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Finkel, Johnson, and empirical elicitations of risk 
magnitudes
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ABSTRACT 
HERA’s landmark Finkel–Johnson article uses lay elicitations about de- 
minimis and insignificant risk/cost to outline a new risk-assessment 
paradigm. This response outlines their paradigm’s many strengths 
and raises three main questions and 10 subquestions (Q1–Q10) 
to help make their paradigm even better. These questions address 
context-dependent-risk probabilities; single-chemical exposure, joint- 
multichemical-action risks; and survey respondents’ objective numeracy. 
The response shows chemical body burdens also demonstrate the 
need for a new paradigm.
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1. Introduction

Just as Kuhn challenged the flawed cumulative-progress scientific paradigm, Finkel and 
Johnson challenge the current expert-centric, risk-assessment-regulation paradigm that 
often relies on “analogy, expediency, or post hoc rationalization” (2023, p. 1175). They 
offer a bold alternative. Eliciting lay quantifications of de-minimis and intolerable risks/ 
costs, they use them to improve risk regulation. In so doing, they serve the interests of 
justice and strong institutions. They propose ways to alleviate some of the arbitrariness 
and unfairness in classical risk-assessment/regulation institutions, helping to make them 
more resilient, despite risk controversies that threaten democracy and health.

2. Ten achievements of the Finkel–Johnson analysis

Finkel and Johnson accomplish the first formal, quantitative investigation of de-minimis 
and intolerable risks/costs. They help motivate their paradigm by arguing that trad
itional risk-cost-benefit analysis “would reject a policy … that eliminated a 1/100 risk to 
1000 persons … if 100 million people each had to pay $1 to fund the intervention” 
(Finkel and Johnson 2023, p. 1199). They also offer a long-overdue decision rule to 
replace the net-benefit criterion: Give intolerable effects paramount, not infinite, weight. 
Their elicitations support important, standard, one-in-a-million, de-minimis-risk levels.

Promoting human rights, Finkel and Johnson show how to accept or reject individual 
risks/costs, apart from total-population dollars/lives. They also offer compelling evidence 
that government-regulatory-cost estimates forego critical benefits. Likewise Finkel and 
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Johnson (2023, p. 1198) uncover government’s factor-of-50, value-of-a-statistical-life 
underestimate. Their surveys suggest one-quarter of citizens thinks U.S. EPA’s 
Superfund lower acceptable-risk/cost levels are underestimates (p. 1186).

Finkel and Johnson outline needed cost-benefit analytical improvements, thus give us 
hope. They offer tools to stop intolerable-cost impositions on some because of de-minimis 
costs to others.

3. Questions

Obviously no single-article, new-paradigm presentation can answer every question it 
raises. Subsequent paragraphs address three such questions.

3.1. Objective numeracy?

Finkel and Johnson provided survey respondents with a good, perhaps-optimistic, probabil
ity-and-statistics overview, then tested their numeracy. Tellingly, 63% of 577 cost-survey 
subjects correctly answered only 0–1 of 3 elementary-probability questions (Finkel and 
Johnson 2023, p. 1183), and 43% of risk-survey respondents correctly answered only 1–2 of 
4 elementary-probability questions; only 27% could answer 3–4 correctly (p. 1182). Thus,

(Q1) Does 30% of risk-survey subjects’ failing to answer any probability questions 
correctly suggest 73% (43% þ 30%) of risk-survey, and 63% of cost-survey, 
respondents may have less numeracy than these elicitations require?

(Q2) Might numeracy problems help explain wide-ranging de-minimis-risk/intolerable- 
cost responses; the de-minimis-cost responses’ positive skew, lognormal-distribution 
(known because geometric mean¼median); and other distributions’ potentially- 
positive skews (suggested by geometric-mean use)?

(Q3) Given the survey’s younger-and-better-educated subjects than “U.S. adults gen
erally” (Finkel and Johnson 2023, p. 1202), might more-representative popula
tions exhibit less numeracy?

Of course, both experts and laypeople exhibit probability-judgment errors (Slovic 
et al. 1980). Even when psychometricians instructed laypeople about their systematically 
biased judgments, they failed to correct them (Lichtenstein et al. 1978). However, min
imal probability training apparently enables laypeople to perform as well as experts 
(Lichtenstein et al. 1977). If so,

(Q4) Might Finkel–Johnson improve respondents’ numeracy by providing this prob
ability training? Or should one assume that demographically representative, 
probability-related surveys will always show subjects’ numeracy problems?

3.2. Context-independent elicitations?

Other questions arise because the Finkel–Johnson survey probes “when in all contexts 
risks or costs are too small” to matter or too large to tolerate (2023, p. 1168–1169). 
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Despite their noble quest for firmer risk-regulation boundaries, how can Finkel– 
Johnson probe “context-independent” (2023, p. 1169) risk levels when their elicitation- 
problem seems loaded with context-affecting descriptors such as “hypothetical consumer 
product”? (Their elicitation-problem requires estimating insignificant-level fatality proba
bilities from an involuntary risk (p. 1168), i.e., a “hypothetical consumer product” caus
ing a “rare … , rapidly-fatal … , incurable disease” (1176), whose probability science can 
confirm “exactly” (Johnson and Finkel 2023, p. 5).)

Consumer products, however, carry no risks without purchase; purchase entails pur
chaser-perceived benefits (or no purchase would occur). Yet Finkel–Johnson admit risk 
estimates are benefits-context-dependent (2023, p. 1176). Therefore, how do Finkel– 
Johnson consistently admit estimate-dependence on contextual “benefits” (2023, p. 
1176), yet seek allegedly “context-independent” risk levels (2023, p. 1169), by eliciting 
estimates of benefits-context-laden, consumer-product (2023, p. 1168–1169) risks?

3.2.1. Involuntary risks
This issue – Finkel and Johnson’s seeking “context-independent” estimates (2023, p. 
1169) by eliciting context-laden estimates – also arises because their elicitation-problem 
(above) includes their contextual-value judgment that risk is “involuntary” (p. 1168). 
Yet for identical benefits, the involuntary-risk-averse public apparently demands 1000- 
times-smaller involuntary than voluntary risks (Slovic et al. 1980).

Finkel and Johnson also embody contextual values when they discuss voluntary/invol
untary risks; deny they consider voluntary risks, which they define as “resulting from 
personal choices,” e.g., skiing (2023, p. 1168), then claim to survey “only” involuntary 
risks, “caused by … .[a] consumer product,” e.g., a lawnmower (Johnson and Finkel 
(2023, p. 5–6). However, the Finkel–Johnson alleged-involuntary-risk example (grass- 
cutting with a lawnmower) has the same “personal-choice” characteristic as their 
allegedly-voluntary-risk example (skiing with boots/poles/etc.). Both risks involve volun
tarily choosing/buying/renting/using consumer products for an activity. Yet Finkel– 
Johnson define one personal-choice-risk (skiing) as voluntary, but another personal- 
choice-risk (using a lawnmower), as involuntary.

Another puzzle is that Finkel and Johnson tie their claimed “involuntary”-risk survey 
(2023, p. 1168,1191) to “some (hypothetical) consumer product” (p. 5–6). Yet consumer- 
product risks seem largely self-imposed, thus, voluntary risks. However, other-imposed risks 
(e.g., nuclear power, waste incineration, railroad-toxics hauling, etc) usually are involun
tary, more controversial/public-policy relevant, perhaps because they are other-imposed. 
If so,

(Q5) Could Finkel and Johnson clarify voluntary-versus-involuntary risks and include 
other-imposed, involuntary risks in their survey?

3.2.2. Toxic-chemical testing
The issue – Finkel and Johnson’s probing “context-independent”-risk estimates (2023, p. 
1169) by eliciting context-laden-risk estimates – also arises because their elicitation- 
problem is laden with another risk-perception-altering, contextual-value judgment 
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(Slovic et al. 1980): that scientists can “exactly” confirm the level of respondent-esti
mated risks (Johnson and Finkel 2023, p. 5). Yet except for instantly-lethal risks, scien
tists cannot “exactly” predict “someone’s” product-caused-disease probability, contrary 
to Finkel–Johnson. Why not?

Interindividual variation currently precludes “exact,” individual-disease prediction, 
thus, has never been integrated into toxicity testing. Apart from environmentally induced 
interindividual variations, scientific consensus suggests the current intrinsic-interindivid
ual-variation “default” (10) is too low; it likely should be 100, that is, 10 for pharmacody
namic-chemical effects, and 10 for pharmacokinetic-bodily susceptibility variations (NAS 
2016, p. 2). If so, no “exact” predictions (having less-than-a-factor-of-100 error) exist for 
“someone’s” disease. Only statistics are available.

Worse, more than 95% of U.S. anthropogenic toxic chemicals have not been tested. 
The amended 1976 Toxic Substances Control Act (TSCA) grandfathered in 62,000 
already-in-use, untested chemicals. Of these, roughly 1240 were tested 1976–2015 (GAO 
2005) and 100 tested 2016-2023 (EPA 2016a, PL 114-182). Given insufficient govern
ment-chemical-testing resources (EPA 2024b), thus requirements to test only 20 chemi
cals/year (EPA 2016a, PL 114–182), it will take 3000þ years for the United States to 
complete testing of the 60,660 remaining-grandfathered chemicals. Of 26,000 post-1976 
new chemicals (EPA 2023b), 4320 received only-days-long TSCA review; this left 82,300 
(60,660 grandfathered þ 21,640 new) of 86,718 registered U.S. toxic chemicals – 95%, 
untested in 2024 (Bergeson and Campbell 2024).

Latest estimates surprisingly show only 7% of 3000 U.S. high-production-volume 
chemicals (>500 tons produced/year) have even toxicity-screening data (EPA 1998; 
Currie and Schmieder 2009). This is partly because TSCA created massive data gaps 
that allow chemical manufacturers to give government inadequate data about their 
products (Wilson and Schwarzman 2009).

Such data gaps occur because even for health-threatening anthropogenic toxins, U.S. 
law requires EPA to protect the identities/characteristics/users of many “mystery chem
icals” (Kurtzman 2021) that (manufacturers’ say) are confidential business information/ 
trade secrets. Thus, without oversight/review, companies may withhold key data (EPA 
2016a, PL 114–182).

This withholding includes (1) which chemicals they put in specific consumer prod
ucts – especially proprietary/mixture-based/chemical-synthesis-byproduct ingredients 
(Phillips et al. 2018); (2) why/how/by whom these chemicals are used; and (3) the 
chemicals’ sources and analytical standards. However, government often needs withheld 
data (1–3) to evaluate chemical-caused health risks and potential regulatory standards 
(Kurtzman 2021).

Instead, government must use Material Safety Data Sheets (SDSs) to evaluate con
sumer-product safety. Chemical manufacturers are required to prepare SDS for each 
toxic chemical they produce/import/use and to give these data to all chemical-product 
users/distributors (OSHA 1989). Yet for most toxic chemicals, companies appear not to 
follow these requirements (Phillips et al. 2018).

For instance, using analytical-chemistry techniques of suspect-screening analysis (e.g., 
Manz et al. 2023; Ulrich et al. 2018; Sobus et al. 2019; Thomas et al. 2019; Taha et al. 
2022; EPA 2022, 2024c; Phillips et al. 2024), EPA scientists showed SDSs failed to 
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name/describe 80% (666 of 836) of potentially toxic chemicals in 100 basic consumer 
products. Thus health officials/regulators/consumers may know only 20% of the hazards 
in products they regulate/buy/use (Phillips et al. 2018).

Even when UCSF scientists used NIH-funded, suspect-screening biomonitoring to 
detect “potentially ubiquitous” chemicals in maternal/newborn blood, 40% of detected 
toxins (42 of 109) were unreported “mystery chemicals” – like 1-(1-Acetyl-2,2,6,6-tetra
methylpiperidin-4-yl)-3-dodecylpyrrolidine-2,5-dione – a “known high-production- 
volume chemical” (Wang et al. 2021, p. 5037). Although scientists/regulators have little/ 
no information about its sources/uses (Kurtzman 2021), PubChem (the NIH database) 
labels this chemical with a red-diamond Hazmat pictogram and four hazard “Warnings” 
(NLOM 2024). The UCSF scientists cautioned: TSCA “gaps in requirements for [compa
nies’] disclosing use of chemicals in consumer and industrial products” threaten govern
ment authority to “remove chemicals from the market that pose a risk” (Kurtzman 
2021).

The preceding inadequate-toxic-chemical disclosures support the Finkel–Johnson 
paradigm-change efforts and their attempts to end risk-regulation “expediency” and 
“rationalization” (2023, p. 1175). Inadequate disclosures also compromise cost-effective, 
chemical-market transactions; they cannot meet market-efficiency requirements (full- 
information, free choices) – and citizen rights to free, informed consent to pollutant- 
threats. That is, citizens/consumers/regulators cannot exercise such rights unless they 
are (1) free to voluntarily accept or reject chemical-containing products; (2) fully 
informed about all ingredients of, and all risks posed by, toxic-chemical products; and 
(3) therefore, able to give or withhold consent to the approval/marketing/purchase of 
these products (Shrader-Frechette 2007). If not,

(Q6) Could Johnson and Finkel reexamine their context-laden, likely-counterfactual, 
science-knows-exact-probabilities assumption (2023a, p. 5) and, instead, give 
respondents information about inadequate-toxic-chemical disclosure/testing?

3.2.3. Effectively-zero risks
Finkel–Johnson elicitations also may presuppose another potentially counterfactual, con
textual-value judgment, namely, nonzero-but-effectively-zero risks. Finkel–Johnson say 
“Throughout this survey, the harm (if any) will … [be] caused by exposure to chemicals 
or radiation emitted from some … consumer product.” They next ask subjects to 
“indicate a probability level of the rapid, painful death … .caused by chemicals or radia
tion … .that you consider to be effectively zero … . Remember that there are many 
potential lethal hazards out there, and their various probabilities can add up to increase 
your risk of dying. So what probability would be for you effectively zero for this par
ticular risk even if the total risk of all mortality threats to you added up to 
more? … .Probability: 1 in _____” (Johnson and Finkel 2023, p. 19).

Although carefully crafted, the preceding question assumes (a) nonzero-fatality risks 
can be effectively zero; (b) a single one-size-fits-all, effectively-zero probability fits all 
situations/contexts; and (c) respondents need no additional data about small, unavoid
able-additive-pollution risks, as Finkel–Johnson (2023, p. 10) mention only hypothetical- 
additive (“if … threats … added up to more”) risks.
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Finkel–Johnson assumption (a) seems questionable because more numerically-literate peo
ple may not believe a nonzero probability can be “effectively zero.” Besides, “to any affected 
person, more risk is a priori worse than less risk” (Finkel and Johnson 2023, p. 1164). 
Assumption (b) seems problematic because people might accept different de-minimis/intoler
able-risk levels, but not believe any single level is always effectively zero. Moreover, EPA con
cluded that it could identify no fixed level of acceptable risk for all cases (Fischhoff 1994).

Finkel–Johnson assumption (c) also seems counterfactual, given unavoidable-multi
chemical-pollutant-mixture threats. The survey’s hypothetical, “can-add-up … .if” lan
guage (Johnson and Finkel 2023, p. 19) paints a too-optimistic picture of inescapable- 
pollution risks. Why? Even the median number of toxic chemicals in Americans’ bodies 
(inferred from biomonitoring’s continually discovering new anthropogenic contaminants) 
is 1800 (Ring et al. 2019), 400 already found in blood/serum/urine (e.g., Woodruff et al. 
2011; Dellavalle 2016; Morello-Frosch et al. 2016; Wang et al. 2018, 2021; CDC 2022), 
including roughly 300 persistent-organic pollutants (POPs) (e.g., Fisher et al. 2016) most 
of which are known/likely carcinogens (Ennour-Idrissi et al 2019; Ludewig et al 2013). 
Virtually all Americans have blood/serum/urine levels of 29 pesticides (Roberts et al. 
2012) that are no-safe-dose-endocrine disruptors – associated with increased mortality 
(Bao et al. 2020), IQ deficits (Bouchard et al. 2011), ADHD (Marks et al. 2010), 
Alzheimer’s (Yan et al. 2016), cancer (Buoso et al. 2020), etc.

Long before birth, chemical “pollution” (Mt. Sinai 2003, p. 1,14,15) from at-least-300, 
umbilical-cord contaminants, mostly POPs (e.g., Thornton et al. 2002; Mt. Sinai 2003; EWG 
2005, 2016; Baltz 2016; Fisher et al. 2016; Morello-Frosch et al. 2016), is imposed on every 
American. Of course, not all biomonitored-toxin detections indicate harm. However, higher 
mortality/cancer/disease is associated with higher bio-monitored POPs/persistent metals, 
especially total-polychlorinated-biphenyl (e.g., Kim et al. 2015), dioxin-like-chemical (e.g., 
Lin et al. 2012), organochlorine- (e.g., Fry and Power 2017) and pyrethroid-pesticide levels 
(Bao et al. 2020). Even low-level, bio-monitored exposures (e.g., Thornton et al. 2002; Mt 
Sinai 2003; EWG 2005, 2016; Boobis et al. 2011; Baltz 2016; Fisher et al. 2016; Morello- 
Frosch et al. 2016; Lanphear 2017; Vandenberg 2019; Vandenberg et al. 2012, 2023; Martin 
et al. 2021; Martin 2023) are associated with increased cancers (e.g., Barker 2007; Maciel- 
Ruiz et al. 2023), noncommunicable diseases (e.g., Grandjean and Landrigan 2006; Barouki 
et al. 2012; Vrijens et al. 2020) and increased mortality (e.g., Fry and Power 2017).

If Finkel and Johnson had given respondents the preceding data about unavoidable 
multichemical-mixture-pollutant threats, would respondents still say any additional, 
unknown-chemical exposure was “effectively-zero”? Or would they question whether it 
was effectively zero? What if subjects knew that only four-biomonitored-carcinogen lev
els (arsenic, acrylamide, benzene, DDT), present in most U.S. citizens0 body burdens, 
give 83 million Americans (one-fourth the U.S. population) cancer probabilities >1 in 
1000 (e.g., Thornton et al. 2002; Dellavalle 2016; CDC 2022), assuming no joint-chem
ical interactions (Hertzberg et al. 2000; EPA 2023b)?

How would survey subjects respond to the Finkel–Johnson question about “effectively 
zero” risks, if they had been told that:

� as endocrine disruptors, none of the preceding four chemicals likely has a safe 
dose (e.g., Vandenberg et al 2012);
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� as known/probable genotoxic carcinogens, all four toxins (except DDT/DDE, 
given evidence sufficient in experimental animals but inadequate in humans 
(IARC 1991)) likely have no safe dose (e.g., NIOSH 2017);

� as persistent metals/POPs, all four toxins (except acrylamide) are long-lived-and- 
bio-accumulative, thus, likely have no safe dose (e.g., Guo et al 2019); and

� even for the smallest, below-regulatory-threshold exposures, many experiments 
show single-chemical exposure can cause both single-action and joint-action risk 
(e.g., Kortenkamp et al 2007; Vandenberg et al 2012, 2023; Martin et al 2021; 
Wilbur et al. 2024)?

If respondents had been given this bulleted chemical-health data, would most say a 
new, unknown-chemical/radiation exposure posed “effectively-zero” risks? If not, then,

(Q7) Might respondents benefit from increased biological-toxicological training, after 
which they could be asked whether they believe any single, one-size-fits-all, 
context-independent-risk level is always effectively zero?

3.3. Single exposure, cumulative dose

Analogous to earlier questions about how contextual values appear to influence Finkel 
and Johnson’s search for “context-independent”-risk probes (2023, p. 1169, 1173), this 
section asks: How can Finkel–Johnson consistently admit respondent-risk-estimate 
dependence on benefits (2003, p. 1176), yet ignore respondent-risk-estimate dependence 
on key disbenefits/harm, namely, single-chemical-exposure-multichemical-action risks? 
Finkel–Johnson say they “are not seeking estimates of cumulative risk from all … 
pollutant” harm, only estimates of “a single narrow … .particular … exposure” (2023, 
p. 1206). While their narrow focus is partly analytically desirable, why do they believe, 
scientifically, that they are justified in ignoring single-exposure-multichemical-action 
risks? Or that benefits-seeking respondents would not also be disbenefits-avoiding 
respondents?

Most people would not want hundreds of single-insignificant-pollution exposures, 
together, to add up to significant-risk levels. If not, before respondents could ration
ally answer single-insignificant-risk-level questions, they first must know their 
approximate-total-insignificant-risk level. This point is analogous to saying people 
cannot rationally write a check to pay a bill, unless they know their available funds/ 
other financial obligations. Why not? For most people, willingness-to-bear involun
tarily-imposed risk is not infinite/open-ended. They often need cumulative-risk 
information before making single-risk decisions. That is why the earlier arsenic, 
acrylamide, benzene, DDT biomonitoring data are key: To show the needed quanti
fication of single-chemical-exposure-multichemical-action risks – not just “single- 
narrow” risks (Finkel and Johnson 2023, p. 1206).

In addition, National-Academy (EPA 1986, 2002, 2023a; NRC 1994), and eminent- 
journal/association/scholar recommendations (e.g., Harris 2015; Escher et al. 2020) warn 
against only-single-exposure-single-action-risk assessment. They say advances in cancer 
biology, including body-burden information, show outdated-risk-assessment approaches 
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do not account for multichemical actions that can result from exposures to a single 
chemical (Goodson et al. 2015). If not,

(Q8) Might Finkel and Johnson (2023, p. 1206) continue context-specific-lay surveys, 
but assess both single-exposure-only-single-action, and single-chemical-expos
ure-multichemical-action, risks?

3.3.1. Cumulative-dose radiation
To address single-exposure-joint-action risks, one might begin by distinguishing expo
sures from doses. Perhaps because lay elicitations require succinct, popular language, 
Finkel and Johnson (2023) never speak of radiation “dose” (risky-biological-effect level), 
and instead use only “exposure” (ambient/personal-vicinity level) (EPA 2023c, 2024a). 
Technically, however, risk relies on dose, not exposure.

Thus, a single-low-“radiation” exposure (Johnson and Finkel 2023, p. 5) – which 
excludes high-exposure cases like nuclear explosions – dose/risk is always cumulative, 
contrary to Finkel and Johnson’s avoiding “cumulative” risk (2023, p. 1206). As the clas
sic BEIR-VII states: for low exposures, mortality from, and “risk of radiation-induced 
cancer is independent of the time over which exposure occurs and is a cumulative func
tion of dose” (NRC 2006b, p. 73, 161–172; 197–233), partly because of ongoing-radi
ation damage. Because single-low-exposure-radiation risk requires quantification as 
cumulative dose,

(Q9) Might Finkel–Johnson revise their cumulative-exposure claims, include dose, 
and provide respondents with more information about both?

3.3.2. Single-action and joint-action chemical risk
Despite Finkel’s and Johnson’s reasonable analytic quest to avoid multichemical-risk 
considerations, previous sections argued that single-chemical-exposure can cause multi
chemical-action risk/harm. Because babies are born, pre-contaminated with a mixture of 
roughly 300 toxic chemicals, any additional, post-birth, single-chemical exposure is 
potentially a mixture-exposure.

3.3.2.1. Mixtures and rare chemical synergisms. Of course, mixtures’ exhibiting low-dose- 
chemical synergisms are controversial. Synergistic effects seem rare, compared to mix
tures’ additive effects. Nevertheless, scientific consensus appears to be that about 5% of 
chemical mixtures show synergistic, greater-than-double, to 100-times-greater than, 
additive-chemical effects (e.g., Martin et al. 2021; Martin 2023). Even environmental 
stressors (e.g., pathogens, nutritional deficits) can cause multichemical-mixture, more- 
than-additive effects (Holmstrup et al. 2010; Cedergreen et al. 2023), as when aquatic 
microplastics synergistically increase PFAS toxicity (Yu et al. 2024). The 15,000 long- 
lived, no-safe-dose, largely-unregulated, synthetic chemicals, PFAS, also apparently 
interact synergistically among themselves (e.g., Ojo et al. 2020; Pierozan et al. 2023) and 
are associated with cancer and developmental/heart/immune-system/kidney/liver/thyroid 
disease (Grandjean et al. 2020; EWG 2022).
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Yet, disturbingly, each of 30,000 newborn umbilical-cord-blood samples from 40 clas
sic studies contained these sometimes-synergistic PFAS (EWG 2022). Besides PFAS’ bio
accumulating and having up-to-35-year, human-blood half-lives (ATSDR 2020a), their 
persistence in air/soil/water/food causes additional exposures (NIEHS 2024). However, 
efficient/inexpensive/sustainable PFAS degradation is difficult to achieve (Savage 2023), 
partly given PFAS’ chlorine/fluorine bonds and the current absence of known catalysts 
(Sun et al. 2024) and “confirmed biodegradation pathways” (Zhang et al. 2022, p. 6).

Interestingly 69% of chemical-company, new-pesticide-product-patent applications 
claim their products exhibit new multichemical synergisms, i.e., increased biocidal 
potency (Donley 2016). The greater the toxicity/killing-power of chemical-company can
cer therapies and cleaning, defoliation, disinfection, excavation, military-weapons, or 
pesticide products, the greater company profits. But if so, their products likely contain 
revenue-increasing, biocidal-chemical synergies that affect many of us.

3.3.2.2. Glyphosate-mixture synergisms. How might failure to consider “aggregate”/addi
tive and synergistic chemical-mixture risks – as Finkel and Johnson (2023, p. 1206) 
seem to do – threaten public health? Consider Monsanto’s (now Bayer’s) herbicide, 
“Roundup,” the world’s leading (S&P Global 2024), multi-billion-dollar-pesticide prod
uct (Zion Market Research 2024), according to S&P Global, the world’s foremost pro
vider of credit ratings and benchmarks for markets. Roundup is roughly 40% 
Monsanto-patented glyphosate þ 60% Monsanto-patented adjuvants (Bonn 2005), most 
of which are more toxic than active-ingredient glyphosate (Mesnage et al. 2019). As 
trade secrets, confidential business information (Cox and Surgan 2006), these adjuvants 
were designed to synergistically maximize glyphosate toxicity, carcinogenicity, penetra
tion, and absorption (e.g., USPTO 2010).

Thus, Roundup (glyphosateþ adjuvants) herbicide-mixtures are up to 1000 times 
more toxic to human cell lines than glyphosate alone (Mesnage et al. 2013). Yet EPA 
(2016b, 2017) and European Food Safety Authority (EFSA 2015) pesticide-registration 
assessments have focused on less-toxic glyphosate alone, not (glyphosateþ adjuvants) 
herbicide mixtures, then claimed the herbicide mixtures are unlikely to be carcinogenic.

However, IARC (2017), the U.S. Agency for Toxic Substances and Disease Registry 
(ATSDR 2020b, p. 6, 82–85, 101–117), and California Office of Environmental Health 
Hazard Assessment (OEHHA 2024c), say/infer the opposite: The glyphosate-adjuvant- 
herbicide mixture is a probable human carcinogen (category 2 A).

How do ATSDR (2020b) and top scientists (e.g., Benbrook 2016; Myers et al. 2016; 
Portier et al. 2016; Vandenberg et al. 2017; Landrigan and Belpoggi 2018) explain clash
ing IARC-versus-EPA assessments? They say IARC/ATSDR/OEHHA analyzed mainly 
published, nonproprietary-data assessments and much-more-toxic (glyphosa
teþ adjuvants) mixtures, used in the field – but EPA/EFSA included unpublished/propri
etary-chemical-industry analyses and relied mainly glyphosate-only assessments.

The IARC-versus-EPA controversy suggests that EPA-EFSA’s narrow, nonmixtures- 
risk assessments – like Finkel and Johnson’s (2023, p. 1206) “single, narrow,” non- 
“aggregate” risk estimates – might underestimate public-health harm. Already in the 
United States, mostly Roundup-applicators with terminal lymphoma or leukemia have 
filed 170,000 lawsuits’ claiming Roundup (the majority-seller among glyphosate- 
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containing herbicides) harmed them (Lieb 2024). So far, chemical giant Monsanto (now 
Bayer) has paid these victims >$14 billion during 100,000 lawsuits; another 54,000– 
70,000 cases are pending, and their number is increasing (Zavieri 2019; Torhoerman 
2024; Zanes 2024).

These lawsuits forced release of secret company documents, showing that by 1981, 
Monsanto/Bayer knew glyphosate was carcinogenic and knew the (glyphosa
teþ adjuvant) herbicide mixture was much more carcinogenic than glyphosate alone 
(EPA 2016a; Hakim 2017; Zanes 2024). Yet, the documents show, the company misled 
consumers; denied carcinogenicity (Gillam 2017; Justia 2024); covered up cancers; paid 
academics to sign flawed, Monsanto-ghostwritten, pro-glyphosate research (Hakim 
2017; Zaveri 2019); and spent $76 million, attempting to malign/harass/intimidate/dis
credit IARC and its scientists (U.S. House 2018; Drabiak 2019; Malkan 2023).

Government reports, top medical journals, and university scientists seem to accept 
the preceding Monsanto/Bayer “well-documented” attacks on “authoritative science” 
(Kogevinas 2019, p. 1–2) and that EPA likely “acceded to industry pressure” (OEHHA 
2022, p. 14). Saying they cannot rule out Roundup genotoxicity/carcinogenicity (e.g., 
ANSES 2016), 35 nations have banned/restricted Roundup/glyphosate-based herbicides 
(Howell 2023). Yet, their “ubiquity” in global food/water/soil may already pose health 
threats (Maggi et al. 2020, p. 2), even from additive doses of thousands of trace expo
sures (Gillam 2015).

At least 94% of U.S. streams/rivers (USGS 2020), 87% of U.S. children (CDC 2022), 
and 96% of U.S. adults, have residual-Roundup contamination – associated with cancer/ 
other diseases (e.g., Lucia et al. 2022). Scientists say glyphosate-based-herbicide harm 
appears like that from the legacy toxin, atrazine. Banned in the EU in 2004, atrazine 
continues to threaten the public through its contaminating “most groundwater-monitor
ing wells,” drinking water, food, etc. (Maggi et al. 2020, p. 2). If so, such glyphosate 
examples (showing some regulators ignore real-world mixtures/exposures, and instead 
focus on narrow risks) support the claimed Finkel–Johnson need for a new risk assess
ment-regulation paradigm – a paradigm that should also address the health risks of 
exposures to mixtures.

3.3.2.3. An example: why multichemical/aggregate risk is important. To illustrate the pre
ceding conclusion, consider a real-world-mixtures example. Suppose

Some Finkel–Johnson-survey respondents learned 5 things: (1) that their children 
were among the 25% of children living within 2-km/1.2 miles of a hazardous-waste site 
(Gibbons et al. 2006), thus were exposed to above-average-windborne, liver-carcinogenic, 
carbon-tetrachloride (ATSDR 2015; OEHHA 2024a); (2) that their laundry-detergent 
contains liver-carcinogenic 1,4-dioxane (PRN 2023; OEHHA 2024b); (3) that at least 
some reputable authorities (IARC 2017; OEHHA 2024c) say their Roundup weed-killer 
is a probable human carcinogen targeting the liver (see preceding subsection 3.3.2.2); 
(4) that synergisms, like acetaminophen-and-alcohol, or oral-contraceptives-and-smok
ing, can multiply single-exposure-single-action harm (e.g., Hassold et al. 2021; see 
Kortenkamp et al. 2007; Linden et al. 2017; Backhaus 2023, 2024); and (5) that their 
Roundup likely is a synergistic toxin (e.g., Mesnage et al. 2013; Brodeur et al. 2014; 
Donley 2016; Gunatilake et al. 2019).
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If respondents knew they faced multichemical risks (1)–(5), would they try to avoid 
the liver-carcinogenic products in (2) and (3)? Would they say the products posed 
“effectively-zero” risk? If not, some survey responses might reflect their need for better 
understanding of biology/toxicology/chemical-mixture exposures; they might not sup
port Finkel–Johnson (2023) claims about effectively-zero risk levels.

3.3.3. An objection
Of course, assessing/regulating mixtures is difficult, given inadequate information, e.g., 
about noncarcinogenic-low-dose mixtures’ exhibiting carcinogenic effects (e.g., Harris 
2015). Humans also are exposed to thousands of unknown-effect contaminants, yet n 
chemicals’ possible combinations are 2n – 1! However, two strategies help.

One strategy is using various data-gathering/assessment “shortcuts,” e.g., subclass- 
toxin-equivalency factors (e.g., EPA 2010; ATSDR 2019); new-approach methodologies 
(e.g., EPA 2023a); gas-chromatography, simultaneous-multichemical quantification (e.g., 
Sonnette et al. 2021); analytic/data-mining techniques to prioritize vulnerable-demo
graphic/highest-POP/top-decile-prevalent/etc. mixtures (e.g., Pumarega et al. 2016; 
Kapraun et al. 2017).

A second strategy is following NRC (1988, 1994, 2009b), EPA (e.g., 1986, 2023a; 
Hertzberg et al. 2000) and leading association/journal guidance for limited-data assess
ments and defaults (e.g., Harris 2015; Landrigan et al. 2018; More et al. 2019; Escher 
et al. 2020). Thus at worst, one could use all relevant strategies/defaults – or provide 
systematic, qualitative-but-consistent, uncertainty-sensitive characterizations of mixtures.

Elicitations, however, require no mixture assessment, only informing respondents’ 
about both single-exposure, single-action/joint-action effects and uncertainties. If so,

(Q10) Might Finkel and Johnson tell respondents how a single-chemical exposure 
can induce both joint-multichemical-action and single-action effects?

4. Conclusions

Finkel and Johnson (2023) deserve praise for attempting to improve the flawed risk- 
cost-benefit-regulatory paradigm, especially its ignoring human rights and lay preferen
ces, its misquantifying regulatory-cost estimates, and its underestimating acceptable 
risk/cost. However, the quest for context-free, de-minimis/intolerable-risk estimates – 
similar to the noble-but-unachievable analytic quest for value-free facts, suggests 
Fischhoff et al. (1980) are right: “The search for an ‘objective method’ is doomed to fail
ure … [and] may blind … searchers to … value-laden assumptions they are making … . 
There is no single-all-purpose [insignificant/significant-risk] number … for a society.” If 
not, the path ahead will be difficult, but sure: Risk assessors must help support but 
improve this landmark new paradigm. Preceding data on inadequate toxic-chemical 
testing, educational inaction on U.S. numeracy and biological-toxicological-literacy 
problems, and single-exposure-joint-multichemical-action effects – show the need for 
this paradigm.
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