation set (a 20%
subset within the training fold). The non-random classifiers were
re-trained with all the data in the training fold before being used
for testing.

D. Statistical Analyses

We used statistical tests to assess the differences in the
probability distributions of features between different groups
of subjects (such as groups described in Section II-C and de-
mographic groups) and the differences in performance resulting
from different features. Mann-Whitney rank tests were applied
between features or characteristics of different subject groups
to determine whether significant differences exist between the
two groups. McNemar’s test was used to test the classification
disagreement between pairs of classification settings. Wald Test
was used to determine if a significant correlation was found
between two variables. Statistical significance was assumed at
a level of p < 0.05 for all tests.

IV. RESULTS

A. Unimodal Feature Patterns Across Groups

Here we performed a selected array of analyses of the clini-
cally relevant patterns found in different modalities in different
groups of subjects, providing additional objective evidence to
previous clinical observations.

1) Blunted Visual Affect and Increased Sadness in Lan-
guage: While “blunted affect” was mostly in the context of a
negative symptom of schizophrenia, it has been widely reported
in other mental disorders like MDD [80], [81], [82] and other
non-psychotic disorders [83]. Measured by the sum of average
AU intensities over the interview, we found that non-medicated
subjects with current MDD had lower facial expressivity com-
pared to non-MDD controls (Mann-Whitney, p = 0.04), and
subjects with mental health conditions also had lower facial
expressivity compared to controls (Mann-Whitney, p = 0.03).
However, no differences in facial expressivity were found be-
tween subjects with past MDD and non-MDD controls, and no
statistically significant linear correlations were found between
facial expressivity and self-rated PHQ-9 or GAD-7 scores.

Through language sentiment analysis, neither was verbally
blunted affect found in the MDD or MHC groups nor lan-
guage expressivity correlate with self-rated scores. However,
the average sadness level expressed in language was found
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Fig. 2. PHQ-9 and GAD-7 scores vs. rPPG and facial expression HMM state frequencies each subfigure shows the scatter plot between self-rated
scores and the frequency of a learned HMM state, along with a linear regression model fit with the 95% confidence interval. The top row shows how
those learned state correlate with PHQ-9 scores and the bottom row shows how they correlate with GAD-7 scores. Texts in each subfigure denote
the Pearson correlation coefficient (ρ) and the p-value using the Wald test.

to be higher in MDD groups compared to non-MDD-controls
(Mann-Whitney, p = 0.02) and was positively correlated with
PHQ-9 (Wald test, ρ = 0.31, p = 0.01) and GAD-7 (Wald test,
ρ = 0.37, p = 0.002) scores. In comparison, the sadness level
expressed visually did not increase in MDD groups.

2) Increased Acoustic Spectral Flux: The average spectral
flux, defined as the squared difference between the normalized
magnitudes of the spectra of the two successive frames averaged
across the semi-structured interviews, was found to be posi-
tively correlated with PHQ-9 (Wald test, ρ = 0.26, p = 0.03)
and GAD-7 (Wald test, ρ = 0.25, p = 0.04) scores, indicating
a faster change of acoustic tones in subjects with more severe
depression and anxiety symptoms.

3) Increased Complexity in Heartbeat Intervals: No signifi-
cant alternation of average heart rate or standard deviation of
heart rate during the interview was found between groups. The
complexity of the heartbeat time series, measured by the area
under the multiscale entropy curve, was significantly higher in
non-medicated MDD groups compared to non-MDD-controls
(Mann-Whitney, p = 0.01), consistent with previous findings
using electrocardiogram [84], [85].

4) Effect of Medication: Compared to non-medicated MDD
subjects, medicated MDD subjects showed a higher level of
facial expressivity (Mann-Whitney, p = 0.05) and sadness
(Mann-Whitney, p = 0.04), while only non-medicated subjects
with current MDD showed a higher level of sadness through
language compared to medicated subjects with current MDD
(Mann-Whitney, p = 0.04). In addition, decreased heartbeat
interval complexity (Mann-Whitney, p = 0.02) and increased
standard deviation of heart rate (Mann-Whitney, p = 0.02) were
observed with medication in subjects with past and current MDD
compared to non-medicated MDD subjects, while the average
heart rate remained similar between both groups.

B. Dynamics Inferred From HMM State Duration and
Frequency

Dynamic features, including inferred HMM state duration
and frequency, were found to be the most useful features in
classification tasks, as shown in Table II, especially for facial
expressions and rPPG modalities. Significant linear correlations

were found between these dynamic features and PHQ-9/GAD-7
scores.

Fig. 2 shows the correlation plots between the frequency of
the states in emotion and heart rate time series. The padding
states (described in Section III-B) from rPPG and facial ex-
pression HMMs were omitted as they would only present once
(frequency = 1) as the padding in the end. Statistically signifi-
cant positive correlations were found between all non-padding
state frequency and self-rated scores except emotion state 2,
indicating a higher switching rate between hidden states may be
related to more severe depression and anxiety symptoms.

C. Classification Performance

Table II shows the classification performance of both clin-
ically diagnosed and self-rated mental health disorders using
static and dynamic features from vision, audio, language, and
physiology. Each column shows the performance of two-class
classification using one of the four categorizations defined in
Section II-C in the same order. The best-performing features
achieved an AUROC of 0.68 to 0.75 in unimodal classification
tasks, while the selected majority voting described in Sec-
tion III-C3 achieved an AUROC of 0.82 in detecting current or
recent (last 12-month) mental disorders, an AUROC of 0.77 in
detecting past and current MDD, an AUROC of 0.82 in detecting
PHQ-9 based moderate depression, and an AUROC of 0.72 in
detecting GAD-7 based moderate anxiety disorder. Late fusion
using selected majority voting (row “9.3”) outperformed early
fusion with the direct concatenation of features (McNemar’s
test, p � 0.01) due to the extremely high dimensionality of the
concatenated features.

While demographic variables achieved higher than random
performance in all four tasks, we found they were not strong
predictors of mental health disorders compared to the proposed
features, as shown in row “1” in Table II.

A similar level of performance in MDD vs. healthy con-
trol classification was achieved compared to results reported
in existing studies using in-lab data collection processes. For
example, an AUROC of 0.68 was achieved using the facial
and speech emotions in our previous in-lab study [14]. Other
researchers, such as Schultebraucks et al. [86] achieved an
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AUROC of 0.86 combining facial action units, acoustic and
language features in another in-lab study. In-lab studies [87],
[88] using heart rate variability features also achieved AUROCs
of 0.74-0.82, which showed a similar range of performance as
with our reported AUROCs when detecting self-reported and
clinical MDD, achieved by the rPPG-based method proposed
in this study. Please note those performance metrics cannot be
directly compared as different subjects, data collection hardware
and processes, categorization criteria, and evaluation methods
were adopted.

1) Moments and Dynamics of Facial Expressions Revealed
Mental States but General Visual Patterns Did Not: While we
also extracted facial landmarks as described in Section III-A1,
we found adding static statistics of facial landmarks or includ-
ing facial landmarks in the HMM modeling deteriorated the
performance. Row “2” in Table II shows the performance using
just the statistics of facial emotions and AUs. Interestingly, the
average and standard deviation of facial expressions failed to
classify clinical diagnoses but successes in classifying self-rated
depression and anxiety. In comparison, the temporal properties
derived from HMM resulted in significantly better (McNemar’s
test, p � 0.01) classification performance, except for self-rated
depression detection. Lastly, using the temporal dynamics of
facial expressions achieved the best performance in self-rated
anxiety in all modalities.

In comparison, visual embedding generated from DINOv2
failed to generalize to this specialized dataset and did not achieve
non-random classification in any of the tasks.

2) Language Sentiments Beat General Language Repre-
sentation in Small and Specialized Dataset: Compared to other
modalities, language features were extracted at a lower sampling
rate (at each utterance or the entire semi-structured interview),
while LLMs were able to abstract the texts into much shorter
sequences of features or even into a single vector when LLAMA-
65B was used. The average and standard deviation of the lan-
guage sentiments achieved the best performances compared to
static features of other modalities. Using HMM to model the
sentiment dynamics did not improve performance, as shown in
all other modalities (comparing rows “4.2” and “4.1”). These
results showed that part of the dynamics expressed through
the words was already captured by LLM and abstracted into
utterance sentiments, and the sentiment dynamics over multiple
utterances might not be as important.

Additionally, while using LLAMA-65B embedding showed
decent performance compared to other non-language modalities,
using language sentiments achieved similar or better results in all
tasks. This showed that general language representation might
not be as useful as disorder-related sentiment analysis, especially
in smaller and highly-specialized datasets, as demonstrated in
this study, and suggested in related work on text-based depres-
sion and personality detection [89], [90].

3) Vocal Features Were Under-Performing Compared to
Other Modalities: While many previous studies [21], [22], [91]
have shown that vocal features are useful in detecting de-
pression and anxiety disorder, in this study, other modalities
outperformed both spectral/entropy-based acoustic features and
general speech representation from WavLM except in self-rated
depression detection.

4) HMM Modeled Dynamics Were More Informative Com-
pared to Cardiovascular Features for Highly Noisy rPPG Sig-
nals: As shown in row “8.1” in Table II, using cardiovascu-
lar features yielded inferior performance compared to other

modalities. The key reason is the estimated rPPG signals were
highly noisy at each ROI or after averaging across all ROIs,
which led to errors (such as peak detection error) in downstream
cardiovascular feature calculations. On average, 25.8% of the es-
timated rPPGs were not used for downstream analyses even with
highly tolerant rejecting thresholds as described in Section II-
I-A4. Using HMM-derived features from modeling heart rate
time series resulted in the best or second-best performance in all
four tasks among all unimodal approaches, reaching AUROCs
from 0.68 to 0.75.

5) False Positives in the View of Self-Reported Depression
Were Not Necessarily False in the Clinical View: When looking
at the false positives (false classification as depression when
evaluating with self-reported labels) of the best-performing
multimodal classifier, we found that 85% of those cases were
actually correctly classified in the view of the clinicians. I.e.,
that 85% of cases had a current/past MDD or other comorbid
mental health condition clinically and were correctly captured
by the classifier trained with self-reported PHQ-9-based labels.
Although it requires further investigations, this showcased that
the model trained with self-reported labels can be helpful for
clinical assessments.

V. DISCUSSION AND CONCLUSION

In this work, we performed a detailed multimodal analysis
on 73 subjects using remotely-recorded telehealth interviews
and showed that the facial, vocal, linguistic, and cardiovascu-
lar features extracted from these audiovisual recordings could
reveal informative characteristics of both clinically diagnosed
and self-rated mental health status. The results provided early
evidence of the usefulness of multimodal digital biomarkers
extracted from low-cost and non-lab-controlled data with min-
imal hardware limitations. Comparisons were made between
different modalities and between features derived from the latest
transformer-based foundation models and more defined features
derived from traditional methods, offering insights on which
modalities and methods might be most suited for automated
remote mental health assessments.

A. Performance of Different Modalities

When comparing the classification performance using fea-
tures extracted from different modalities, the overall physio-
logical characteristics outperformed other manually-defined or
data-driven behavioral characteristics. Although the heart rates
were estimated indirectly from light changes on the face, heart
rate dynamics were highly relevant in classifying self-rated and
clinician-diagnosed disorders. While it is not surprising to find
associations between cardiovascular dynamics and psychiatric
disorders, as shown in previous studies of neurobiological mech-
anisms [92] and statistical analyses [88], [93], the results raised
questions on the behavioral features extracted in this study.
More investigations are needed to answer whether they under-
performed because the current state-of-the-art models cannot
capture enough information in remote interviews, or behavioral
signals are not as useful as physiological signals in telehealth
settings, even for human experts.

Among behavioral modalities, overall facial and language
patterns led to better classification performance than patterns
derived from audio, although the latter resulted in a comparable
performance in detecting self-rated depression. While overall
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facial and language patterns led to similar levels of performance,
it is worth noting that they performed very differently in different
tasks, suggesting the same modality might perform differently
for different mental health assessment tasks. For example, fa-
cial expression dynamics were much more useful in detect-
ing self-rated anxiety than self-rated depression, yet similarly
useful in detecting clinical MDD. On the contrary, Language
embedding was more powerful in detecting self-rated disorders
than clinically diagnosed disorders. These findings caution us
on translating and interpreting results found using self-rated or
self-reported scales directly for clinical applications, where the
categorization criteria and process are different, in addition to
the subject distribution shift, which was not shown in this study
(as they were evaluated on the same group of subjects).

B. The Use of Foundation Models

Foundation models have gained enormous popularity in the
last few years with the rapid development of pre-training and
self(semi)-supervised training methods [94], [95], especially
since the release of OpenAI’s ChatGPT. LLMs, along with
visual [53], audio [54], and multimodal [96] foundation models
were widely applied in many disciplines, including the mental
health domain, but primarily limited to language analyses and
self-rated (self-reported) conditions [97], [98]. By comparing the
direct use of unimodal foundation model-generated embedding
to manually defined features from the same modalities, we
showed how they perform in more clinically-relevant tasks under
the telehealth settings.

The statistics of the visual embedding from DinoV2 were not
at all useful in detecting mental health disorders. This finding
was partially expected because the majority of extracted general
visual representations would be more relevant to the texture and
appearance of the face, especially after averaging, while the
dynamics of the high-dimensional embedding would be hard
to find with a limited number of recordings (discussed in more
details in Section V-C below). Preliminary results using other
vision foundation models in this dataset did not show better
classification performances either, including using models tuned
for facial representation (“FaRL” [99]) and for facial video
representations (“MARLIN” [100]).

Although audio embedding from WavLM marginally outper-
formed acoustic features in our experiments, it demonstrates
the potential of using the general audio embedding from a
more diversely pre-trained audio foundation model in datasets
with more subjects. Interestingly, general text embedding of the
entire semi-structured interview from LLAMA-65B performed
similarly when compared to sentiment analyses considering the
extremely high feature dimensionality and the small number
of recordings. With the rapid development of LLMs and the
inclusion of more diverse training texts, such as the recent release
of LLAMA2 [101], general LLMs could potentially outperform
fine-tuned task-specific LLMs in mental health assessment tasks
in the future.

C. Limitations and Future Directions

Several limitations of this study need to be acknowledged, as
they provide valuable insights into the boundaries of our findings
and potential directions for future studies.

First, the number of subjects (n = 73) and their heterogeneity
might limit our findings’ generalizability. While the number

of subjects will grow as we keep collecting data following
our defined protocol [13], the heterogeneity issue might not
be easily addressed. Although we recruited subjects with clear
inclusion/exclusion criteria and further excluded subjects after
the interview if they did not fall into our criteria, the intrinsic
nature of high comorbidity levels in different mental disorders
makes it difficult to recruit a “clean” cohort of subjects with
clear diagnoses of a single type of disorder. Another hetero-
geneity comes from medication status, which has been known
to affect both behaviors and physiology of the patients [102],
[103], [104]. Nevertheless, we believe the heterogeneity could
be partially addressed as the number of subjects grows because
analyses of smaller and more well-defined groups, for which we
do not currently have enough samples, could be performed. As
the number of subjects grows, models used for feature extrac-
tions could potentially be fine-tuned on the target population
instead of being only trained on open-access datasets, which
could further close the gap in identifying the most pertinent
features from the target population.

Second, potential bias in the feature extraction and subject cat-
egorization processes might exist. The facial expression model
used in this study was evaluated in our previous research [57],
but the features from other modalities were extracted using
open-access models that may bias towards certain demographic
groups, leading to potential skew in the findings. For example,
LLAMA is reported to be biased in religion, age, gender, and
other aspects as it was trained with internet-crawled data [55]. A
thorough bias analysis must be performed in a future study, and
on a larger cohort before applying it clinically. Additionally,
the subject categorization in this study may potentially con-
tain inaccuracy or bias due to the limitation of the diagnostic
process. While we partially addressed the issue by using both
self-reported and clinician-rated measures and analyzing their
relationships, future studies are needed for the direct investi-
gation of this challenge. For example, the use of evaluations
from multiple clinicians and a complete review of medical
records may result in more accurate categorizations [105], [106],
and specifically designed learning methods could be used to
address the presence of noisy labels [107]. Such approaches
would require reinterviewing each subject, which is costly and
time-consuming, and would necessarily reduce the size of the
cohort we have recruited.

Third, the unimodal and multimodal classification and fusion
methods used in this study could be improved given a larger
and more densely labeled dataset. Only one label (per task) was
available for the entire recording, which made it difficult to apply
temporal models such as recurrent neural networks or trans-
formers to directly classify high-dimensional time series with
thousands to tens of thousands of steps. Similarly, a multimodal
transformer could be potentially used for fusion, provided the
label sparsity challenge is addressed. A potential future direction
is to label the entire recording more frequently in time. For
example, simple measurements like self-rated or clinician-rated
levels of distress could be adopted. Another potential direction
is to utilize the potential improvement in pre-trained foundation
models. For instance, LLMs with larger context windows might
enable few-shot classification by including a few examples of
transcripts and categorizations in the prompt.

Finally, the interpretability and explainability of the features
and models remain unexplored [108]. They are key to fostering
the trust of patients and clinicians and pushing the final clinical
adoption. Interpretable machine learning methods [109] could
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be applied to explain which modality, which feature, and which
temporal section contribute to the system outputs. Addition-
ally, visualization and reporting through dashboards and text
summaries could be beneficial for clinicians and patients to
understand better what was assessed and measured.

D. Potential Clinical Applications

With larger and more diverse samples, we see considerable
potential clinical utility for the proposed multimodal objective
assessment approach (and future applications informed by this
technology) in several areas: 1) deepening understanding of psy-
chopathology and outward manifestations of symptoms, 2) util-
ity for diagnostic purposes, 3) assessing changes in symptoms
longitudinally for the same patient, and 4) for patient self-report,
engagement, and empowerment. First, this technology has the
potential to better objectify and quantify core signs and symp-
toms of certain mental health conditions, like affect-flattening
or tangential speech. Second, this technology has the potential
to augment the initial diagnostic process for clinicians in both
research and clinical settings. Developing real-time reporting of
digital biomarker outputs in the form of a dashboard may help
clinicians may hone into a certain line of clinical questions to
better help establish a diagnosis. This technology may have a
role in reducing bias and discrimination in the diagnostic pro-
cess, as currently, the preponderance of evidence suggests that
Black/African American individuals and Hispanic individuals
are disproportionately diagnosed with psychotic disorders [110].
In time, combining digital biomarkers in addition to other
blood-based and imaging markers, could play a potential role
in subtyping mental health conditions according to treatment
response or identifying individuals at risk who might develop the
condition [111]. Third, applications of this technology can help
clinicians and researchers to assess changes in symptoms over
time for the same patient. This is crucial for the health care team
to understand if the treatment plan is working and may help to
accelerate measurement-based care efforts and overcome some
of the barriers to implementation [112]. Additionally, accurate
assessment is the cornerstone of clinical research studies, which
ultimately determines whether new treatments are approved,
and unreliable assessments can have significant consequences to
the study and to the field more broadly [113]. Fifth, automated
systems can provide quality assurance and feedback to clinicians
on how well they performed during the interview, and potentially
areas where their technique may be improved. Finally, future
applications informed by this technology can play an important
role in empowering patients to participate in self-assessment and
ongoing monitoring of their symptoms. Such applications may
help to improve the accessibility/timeliness of assessments and
potentially reduce stigma around mental health [114].
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