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ABSTRACT. The purpose of this paper is to give a historical survey of the development of methods 

in the theory of partial differential equations for the study of the Levi and Cousin problems in complex 
analysis. Success was achieved by the mid 1960"s but we begin further back, with the background in Hodge 

theory and with early unsuccessful attempts to exploit the Bergman kernel. Some examples of later date 
illustrating the use.fulness of such methods are also given. 

1. I n t r o d u c t i o n  

In the theory of analytic functions of one complex variable the study of the Laplace operator 
and the Cauchy-Riemann operator 0/0~ has always played a central role. However, a theory 
of functions of several complex variables was first developed by means of inductive procedures 
starting from the one-dimensional case. It was not until the 1960's that an alternative and supple- 
mentary approach became possible using methods from the theory of partial differential equations. 
The purpose of this article is to present a historical survey of this development. 

We begin in Section 2 by recalling the Hodge theory of harmonic forms and the theorem of 
de Rham which was the starting point for the general theory. For a while the analytic foundations 
of Hodge theory were somewhat shaky but around 1940 it was well established on compact 
manifolds without boundary. An extension to compact manifolds with boundary was developed 
in the early 1950's. In retrospect the analysis only required fairly classical tools from the study of 
boundary problems for the Laplacian, but it stimulated the systematic codification of the theory 
of elliptic boundary problems which was achieved in the 1950's. 

Already in 1922 Stefan Bergman had introduced the reproducing kernel for holomorphic 
functions which now carries his name. It is as easy to define for functions of several variables as 
in the one-dimensional case. In view of its relation to conformal mapping and other applications 
in that case it was perhaps natural to take it as a starting point for an analytic attack on the Cauchy- 
Riemann equations in several variables. We shall discuss some such attempts in Section 3, for 
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although they failed, they seem to have led Spencer to formulate the basic ~-Neumann problem 
around the middle of the 1950's. 

The solution of the ~-Neumann problem required the development of new tools in the theory 
of partial differential equations. Section 4 is devoted to the progress made from 1958 to 1964, 
when the basic results were well established after some setbacks along the way. In the examples 
of the developments after 1964 given in Section 5 we shall essentially limit ourselves to the 
existence theorems which follow from the study of the ~-Neumann problem, and the selection 
of the examples is also strongly biased by the author's personal research experience. (Much 
more related material can be found in two surveys [11, 12] by Demailly.) For the extensive work 
which has been done concerning the relations between the regularity at the boundary of solutions 
of the ~-Neumann problem and the geometry of the boundary we refer the reader to the survey 
articles [ 10] by D'Angelo and Kohn and [8] by Boas and Straube. 

Finally there are three appendices. The first deals with some technical points concerning 
the operators in L 2 spaces defined by first order differential operators. The second recalls some 
basic elementary facts from functional analysis. We have put this material in appendices in order 
to avoid breaking up the presentation with technicalities. The third appendix reproduces a short 
history of the ~-Neumann problem which I found in my files together with reprints by Spencer. 
This history is probably written by him and is included as a second opinion. 

The early work on the ~-Neumann problem owes much more to D.C. Spencer than is docu- 
mented in print. His insight and enthusiasm inspired much of that activity. When the first version 
of this article was finished, in January 2002, I had hoped to be able to get his comments on 
my presentation but learned that he had died a month before. Instead I take this opportunity to 
dedicate the article to his memory. 

I would also like to thank Ragnar Sigurdsson who caused this article to be written by en- 
couraging me to give a historical survey talk at the Nordan meeting in Reykjav~ March 8-10, 
2002. I am also grateful to J.J. Kohn for commenting on the first version of this manuscript, and 
to Mei-Chi Shaw for her remarks on another appendix in that draft which in extended form has 
now become a separate article [32]. 

2. The theorem of de Rham and Hodge theory 

In his thesis de Rham [51] proved that on any compact C ~ manifold f2 (no boundary) 
there always exists a closed p form with given periods, and that it is unique modulo derived 
forms. In modern language, the cohomology with real (or complex) coefficients is isomorphic 
to the quotient of the space of closed forms by the space of derived ones. Introducing a smooth 
Riemannian metric in ~ gives a Euclidean metric on the p forms at a point, and by integration of 
the square with respect to the Riemannian volume measure one defines an L 2 norm for a smooth 
p form f on ~2. If d f  = 0, where d is the exterior differential operator, and the norm of f is 
minimal in its residue class modulo derived forms, then (f ,  dg) = 0 when g is a p - 1 form. 
Hence d * f  = 0 where d* is the adjoint of d, and then 

IIf + dgll 2 = rlfll 2 + Ildgll 2 

which means that f is the only minimizer. Hodge, who was an algebraic geometer, had difficulties 
with proving the existence of a smooth minimizer, in analogy with the classical difficulties in 
Riemann's use of Dirichlet's principle. Hodge's first version in [23] was in his own words 'crude 
in the extreme' (Atiyah [4, p. 178]) and a later version in his book [24] also contained a serious 
error [4, p. 179]. A complete justification was given by Hermann Weyl in the classical article [55]. 
The proof has become so integrated in the theory that today the problem looks quite trivial. The 
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equations d f  ---- 0 and d* f  = 0 can be summed up in A f  = 0 where A = d*d + dd*, for 
(A f ,  f )  = (df, d f )  + (d ' f ,  d ' f )  = 0 if and only if d f  = 0 and d * f  = 0; then f is called a 
harmonic form. The Hodge Laplacian A is a second-order selfadjoint elliptic differential operator 
on p forms; the principal symbol is the Riemannian square Is~l 2 of the cotangent vectors times 
the identity. Hence every smooth p form f has a unique decomposition with smooth p forms g 
and h, 

f = Ag + h = d*dg +dd*g + h ,  (2.1) 

where Ah = 0. I f d f  = 0 then dd*dg = 0, hence Ild*dgl[ 2 = (dd*dg, dg) = 0, so 
f = d(d*g) + h, which means that h is the unique harmonic form in the residue class of 

f .  
The aim of Hodge was to study complex projective algebraic manifolds. Using the natural 

metric there he refined the preceding Hodge theory by decomposing the harmonic forms according 
to type. Recall that a differential form on a complex manifold is of type (p, q) if it is of degree 
p in dz and q in dL The exterior differential operator d has a unique decomposition d = 0 -t- 
where 0 (resp. 0) maps forms of type (p, q) to forms of type ( p +  1, q) (resp. (p, q + 1)). The fact 
that d 2 = 0 implies that O 2 = 0, that 32 = 0, and that 00 + 88 = 0. To have the adjoint d* split 
nicely requires an important condition on the metric. A complex manifold with a Riemannian 
metric ds 2 which is hermitian, thus 

n 

ds2 = Z hjk(z) dzjdzk,  hjk = hk---~, 
j,k= 1 

in local complex coordinates, is called a Kiihler manifold if for every point one can choose 
local complex coordinates vanishing there such that hjk(Z) = ~.jk + O(Izlm) �9 (The  geometrical 
significance is that parallel transport is complex linear.) This implies that the invariantly associated 
exterior differential form of type (1,1) 

n 

E hjk(Z dzj A dzk 
j.k=l 

is closed, for it is obvious that the differential vanishes at a point where the first order deriva- 
tives of all hjk vanish. The condition is also sufficient, for given local complex coordinates 
vanishing at the chosen point we can by a linear diagonalization achieve that hjk(O ) = ~jk. 
The vanishing of the differential implies that 3hjk(O)/3Zl = Ohlk(O)/OZj. If we set wi = 
zj + �89 Y'~./=t 3hkj(O)/OZl ZtZk, it follows from this symmetry that 

/l  

dwj = dzj + ~ 3hk)(O)/OZlZl dZk, hence 
k.l=l 

n ~ 
[dwj 12 = [dzi 12 + Z Ohk.j(O)/OZlZldZkdZj q- Ohjk(O)/OZlZldzjd;~k + O(Izl2)ldz] 2, 

k,l=l k.l=l 

where we have used the hermitian symmetry. Hence the coefficients of ds z - ~-~n l I dwj 12 vanish 
to second order at the origin which proves that the wj coordinates have the required property. 
Using such coordinates it is clear that the Hodge Laplac_ian maps a form of type (p, q) to another 
form of type (p, q) and that the adjoint of 8 (resp. 8) maps it to a form of type (p - i, q) 
(resp. (p, q - 1).) If f is a harmonic form of degree r and we write f = Y~.l,+q=r fl'.q where 
ft,,q is of type (p, q), then 0 = A f  = ~ Afp.q implies Afp.q = 0 since Afp.q is of type (p, q). 
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Hence the space "~L~ r of harmonic forms of degree r is the direct sum of the spaces of harmonic 
forms ~L~P,q of type (p, q) with p + q = r, so the Betti numbers h r = dim 7-E can be split into 
hr = ~-,p+q=r hP'q where h p'q = dim 7-L p'q. These numbers are independent of the choice of 
K~ihler metric, for a positive linear combination of K~ihler metrics is K~ler ,  and the splitting of 
h r into a sum of integers must vary continuously with the metric. 

The closed form 00 log(Izo 12 + Izi 12 + ' - "  + Izn 12) in C n+l \ {0} is a lifting of a closed form 
in the projective space P~ which when zo = 1 corresponds to the Mannoury metric 

Idzl2/( l  + Izl 2) - I ( L  dz)l  2 / (1  + Iz12) 2 

which is obviously Kiihler at the origin, hence everywhere in view of the invariance. An analytic 
submanifold of  P~ with the induced metric is therefore also K~ler ,  and it is in this context that 
Hodge originally introduced the invariants h p'q. A classical introduction to Kahler manifolds 
is Weil's book [54]. The preceding brief history is taken from Atiyah [4] where in addition 
to biographical information there is much more on the mathematical work of Atiyah's teacher 
Hodge. 

The de Rham theorem is also applicable to a manifold with boundary. Let 92 be an open 
relatively compact subset of a C ~ manifold and assume that the boundary 092 is smooth. The 
cohomology of 92 in degree p with real (or complex) coefficients is still isomorphic to the quotient 
of the space of smooth p forms in 92 by the space of derived ones. If f is a p form with d f  = 0 
and the L 2 norm is minimal in the class of f ,  then (f ,  d g ) =  0 for all smooth p -  l forms g. When 
g has compact support in 92 this means precisely that d * f  = 0 where d* is the formal adjoint of 
d, mapping p forms to p - l forms. However, for general g we must also have d Q , f  = 0 on 0 ~  
if 0 is a defining function for 92, that is, 0 < 0 in 92, Q = 0 and do # 0 on 0f2. (Here J denotes 
inner multiplication which is adjoint to exterior multiplication.) Together these conditions mean 
that f is in the kernel of the minimal differential operator d** defined by d*, that is, the closure 
in L 2 of the operator defined at first only for smooth forms with compact support in 92. (See 
Appendix A.) It is the adjoint of the maximal operator defined in L 2 by d, which we shall simply 
denote by d. The appropriate Laplace operator to consider is now A = d*d + dd  c. An equation 
Au = f for p forms u and f means as before an elliptic differential equation in 92, with principal 
symbol Ise 1 2, but in addition there are now two boundary conditions 

d o . u = O ,  d o 2 d u = O ,  onoq92. 

In general the interior product dQ- maps p forms at the boundary to p - 1 forms on the boundary 
which are p - 1 forms in the boundary lifted by the projection 92 ~ 092 along the normal. 
Hence the boundary operators u w+ d o j  dula~ and u ~ doJu[a~ take values in fiber bundles 
of dimension n -  1 n -  1 ( p ) and (p- l ) '  respectively. The sum is equal to the fiber dimension (p) of the 

bundle of p forms in 92. (This is also a consequence of the fact that d 0_j defines an exact sequence 
in the exterior algebra.) The boundary problem is elliptic. To verify this it suffices to consider 
a boundary point with geodesic local coordinates such that dQ = - d x n .  Then ellipticity means 
that bounded p form solutions of the constant-coefficient Laplacian Au = 0 in {x 6 Rn; Xn > 0} 
which are purely exponential but not constant in the tangential variables x I -- (xi . . . . .  Xn-O 
must vanish if they satisfy the boundary conditions 

dxn ~u = 0 ,  dxn ~du  = O, when Xn = 0 .  

This means that u = ei(X"U)-x"[UIv where v is a p form with constant coefficients and 0 # ~' 
R n- l .  With sen i J~'l we have du = i(~, dx)  A u, SO the boundary conditions are 

d x n , v  = O, d x n J ( ( ~ , d x )  A V) = O. 
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The first condition means that dxn is not a factor in any term in v, hence (~, dx) A v - ~ndxn A v 
does not contain dxn, so dxnJ((~, dx) A v) = ~nV. Since ~n = i1~'1 ~ 0 this does not vanish 
unless v = 0, which proves ellipticity. 

The theory of elliptic boundary problems now gives precise existence theorems: The set 7-[P 
of L 2 forms with d f  = 0 and d c f  = 0 is finite-dimensional and its elements are smooth in ~ .  
Every p form f which is smooth in ~ has a unique decomposition 

f = d*dg + ddcg + h 

with h 6 ~ P  and g smooth in -~. I f d f  = 0 then ddS dg = 0, hence Ildff dg II 2 = (dd* dg, dg) = 
0, so f = d(dcg) + h which means that h is in the same cohomology class as f ,  and h is uniquely 
determined, for i fh  ~ ~ P  and h = du then (h, h) = (du, h) = (u, dch) = O. 

The cohomology of f2 (f2) in degree p is thus isomorphic to ~ e .  The cohomology with 
compact supports in ~2 can similarly be identified with the harmonic forms corresponding to the 
Laplacian d*dc + dcd*, where dc is the minimal operator defined by d. In ~2 this is the same 
Laplacian as before, but the boundary conditions are now 

d o A u = O ,  d o A d * u = O  on Of 2. 

The verification of ellipticity is essentially the same as before. 

For a p form f we have now obtained two orthogonal decompositions, 

f ~ �9 = and d c h t = 0 (2.2) d c dgl +ddcgl  + h t ,  where dhl = 0 

f = d*dcg2 + dcd*g2 + h2, where dch2 = 0 and d'h2 = 0 .  (2.3) 

This gives a third orthogonal decomposition, 

f = d c dgl + dcd* gz + h, where dh = O and d*h :- O , (2.4) 

for defining h by the first equality we obtain dh = d f -dd~. d g t = O, d* h = d* f - d*  dcd* g2 = O. 
The decomposition is orthogonal since the range of d c is orthogonal to the kernel of d which 
contains the kernel of de, and the range of dc is orthogonai to the kernel of d* which contains 
the kernel of dc. The orthogonal projection of f on the infinite-dimensional space of forms with 
d*h = 0 and dh = 0 is thus f - d cdgl  - dcd*g2. Since dh = 0 and d*h = 0 imply Ah = 0 
in f2, hence that h ~ C ~ ,  it follows that the projection f ~ h has a C ~ kernel. The complex 
analogue will be discussed in the following section. 

The preceding results on Hodge theory in a manifold with boundary were already obtained 
in the early and mid 1950's by classical integral equation methods. (See e.g., Conner [9] and the 
references therein.) The full theory of elliptic boundary problems was then not yet available in the 
literature in a systematic and easily applicable form, but the theory of singular integral equations 
due to Giraud and others had a comparable scope. A theory of elliptic boundary problems was 
presented in full generality in Agmon-Douglis-Nirenberg [ l] and H6rmander [28, Chapter 10]. 
The introduction of pseudodifferential operators gave further simplifications in principle (see e.g., 
H6rmander [29, Chapter 20]). The theory of elliptic boundary problems also yields precise results 
on the regularity of the Hodge decomposition of a form f with given finite regularity. Roughly 
speaking, each term in the decomposition of f is at least as regular as f .  

3. The Bergman kernel 

Let f2 C C n be an open set, and denote by ~(C2) the subspace of L2(f2) consisting of 
holomorphic functions. When f ~ ~ ( ~ )  we have by the mean value property of the harmonic 
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function f that 
1 

I f (z)]  _< C~-I l f l l /d (z )  n, z ~ [2, 

where Ilfll is the norm in L2([2), d(z) is the distance from z E [2 to ~[2, and Cn = 7 r n / n !  is the 
volume of  the unit ball in C n = R 2n. Hence ~( [2 )  is a closed subspace of L2([2), thus a Hilbert 
space, and since the linear map 7-1.([2) 3 f ~ f ( z )  is continuous for every z ~ [2 we have 

f ( z )  = f ~  K(z,  w ) f (w)d~ . (w) ,  f ~. 7-[([2), z ~ [2, (3.1) 

where w ~ K(z,  w) is in 7-/([2) and depends continuously on z. (Here d~. is the Lebesgue 
measure.) For a general f ~ L2([2) the integral is equal to g(z) where g is the orthogonal 
projection of  f in 7-/([2). Since an orthogonal projection is selfadjoint, K has the hermitian 
property K(z,  w) = K(w,  z), so z ~ K(z ,  w) is in ~([2) ,  and [2 x [2 3 (z, w) ~ K(z,  w) is a 
harmonic function, hence real analytic. It is called the Bergman kernel. 

E x a m p l e .  For the ball [2 = {z ~ c n ;  Iz[ < R} the Bergman kernel is 

K(z,  w) = C n l R 2 ( e  2 - (z, ~v)) -n - l ,  z, w ~ [2; Cn = rrn/n[. (3.2) 

It suffices to verify this when R = 1. First we shall prove that 

f ( z )  = ff~ K ( z , w ) f ( w ) d 3 . ( w ) ,  z E [2, 

if f is a polynomial. By the unitary invariance we may assume that z2 . . . . .  Zn = O, 
and we may also assume that f ( z )  = z ~ for some multiindex or. Since K(z,  w) is equal to 
C~ 1 ~ ~  (z, Cv)k(k + n)!/n!k! we have then 

OO 

+ n)!/n!k!d)~(w)/Cn . 
k=0 

The only non-vanishing term occurs when otl = k and ~2 . . . . .  an = 0. Since 

f a l w l 1 2 k d ~ . ( w ) - - - - C n _ l f o l ( l - - r 2 ) n - l r ~ 2 7 r r d r  

1' = JrCn-I (1 - t )n-l tk d t =  rrCn-I (n -- l)!k!/(n + k)[ = Cnn!k!/(n + k)[, 

this proves (3.2) for polynomials f ,  hence for functions f which are holomorphic in a neighbor- 
hood of [2. If  ~o is a continuous function with compact support in f~ we can apply this to K~o, 
which gives K(K~o) = K~o, hence using the Hermitian symmetry 

IIg~oll 2 = (K~p, g~o) = (K~o, ~p) < IIg~ollll~oll, 

so [[g~p[I _< I1~o11, which proves that K defines a selfadjoint operator with norm < 1 with range 
in 7-/([2) and equal to the identity on 7-/(f2). Hence K is the orthogonal projection, so II K II = l, 
and since f~  K(z,  w ) K ( w ,  ~)dZ(w)  = K(z,  ~) when z, r ~ [2, we have in particular 

g ( z , z )  = f IK(z, w)12 d)~(w) = sup If(z)12/llfl] ~'. 
Jf~ f s~(f~) 
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To study the Bergman kernel K(z, w) of an arbitrary open bounded set f2 C C with smooth 
boundary we shall first prove that if f ~ C ~ ( ~ ) ,  then 

K f = f - a u / O z ,  where I A u = 0 f / 0 ~  in f2, u = 0  on Of 2. (3.3) 

Defining the map K for a moment by (3.3) we shall prove that the closure of K is in fact the 
Bergman projector. First note that K f  is holomorphic since a(Kf) /O~ = af /o~-O2u/azO~ = O. 
Secondly f - K f  = Ou/Oz is orthogonal to every holomorphic function g, for (Ou/Oz, g) = 
- ( u ,  aglOW) = 0, since u = 0 on 092. Hence K is indeed the orthogonal projection on the 
holomorphic functions in Q, restricted to a dense subset of L2(fl). 

Let G(z, w) be Green's function for the Laplacian with Dirichlet boundary condition in 
fl, and write G(z, w) = E(z  - w) + Go(z, w) where E(z  - w) = (2zr) -1 log Iz - wl is the 
fundamental solution. Then Go is smooth in ~ x f2 \ A~a, and by (3.3) we have 

( K f ) ( z )  f ( z )  = - a / a z s  w)Of(w)/OlbdL(w) ~ " -- = 40"G(z, w)/OzOgof(w) d~(w) 

in the sense of distributions. Since 02 E(z - w)/OzOffJ = -02  E(z - w)/OzO~ = - 8 ( z  - w) /4  
it follows that 

K (z, w) = 402Go(z, w)/OzOCo . (3.4) 

This formula shows not only that the Bergman kernel can be obtained from Green's function, but 
in view of the boundary conditions Go(z, w) = - E ( z  - w) when z or w is in the boundary, one 
can recover Green's function from the Bergman kernel and two applications of Cauchy's integral 
formula. 

The definition of the Bergman kernel uses only the most elementary facts from analytic 
function theory and nothing which is specific for the case of several variables. Nevertheless it 
was in the early 1950's by some mathematicians regarded as a promising approach to function 
theory in several variables. In a study of potential theory and conformal mappings in the one- 
dimensional case based on the Bergman kernel, Garabedian and Schiffer [19, p. 164] wrote: "Our 
new attack [ . . .  ] has the advantage of generality, since it is applicable in the case of partial 
differential equations of elliptic type and since for functions of several complex variables the 
theory of the kernel function is well developed [ . . .  ] "  

As proposed in [19], Garabedian [17] took the kernel function as the starting point for a 
study of analytic functions of several complex variables, trying to connect the Cauchy-Riemann 
equations for functions of n complex variables with an associated system of n partial differential 
equations for n unknown functions, which he called generalized Laplace equations. Recall that if 
K (z, w) is the Bergman kernel function of an open set f2 C C n and w is fixed, then ~0(z) = K (z, w) 
minimizes ff2 I~~ dk~(z) among all 9 6 ~(f2) with ~o(w) = K(w,  w); the minimum is 
K(w,  w) = ~o(w). The minimizing property means that 

o(z)h(z)d~.(z) = 0 if 0h = 0 and h(w) = O, 

so one is "led to deduce that there exist Lagrange multipliers" go, gt . . . . .  gn where go ~ C and 
g[ . . . . .  gn are functions in f2 such that 

f q)(z)h(z)d)~(z) -b ~ f g.i(z)Oh(z)/Ozj dL(z) + goh(w) = O. 
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This is a very questionable point in the argument. Ifa linear form in a Hilbert space Hi vanishes in 
the kernel of a closed linear map T from HI to another Hilbert space/-/2, that is, in the orthogonal 
space of the range of the adjoint T* �9 H2 ~ HI, one can only conclude that the linear form is 
the scalar product with an element in the closure of the range of T*. The argument is therefore 
at best heuristic. In that spirit we assume as in [17] that the gj exist and are regular up to the 
boundary. Taking h ~ C~(f2 \ {to}) we find that ~o = y~.~ OgjlOZj in f~ \ {w}, with h = r we 

obtain go = - 1 ,  and allowing general h E C~176 get 

r = y ~  Ogjl~Zj -1- 8u,, 

if # is a defining function for f2. Let 

n 

y ~.gjOQIOZj = 0 o n  O f  2 

1 

")--gn C n E ( z , w ) = - ( n - 2 ) ! ~ r - n l z - w l -  - ,  z, w e  , 

be the homogeneous fundamental solution of �88 = )--~7 O2/OzjOSj, thus 

n (OE(z, w)/O~j) 8u, = ~ OlOzj = OIOzj [ - t(n -- l)!sr-n(Zj - w j ) i Z -  wl-2n] , ~ 
1 1 

which gives 

n 

K(Z, to) = 9(Z) = ~ OGj(z)/OZj; Gj(z) = gj(z) + (n -- l)!7r-n(zj -- wj)lZ -- w1-2n . 
1 

In [ 17, Theorem 1] it is stated without any justification that Gj is regular in Q; we have of course 

n n 

Gj(z)Oo(z)lOzj = y~, OE(z, w)IOzjOo(Z)IOz j,  Z E Of 2. (3.5) 
1 1 

The Cauchy-Riemann equations for r lead to the equations 

n 

O-Gj(z)/OzjOzt = 0, k = l . . . . .  n ,  (3.6) 
j=l 

called "generalized Laplace equations" in [ 17]. It was observed that they are the formal Euler 
equations for minimizing 

i~2 ~10Gj(z)I~zj  2d)~(Z) 

but that the lack of ellipticity does not allow one to apply the Dirichlet principle. A minimizer 
would be far from unique anyway, and in [17] it is therefore required that ff~ Y~7 I Gj (z)12 dZ(z) 
should also be minimal, that is, that 

n n n P 

y ~  # Gj(z)hj(z) d)~(z) = 0 i f  ~ Ohj(z)lOz] = 0 in f2, ~ hj(z)~o(z)lOzj = 0 in Of2. 
1 1 1 

, /  

With the same heuristic argument as before this would mean that there is a function O such that 

n n 

1 1 
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so G j ( z )  = O0(z) / O~ j and K (z, w) = �88 AO , 

Z O0(z)/O~jOO(Z)/Ozj = OE(z, w)/O~jOO(Z)/Ozj on 0 ~ .  (3.5)' 
1 1 

In [17, Theorem 21 it is claimed that minimizing II AO II under this boundary condition yields the 
Bergman kernel. Both "Theorems" 1 and 2 are mentioned as statements one is "led to", but at the 
end of Section 3 in [ 17] it is admitted that what has been given is only a "formal apparatus for a 
modified Dirichlet principle in the theory of analytic functions of several complex variables". 

Two years later Garabedian [18] attacked the problem of finding the function 0 above. 
Section 3 starts as follows, with slightly modified notation: "Given an arbitrary complex-valued 
function p on 0f2, we let 13 denote a function defined in ~ with 

~-~ Ofl/OZjOQ/OZ j = p on 0f2, 
j -- i  

such that 

alAl312dX = minimum. 

We shall study the nature of the extremal function 13 by making elementary variations" No 
motivation at all is given for the existence of a (regular) minimizer which hides the real difficulty, 
so the article only provides the fairly simple verification that if there is such a minimizer, then 
it leads to a formula for the Bergman kernel as above. However the statements are labelled as 
theorems, although no valid proofs are given. 

In functional analytic terms the approach of [17, 18] can be described as follows. (See 
also Appendix B.) Let T be the maximal operator defined by 0 from L2(~2) to L~o.l)(~2), the 

space of (0, 1) forms with coefficients in L2(~2). Thus u E L2(f2) is in the domain of T if 
and only if Ou/O~j ~ L2(f2) for j = 1 . . . . .  n in the sense of distribution theory, and then 
Tu = Y~n l Ou/O~j d~j.  The adjoint T* is the closure of the operator defined by ~-~ gj ( z )  d~j ~-* 
- Y~n l Ogj/OZj, where g is a smooth (0, 1) form with compact support in ~2. In a weak sense, 
Y,..gjOp/Ozj = 0 on Of a when g is in the domain of T*. The Bergman operator K is the 
orthogonal projection on Ker T, which is the orthogonal space of the range of T*. If  the range 
o f T *  is closed and u 6 L2(g2), then u -- K u  = T*g for some form g in the domain of T*, and 
there is a unique choice of g orthogonal to Ker T*, that is, in the range of T (which is closed if 
and only if the range of T* is closed). Thus we can write g = TO and obtain 

Ku = u - T*TO . 

[When n = 1 then T* is injective so this second step is not required; T T * g  = Tu gives g as the 
solution of a Dirichlet problem which leads to (3.4).] Of course O is not unique either unless we 
require that it is orthogonal to the kernel of T; T*T  is a densely defined, selfadjoint injective and 
surjective map in this space. Summing up, to carry out Garabedian's program one needs to prove 
that T, thus T*, has a closed range and that smoothness is maintained in the preceding steps. 

Garabedian's articles [ 17, 18] were followed by [20] in collaboration with Spencer. Moti- 
vated by Hodge's original definition of harmonic forms on a compact manifold they considered 
in an open set ~ C C n with smooth boundary the forms f of type (p, 0) such that Of = 0 and 
8f  = 0 where 8 is the formal adjoint of 0. If we write 

f = E '  f l ( Z ) d z I '  where I = (it . . . . .  ip), dz  I = dzit A - . .  A dzit , , 
Ill=p 
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I2' f t  is antisymmetric in the indices, and means summation only for il < -. �9 < ip, then 

n n 

 f=-E Z' 
j = l  Ill=p j = l  IKl=p-  1 

OfjK(Z)/OZj dz K �9 

Since 80 + 08 = - -A/4 ,  where A is the Laplacian, the equations Of = 0 and 8 f  = 0 imply that f t  
is a harmonic function. Hence the orthogonal projection in L~p.o ) (~)  on the subspace 7~(p.0)(f2) 

of"harmonic" forms has a kernel K(z,  w) such that K(z,  w) (resp. K(z,  w)) is in ~(p.O)(f2) as 
a form in z (resp. w). Denote by 0 and 8 the maximal operators defined in L 2 by 0 and 8. (p.0) 
The adjoint operators are the minimal operators 8c and Oc defined as closures of 8 and 0 acting on 
(smooth) forms of compact support of type (p + 1, 0) and (p - 1, 0), respectively. Now Ker 0 
(resp. Ker 8) is the orthogonal space of the range of 8c (resp. Oc), and these spaces are orthogonal 
since 02 = 0. Hence the orthogonal space of ~(p.0) is the orthogonal sum of the closure of the 
range of 8c and the closure of the range of 0c [cf. (2.4)]. I f  these ranges are closed then 

K f  = f - Beg - Och, where 08cg = Of, 80ch = 8 f  , 

when f is smooth and of compact support in ~.  [This is the analogue of (2.4).] With E 
now denoting the fundamental solution of - � 8 8  = 80 + 08 (note the change of sign) we have 
f = (80 + 08)E f ,  hence 

K f  = S G + O H  where G = 0 E f - g ,  H = S E f  - h .  

Then 08G = 0(80 + 08 )E f  - 08g = 0 and similarly 8OH = 0. We should take g orthogonal to 
the kernel of 8c, that is, in the closure of the range of 0, which implies 0g = 0, hence 0G = 0, so 
G is harmonic. Similarly we should take h orthogonal to the kernel of Oc, which implies 8h = 0 
and 8H = 0. Thus both G and H are harmonic, so boundary values are defined in a weak sense. 
That g is in the domain Of Sc and h in the domain of Oc gives g-iguo = 0 and h/x 00 = 0 on 0f2, 
that is, the boundary conditions 

G_J~)Q = (OEf)zOQ, H m OQ = (SEf )  A OQ , 

in addition to the equations 

OSG=O, OG=O;  8 O H = O ,  8 H = O .  

Here J denotes the interior multiplication which is adjoint to exterior multiplication. 

If  the complex defined by the 8 operator is exact, then H = 8 Q where Q is a (p, 0) form, 
and if Q is chosen orthogonal to the kernel then Q is in the closure of the range of 0c, hence 
0 Q = 0, so Q is harmonic. As in [20, p. 227] one should then, as in the classical approach to 
the Neumann problem using integral equations, be able to write Q as a simple layer potential 

Q = ~ E(z,()u(()dS(() 
~2 

! 

where dS is the Euclidean surface measure on a l l  and u( ( )  = Z Itl=p u i ( ( )  dz I is a form of 

type (p, 0) depending on ( ~ 0t2. Then H = 3Q satisfies the equation 8OH = 0 since 8H = 0 
and A H  = 0, so what remains is to satisfy the boundary condition 

(SQ)/x 0 0 = ( S E f ) / x  O0 on Of 2. (3.7) 
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The boundary value on 8 f2 of the potential of a simple layer ~r dS is a pseudodifferential operator 
of order - 1  in 0fl acting on r with principal symbol - 2  times the reciprocal of the Euclidean 
length of a cotangent vector to 8~2, and similarly for the derivatives. At a point on 0f2 where the 
positive Im zn axis is the interior normal, the principal symbol of the pseudodifferential operator 
u ~ ~Qlan is interior multiplication by -(/~/Isel 2 + IrYI 2 where (j  = sej + ir/y and (~, r/) = 

(set, r/t . . . . .  ~n-t, 0n-t ,  sen) is a real cotangent vector ~: 0 while qn = i~/l~l 2 + IrYI 2. When 
~' = r / =  0 and sen > 0 the principal symbol vanishes, so the pseudodifferential equation (3.7) 
is not elliptic. When [20] was written there was no theory of pseudodifferential operators so the 
operator was identified as a singular integral operator in the sense of Giraud, and it was claimed 
[20, p. 228] that his work implies solvability for all right-hand sides orthogonal to the solutions 
of the homogeneous adjoint equation. However, the crucial eUipticity condition, which occurs 
in the work of Giraud but is not as easily made explicit, was not examined so the argument is 
invalid. The same is true for the equation analogous to (3.7) which is required to find G. Just as 
in [17] and [18] the statements in [20] are therefore only justified on a formal level. 

In [21] the formal calculations of [20] were extended to KShler manifolds with boundary, 
which in view of the definition of K~ihler manifolds given above is not surprising. Solvability of 
the analogue of (3.7) above was again claimed to follow "on the basis of the singular Fredhoim 
theory;' so no valid proofs were given. This seems to have been understood later on, for in an 
article by Kohn and Spencer [45, p. 89] discussed below the investigations in [20, 21] were 
described as "'formal". 

From the well-known expression above for the Bergman kernel for a ball and the fact that 
the Bergman kernel of f2 on the diagonal in f2 • ~ increases if ~2 is decreased, it follows that the 
kernel is unbounded at every boundary point which can be reached by a ball containing g2. On 
the other hand, at a boundary point z0 where a deleted neighborhood of z0 in some complex line 
through z0 is contained in ~,  the kernel has an analytic extension to a neighborhood of (z0, z0) 
by a classical theorem of Hartogs. This suggests that the boundary behavior is highly dependent 
on some kind of curvature property of the boundary (cf. [8, Section 6]). However, no second 
order conditions on the boundary were assumed in the articles [ 17, 18, 20, 21 ]. In hindsight it is 
therefore evident that they must be seriously flawed. 

4. Breakthrough, setback and success 

For a compact Riemannian manifold ~ with boundary we saw in Section 2 that each residue 
class of closed p forms modulo derived p forms contains precisely one closed p form h such that 
dch = 0 where d~ is the minimal operator defined by the formal adjoint d* of d. By de Rham's 
theorem it follows that the cohomology of f2 in degree p is isomorphic to the finite-dimensional 
vector space of such closed and coclosed forms. 

In [45] Kohn and Spencer took up the analogous problem for a complex manifold ~ of 
dimension n, with boundary 0f2. As already mentioned the exterior differential d is a sum 0 + 
where a (resp. 8) maps forms of type (p, q) to forms of type (p + l, q) (resp. (p, q + 1)), and 
we have 

8 2 = 0 ,  0 2 = 0 ,  8 8 + 8 3 = 0 .  

For z = (r0, r! ) E C 2 \ {0}, Kohn and Spencer studied more generally the linear combination 

O~ = 1:00 + r io 

which maps r forms to r + 1 forms, with O~ = O. When r0rl r 0 they established, using 
singular integral operator theory, results parallel to those of Hodge theory for the Riemannian 
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case. This is not very surprising, for if Tr denotes multiplication of forms of type (p, q) by -P-q  ~0 ~1, 
then dr = Tr d T r  1. Hence the dr-closed (resp. dr derived) forms are precisely Tr times the 
d-closed (resp. d derived forms). The only really new problem therefore concerns the operators 
0 and 0. Since they only differ by a conjugation it suffices to study the operator 0. For every 
fixed p = 0 . . . . .  n it defines a complex where 0 acts from forms of type (p, q) to forms of type 
(p, q + 1). Without serious restriction we shall take p = 0. By the Dolbeault isomorphism [ 14] 
the cohomology is then isomorphic to the cohomology of ~ with values in the sheaf of germs of 
holomorphic functions, which was known to vanish when ~ is a Stein manifold, hence if ~ C C n 
and the Levi form of 0~  is strictly positive definite. It was therefore to be expected that if Oc is 
the minimal operator defined by the formal adjoint 0 of 0 with respect to the L 2 norms defined 
by a Hermitian metric in ~, the corresponding "Laplace operator" 

A = ~cO + OOc 

should then be invertible in L 2. The study of this operator is called the [9-Neurnann problem. 
Proving invertibility analytically would yield an alternative approach to the basic existence the- 
orems in the theory of functions of several complex variables based on sheaf theory. However, 
little progress towards this goal was made in [45] where it was recognized that the problem leads 
to singular integral equations which are not "regularizable" in the sense of Giraud, that is, the 
boundary problem is non-elliptic in present terminology. (This is clear, for in the half space 
where Im Zn > 0 a bounded solution of the homogeneous problem is given by e iz" f where f is a 
constant (p, q) form not containing dz.n.) In [45] only the case where f2 is a ball and the metric is 
the standard metric in C n was successfully studied, by means of spherical harmonics expansions. 
Although such methods do not generalize it was stated optimistically on p. 132 that "there is little 
doubt that it is solvable and we hope to return to this question in another article." 

The decisive step towards a solution of the 0-Neumann problem was taken by Morrey [47]. 
Whitney had proved two decades earlier that every C a manifold M of dimension n admits a 
proper C a embedding in R 2n+l (in fact in Rzn). When M is real analytic and has a real analytic 
Riemannian metric, it had been proved by Bochner in the compact case and by Malgrange in 
general that there is a real analytic embedding. The existence of a real analytic embedding means 
precisely that real analytic functions on M are dense in C a ( M ) .  This could be proved using the 
analyticity of solutions of a real analytic Laplacian on M, but when M is compact Morrey gave 
a new proof which did not require such a tool. He first complexified M to a complex analytic 
manifold M of complex dimension n, where M is then embedded as atotally real submanifold 
of real dimension n. With respect to some C a hermitian metric in M, let MR be the tubular 
neighborhood of M consisting of]~oints at geodesic distance < R to M. For small R > 0 this is 
a relatively compact open set in M with a C cc strictly pseudoconvex boundary. The key to the 
construction of global analytic functions on M was the estimate in L 2 norms on MR given by 

I]~0112 _< CR2(llDc~oll ~- + II  011=), (4.1) 

for smooth (0, 1) forms ~o in MR in the domain of the minimal operator defined by 0. The proof, 
given in [47, Section 6], depends on an integration by parts and is quite elementary. However, it 
is the decisive discovery on which the L 2 techniques in the theory of functions of several complex 
variables have been built. From this estimate Morrey concluded that if KR is the orthogonal 
projection in L2(MR) on holomorphic functions then 

Ilu - gRull = < C R  = II ull 2 (4.2) 

Given a C a function u on M one can by formal solution of the Cauchy-Riemann equations find 
an extension to M such that 0u vanishes to infinite order on M, and combining (4.2) with simple 
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standard estimates one concludes that KRU converges to u in C~(M) when R --+ 0. (This is a 
somewhat oversimplified version of Morrey's arguments but the main points are in his article.) 
However, as we shall see later, there was a gap in Morrey's arguments. 

Two months after Morrey's article in Annals of Mathematics Grauert [22] published an article 
in the same volume of the journal where he proved the embedding theorem without assuming 
compactness but using the full force of results from sheaf theory. Fortunately, this did not make 
everybody dismiss Morrey's article. J.J. Kohn extracted the crucial point in it, and in May 1961 
he communicated a note [37] where he stated the following general result: Let ~ be an open, 
relatively compact subset of a complex manifold with a hermitian structure, and assume that the 
boundary 0 ~  is in C cr and strictly pseudoconvex. Then every (p, q) form f E C~(f2)  can be 
written 

f = (0c0 + ~0c) u + h ,  (4.3) 

where u and h are (p, q) forms in CCr and ~h = 0, 0oh = 0. The set of such forms h is 
finite-dimensional. The main point in the proof, generalizing Morrey's inequality (4.1), was the 
estimate 

IIOf/OzlI?2 + Ilfllga -< C 0 f  + IlOcfll~ + Ilfll . (4.4) 

Here f ~ C ~ ( ~ )  is assumed to be in the minimal domain of the adjoint operator 0, and the 
norms are L 2 norms in f2 or in 0f2; Of~a?: is defined in a cover with complex analytic coordinate 
patches. (Kohn assumed that the hermitian metric was K~ihler close to the boundary but this 
hypothesis was removed in the later publications.) From this he concluded that f belongs to a 
compact set in the L 2 norm in ~ when the right-hand side is bounded. 

Let us briefly sketch how (4.4) is proved, in the notationally simpler situation where f2 C C n 
with the standard Euclidean metric. We simplify notation further by considering only (0, q) forms 
f ,  where 0 < q < n, 

f =  ~ ' f j ( z ) d 5  J, d~ J =dSjt A . . . A  dzjq, J =( j l  . . . . .  jq). 
IJl=q 

The components f j  are defined for all q tuples J of indices between I and n and are antisymmetric 
t 

in them; ~ means summation for increasing indices. Then 

Of= ~' Ofj/O~jd~jA d?: s, Of=-~ ~~' OYjK/OZjd?: K, 
j = l  [Jl=q j = l l f l = q - I  

and if f is in the domain of the minimal operator 0c then 

n 

~_, O0(Z)/OZ/f/K(Z) = 0, IKI = q - 1, z E 0f2, (4.5) 
j = l  

where Q is a defining function for [2. Thus 

n n I :I:=EE E' 
j = l / = l  [Jl=lLl=q 

if j f~ J , l  q~ 
otherwise it is equal to 0. When ei~ ~ 0 and j = l then J = L, and if j ~ l then removing I 

L, and j J  is a permutation of IL, then e / /  is the sign of the permutation but 
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from J gives the same multiindex K with length q - 1 as removing j from L, thus 

Ell jJ jtK ljK J jK 
: EjlKEIjKEIL : --EIKE L , 

which gives the decisive identity 

n n 

I :12= la:,m;I 
j = l  IJl=q j,l=l I K l = q -  1 

aflr/a~j of jr /o~t . 

Since f is in the minimal domain Of Oc we obtain, if all derivatives are moved to the left by partial 
integration, that 

n 

j = l  IJl=q 

n 

f aflK/O~jf.irOO/~ztdS, - Z Z '  
j.l=l I K l = q - I  

where dS is the Euclidean surface measure on 0 f  and we have assumed that the Euclidean length 
of d~o equals one there. Differentiation of (4.5) gives on 0 f  that 

~ ~ (02Q/OZjOZl f jK -]- OQ/OzjOf jK /OZl)-~ = O, 
l=1 j = l  

t/ 

i f  EglOO/OZl = O. 
1 

By (4.5) we can take gt = 3~K, which gives the fundamental identity 

j =  1 [Jl=q 

d- O2Q .fi f/ d S .  
~2 I K l = q - I  jd=l 

(4.6) 

Here we have assumed that 0 f  e C 2 and that f ~ C2(-~) is a (0, q) form satisfying (4.5), but 
with some care in the partial integration it suffices to assume that f ~ C l ( ~ )  satisfies (4.5). If  
0 f  is strictly pseudo-convex then If[  2 is bounded by a constant times the Levi form in the last 
term in (4.6), since (4.5) is fulfilled, so we have proved (4.4) without the last term. The proof 
in the case of a manifold with hermitian metric is essentially the same if one works with a local 
orthonormal basis of ( l, 0) forms instead ofdz j .  (See e.g., [26, Section 3.2].) Various error terms 
can be absorbed by the term II f II~ in the right-hand side of (4.4). Standard estimates for solutions 
of differential equations at a non-characteristic boundary show that (4.4) remains valid uniformly 
with the L 2 norm over 0 f  replaced by the L 2 norm over a parallel surface close to Off, and this 
implies that the set of smooth (0, q) forms f in the domain of 0c such that the right-hand side 
of (4.4) is bounded must be compact in LE(f) .  However, it is not evident that this conclusion 
extends to all f in the intersection of the maximal domain of 0 and the minimal domain of 0, as 
required when one wants to use results from functional analysis. 

At a CNRS meeting on partial differential equations in Paris in June 1962 Kohn [40] gave a 
lecture on his results. A manuscript for the first part of the article [38] containing the details was 
then available. Morrey, who was in Paris already before the meeting, was naturally eager to study 
it in detail, and it seemed to him that the preceding problem was not handled adequately. He went 
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to the library to see what he had done in his article and discovered the same flaw there. As a result 
there was at the end of the meeting some doubt about all the results on the 0-Neumann problem 
in spite of the beautiful estimates. In [40] it was observed that all problems would be resolved if 
one could prove the following regularity theorem (for 0~ ~ Ca) :  Let Dt be the closure of (0, q) 
forms in C ~ ( ~ )  satisfying (4.5) in the norm Ilfll~ + II0fll~ + IlDfll~. Then, i f f  ~ ~Dl and for 
some (0, q) form a e C ~ ( ~ )  it holds that 

(Of, Og) + (~cf, ~cg) = (a, g), g E D1, (4.7) 

it follows that f E C ~ ( ~ ) ,  hence 0c0f  + 00cf  = a. The difficulty in the proof is that even 
formally one can only expect f to have one derivative more than a (in the L 2 sense), as opposed 
to a gain of two derivatives for second order elliptic boundary problems. I had recently solved 
a similar difficulty for differential operators of principal type in [28, Chapter VIII] by working 
with norms involving powers of weight functions which help to make some constants small, 
and modifications of Sobolev norms involving a small parameter e in such a way that they are 
very weak for a fixed e but converge when e ~ 0 to the usual norm in a Sobolev space of 
high regularity. After the International Congress of Mathematicians in Stockholm in August 
1962 Kohn stayed a while in Stockholm and during our discussions then I suggested to him 
that something like that might work for his problem. I was at the time too unfamiliar with the 
formal setup to be able to carry out such a project. However, Kohn succeeded in doing so. His 
proof of regularity was announced in [39] with all details provided in the second part of [38], 
which meant that the solution of the 0-Neumann problem was finally on solid ground. This 
justified Morrey's proof of the embedding theorem for compact real analytic manifolds, and gave 
a new proof of the Newlander-Nirenberg theorem that all integrable almost complex structures 
are actually genuinely complex analytic. The advantage of the new proof was that it follows with 
little additional effort from the existence theory for the 0 operator whereas the original proof relied 
on reduction to a non-linear problem solved by an iteration method. This potential application 
was already pointed out by Spencer before the successful solution of the 0-Neumann problem. 
The reason for the simplicity of the new approach is that the proof of (4.4) is applicable with 
little change for an integrable almost complex structure which leads to the existence of analytic 
functions defining the complex structure. 

During the academic year 1962-1963 I gave a course in Stockholm on functions of several 
complex variables, mainly following the Tata Institute notes of Malgrange and the Cartan seminars 
1951-1952. When I went to Stanford in April 1963, where I had been appointed to a part time 
professorship and was going to lecture on my book [28], I had therefore improved my knowledg_e 
of complex analysis in several variables a great deal, but felt that I had to understand the 0- 
Neumann technique better. The first observation I made at Stanford was that the difficulty which 
had caused Morrey and Kohn problems could be handled essentially by the old Friedrichs lemma, 
using only regularization along a flattened piece of the boundary. (See Appendix A.) When I told 
Peter Lax, who was also at Stanford then, he pointed out that he and Ralph Phillips had written 
an article [46] where they did just that in another context, so it was not so much a new discovery 
as an understanding that Morrey and Kohn had missed the simplicity of the problem. Kohn's 
estimates together with this density theorem suffice to prove the existence of L 2 solutions of the 

equation, and standard elliptic theory then gives interior regularity. This suffices to complete 
the proof of Morrey's embedding theorem, for example. 

My experience with Carleman estimates in [28, Chapter 8] made it natural to examine how 
the L 2 estimates would be affected by using L 2 norms with respect to weight functions. If in (4.6) 
one replaces the Lebesgue measure d~(z) by e-~ d~(z) where ~p ~ C2(~), keeping in mind that 
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the adjoint of 0 with respect to the new L 2 norm becomes e~~ -~~ one obtains 

n 
( ]~f ]2  +[e~Oi)e_~Of[2)e_~Od~.(z) = ~ Z '  f f  a iofg/O~jl2e_~Od~.(Z) 

j=l IJ[=q 
n 

+ Z '  ~ Z O2~~ 
Igl=q-I j.l=l 

n 

+ Z ' ~  j.~l 020/OzjO~lfiKfIKe-~~ (4.6)' 
IKl=q-I [2 . =1 

when f is smooth in f2 and satisfies (4.5). When ~o is plurisubharmonic and 0~ is pseudoconvex, 
both terms on the right-hand side are non-negative. Using the fact that pseudoconvex domains 
are increasing limits of strictly pseudoconvex domains with smooth boundary, and that plurisub- 
harmonic functions are decreasing limits of C ~ plurisubharmonic functions, it is easy to deduce 
the following existence theorem [26, Theorem 2.2.1']: If f2 C C n is pseudoconvex and ~p is a 
plurisubharmonic function in f2 such that 

n ~ 
Z 02~~ ?~ > c(z) ]tj[ 2, t 6 C n , 

j.k=l 1 

in the sense of distribution theory for some positive continuous function c(z) in f2, and if f is a 
(0, q) form in L2oc(f2) such that 0 f  = 0, then the equation 0u = f has a solution u 6 L2oc(f2) 
with 

q fa lu(z)12e-~(") d~(z) <_ f lf(z)12e-~(Z)c(z)-l d~(z) (4.8) 

if the right-hand side is finite. If r is only assumed to be plurisubharmonic one can apply (4.8) 
with ~p(z) replaced by ~p(z) + 2 log(I + Izl 2) and obtain a solution u with 

2qfalu(z)12e-~(Zl(l+lzl2)-2d~(z)<_falf(z)12e-~(Z)dZ(z), (4.9) 

if the right-hand side is finite. The uniformity of the estimate in both f2 and r without any 
regularity hypotheses, makes this a very flexible and useful tool. 

At first sight the identity (4.6) suggests that the estimate (4.4) should be valid precisely when 
0f2 is strictly pseudoconvex. However, that is not the case. When 0f2 is pseudoconcave in some 
directions it turns out that the boundary term in (4.6) can be improved by partial integration in 
the other term on the right-hand side. In [26, Section 3.2] I proved that (4.4) is valid for smooth 
(0, q) forms satisfying (4.5) if and only if at every boundary point the Levi form has either at 
least n - q positive eigenvalues or at least q + 1 negative eigenvalues. Using also corresponding 
estimates involving weight functions it was proved in [26, Chapter 3] that the 0 cohomology is 
finite-dimensional in every open complex manifold f2 where there exists a function ~o 6 C2(~) 
such that f2c = {z 6 f2; ~0(z) < c} is relatively compact, d~p # 0 on 0f2c when c is large, and the 
Levi form of 0~c has at least q + 1 negative or at least n - q positive eigenvalues then. This had 
already been proved by Andreotti and Grauert [2] using sheaf theory, but it was interesting to see 
that the approach using L 2 estimates led to the same conditions. 

In [26] there was no discussion of the case where the Levi form is non-degenerate but has 
the excluded signature (n - q - 1, q). Using (v) in Appendix B one can show that if there exists 
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such a point on 0f2 then the kernel of the ~-Neumann operator in [2 has infinite dimension if the 
range is closed. (See [32] and the references there.) 

The reference [26] also contains a result on the asymptotic behavior of  the Bergman kernel 
function at a C 2 strictly pseudoconvex boundary point. It has a special history. Stefan Bergman, 
for whom the kernel function is named, had been at Stanford for many years. He was a rather 
special person and had a reputation for cornering people to talk interminably about the kernel 
function for which his enthusiasm was unbounded. For quite a while I managed to avoid him, but 
at last I was cornered. What  he wanted to talk to me about particularly was his article [5]. First he 
spoke at great length about how it had been rejected by Torsten Carleman when he had submitted 
it to Acta Mathematica, which still distressed him after more than 30 years. In order to convince 
me how wrong Carleman had been he then started to talk about the results in [5] on the boundary 
behavior of  the kernel function for open sets in C 2. They depended on approximation from the 
inside and outside with either balls or bidiscs, after an appropriate analytic change of  variables. 
An obvious weakness was that he needed to have suitable new analytic coordinates defined over 
the whole set, and it is seldom possible to decide if such coordinates exist. However, at every 
C 2 strictly pseudoconvex boundary point one can choose local complex coordinates such that the 
boundary agrees with a ball up to higher order terms. When I walked home after being released by 
Bergman I realised that the new L 2 estimates were precisely what one needs to just ify Bergman's  
asymptotic formula, extended to n complex variables, at arbitrary strictly pseudoconvex boundary 
points of  a set for which the maximal 0 operator acting on scalars has a closed range, hence in 
particular for all pseudoconvex sets in C n. This was written down as Section 3.5 in my Acta 
article [26]. (A few years later Diederich [13] proved that the localization which is the main 

point in the proof could also have been based on the earlier sheaf theoretic methods.) Much more 
refined results have been obtained later on, and we shall come back to them in Section 5, but my 
result was the first general theorem of its kind as far as I know. 

There was much activity concerning the ~ operator in 1963. On October 7, 1963 Morrey 
wrote to me in Stockholm: 

Dear Professor Hormander: 

As you know, I have been interested in the ~-Neumann problem. My interest arose from the fact that 
my proof of the analytic embedding theorem used my incorrect (in some respects) solution of that problem 
for forms of types (0, 0) and (0, 1). So when I heard at the Congress that Kohn still didn't have a proof of 
the results he had announced earlier, I spent a couple of months last fall and proved those results. I wrote 
up an article on this problem which I sent to Kohn with the idea that it would be a joint article since I used 
a great many of his ideas. But he returned it, stating that he had finally proved the smoothness results on 
which all of his results were based and stating that he would send me the material as soon as it was ready. 

However, since I wanted my analytic embedding results cleared up, I went ahead and scheduled a talk 
at our colloquium on January 3. I received a reprint of Kohn's Proceedings note sketching his proof of 
the smoothness results just five days before I talked, which was not long enough for me to reconstruct the 
proof. However, I subsequently simplified his work considerably and wrote up a nice treatment of the whole 
problem for inclusion in my forthcoming Springer book. 

I talked about this work at the Novosibirsk conference and have sent in an abstract to speak about it 
at the forthcoming Bombay conference. Now I have heard from several sources that you have also written 
up a treatment of this problem. I was too busy last spring trying to finish the Springer book and writing my 
part of a joint text with Protter to go to any colloquia here or at Stanford, and so I didn't know about your 
work. So, I would like to have a manuscript of your work to refer to in the main article for the Bombay talk 
and in the part of my book concerned with this problem. Of course, if you yourself are intending to speak 
on this problem at Bombay (I've heard that you're going), please let me know because I could change my 
talk to be about the problem of Plateau for higher-dimensional manifolds. 
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Please let me hear from you soon. 

Sincerely yours, 

Charles B. Morrey, Jr. 

I answered Morrey on October 10: 

Dear Professor Morrey: 

Thank you for your letter. It was indeed a pity that we never got to talk about the ~}-Neumann problem 
last summer. Of course I was aware of your old interest in this question since the main idea in the proof of 
the estimates is yours, but I did not know that you were working on it now. My own plan was at first only to 
get familiar with Kohn's work, but then it turned out that extensions were not hard to obtain by introducing 
methods from the theory of one partial differential equation. Let me describe the various results: 

1) Let ~ be a smoothly bounded relatively compact subset of a complex manifold with a hermitian 
metric, let f be of type (p, q), let ~ and 0 be defined as usual. Then in order that 

(l ,l o 

it is necessary and sufficient that at every point on ~J~2 the Levi form has either at least n - q positive 
eigenvalues or at least q + 1 negative eigenvalues (n =dimension of the manifold). This leads to the results 
of Andreotti and Grauert, Bull. Soc. Math. France 90, 1962, for the sheaf (_9. 

2) In proving 1) I bypass the question of regularity on the boundary. It is enough to prove density of 
smooth forms in the space of forms considered, and this can be done by Friedrichs mollifiers. (Essentially, 
this result exists in an article of Lax and Phillips in Communications on Pure and Appi. Math.) 

3) It is very useful to introduce weight functions in the estimates, in the same way as in the uniqueness 
proofs for the Cauchy problem in the case of one equation or a determined system. Thus, with a fixed function 
~o, I replace the density dx by e -r~~ dx and consider the dependence of the estimates on r. In doing so I 
change the definition of the adjoint operator 0 to be the adjoint with respect to the new metrics. For example, 
for domains in C n, estimates are then obtained for arbitrary domains with pseudoconvex boundaries if ~o 
is strictly plurisubharmonic. It is not necessary to assume that ~2 is bounded so one obtains global results 
which for example can be used in an essential part of the theory of Ehrenpreis-Malgrange-Palamodov of 
general overdetermined systems of constant coefficient partial differential operators. However, the main 
application is that by choosing ~0 large at the boundary of ~ one obtains in this way a direct and simple 
proof of the "Runge" approximation theorem. The manuscript is only written in part yet. I hope to have it 
completed in December and plan to use it in Bombay. However, I see no reason why we could not both talk 
about these questions there, for the overlap does not seem to be large, at least from what I understand by 
looking at your Novosibirsk conference. 

I would of course be very interested if you could send me more details of your results. When my own 
article is written up, I will send you a copy fight away. 

Sincerely yours,/Lars HOrmander/ 

This letter is a fairly accurate summary of the article [25] I wrote for the proceedings of 
the Bombay colloquium on Differential Analysis held January 7-14, 1964, which also contains 

Morrey's article [48]. The complete manuscript of [26] was also ready just in time for that 

meeting. Kohn and Spencer were in Bombay too and lectured optimistically about more general 
overdetermined system, but that is still a quite unfinished story which cannot be discussed here. 

Shortly before the Bombay meeting, on December 9, Louis Nirenberg wrote me about 
progress concerning the full boundary regularity: 

There is very little mathematical news with me. In connection with my seminar I did succeed in 

working out the simplified proof of differentiability at the boundary for the ~-Neumann problem using just 
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the a priori estimates of Kohn. In fact Kohn then indicated to me a shorter and better derivation of them 
which doesn't even need the exponential factor, and so the whole thing is rather clean now. We will write a 
short joint note on the simplified regularity proof. Let me describe it to you even though you don't need it 
in your approach,--which I look forward to seeing in detail. 

The letter continued with an outline of the proof. The main point is to add a term e D ( f ,  g) 
to the left-hand side of (4.7) where D( f ,  f )  is positive definite in all the first order derivatives 
of f .  This gives a standard elliptic problem when e > 0 and one gets a solution fe which is 
smooth up to the boundary. An adaptation of the proof of Kohn's estimates gives estimates for 
the derivatives which are bounded as e ~ 0, of course just for one more L 2 derivative of f than 
assumed for a. The details appeared later in [42], and this meant that the 0-Neumann problem 
was well understood at the time of the Bombay meeting, a year and a half after the confusion at 
the CNRS meeting in 1962. The work on the boundary regularity motivated Kohn and Nirenberg 
to develop the first generation of pseudo-differential operators published almost simultaneously 
in [43]. 

There is an essential difference between the bibliographies in [25] and in [26] which suggests 
that when the manuscript for the Bombay meeting was delivered I had not yet heard about an 
article by Andreotti and Vesentini [3] which appeared in 1965, just as [26]. Motivated by my 
first article on the uniqueness of the Cauchy problem they also used Carleman estimates to prove 
the results of [2]. An interesting feature of the proof is that they start from a complete hermitian 
metric, which makes the problems related to weak and strong extensions of differential operators 
disappear at the expense of error terms which are handled using the weight functions. Perhaps 
the overlap between [26] and [3] was a reason why the introduction of [26] concluded with the 
following modest statement: 

"Apart from the results involving precise bounds, this article does not give any new existence 
theorems for functions of several complex variables. However, we believe that it is justified by 
the methods of proof." 

5. Some applications 

During the Spring and Summer quarters 19641 lectured at Stanford on the theory of functions 
of several complex variables. The main aim was to show that the new L 2 techniques could give 
an attractive alternative approach to the theory of coherent analytic sheaves on a Stein manifold, 
and supplement it by useful estimates. A somewhat expanded version of the lecture notes was 
published as [27]. 

Ehrenpreis'fundamental principle, first announced (somewhat incorrectly) in 1960, states 
that if P(D)  is an arbitrary J x K matrix of constant coefficient differential operators in R N, 
and ~2 is a convex open set in R N, then the system of differential equations P(D)u = f has a 
(smooth) solution u = (ul . . . . .  uK) in ~ for every (smooth) f = ( f l  . . . . .  fg)  in f2 such that 
Q ( D ) f  = 0 for all 1 x J systems Q(D) with Q ( D ) P ( D )  = 0. (By Hilbert's basis theorem these 
are finitely generated so only finitely many compatibility conditions are required.) Furthermore, 
every solution of the homogeneous equation P(D)u  = 0 can be decomposed as an absolutely 
convergent integral of exponential solutions. By duality and Laplace transformation one finds 
that the existence theorem will follow if one proves that given an entire function V in C u with 
values in C ~ such that 

I tp (~)V(~) le -HK( lmr  -u < 1, ~" ~ C N , 
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there exist another such function W with tP(~)V(~)  =- tP(~)W(~)  such that 

IW(~)Ie--HK(Im~)(I + I~'1) -~'  _< C, ~" ~ C g . 

Here v > 0 and HK is the supporting function of some compact set K C ~;  the constants v' > v 
and C are independent of V. Since HK(Im ~') + v log(l + I~1) is plurisubharmonic this can be 
proved using the results on "~ cohomology with bounds" which follow from (4.9), after a local 
construction of W has been made. (See [27, Section 7.6].) I tried to persuade Ehrenpreis to use 
this simple and flexible approach in his book [ 15], but he insisted that he had to use his original 
idea based on successively piecing together local solutions while keeping track of estimates. 
This is not easy to do. A sketch was given in Chapter IV of [15], but to give full details would 
undoubtedly be a formidable task. Palamodov's book [50], published the same year, did not use 
the L 2 existence theory either but followed an approach of Malgrange which involves the study 
of a real division problem which is in fact much harder. His motivation (see [50, p. 423]) was that 
the logarithm of the weight function e -#K (lm r + IF I) u which must be considered in the case 
of distribution solutions is not plurisuperharmonic if v > 0. This is of course true, but the strong 
pseudoconvexity of HK (Im g') near R n can be smeared out so that one can find plurisuperharmonic 
functions which work just as well. This was discussed in great detail in [29, Chapter XV]. A 
proof of the existence theorem for smooth solutions was given in the last chapter of [27], but 
the decomposition theorem for solutions of the homogeneous equation was not included until the 
third edition since it requires additional preparation on local analytic function theory. 

Approximation of  functions on totally real submanifolds was the starting point for Morrey's 
article [47]. Questions from the theory of function algebras brought up by John Wermer led to 
our joint article [34]. Let ~ be a C t totally real submanifold of C n, which means that at every 
point in E the tangent plane T intersects i T only at the origin. Then it follows from Whitney's 
extension theorem (cf. [29, Theorem 2.3.6]) that there exists a function ~o 6 C2(f2) such that ~0 
vanishes to second order on E and the second order term in the Taylor expansion at every point 
on E is the square of the Euclidean distance to the tangent plane. This implies that r is strictly 
plurisubharmonic at E, so it follows that every compact set K C E has a fundamental system 
of neighborhoods with strictly pseudoconvex boundary. When I] 6 C r and 2r > 2 + dim E the 
argument outlined above in connection with Morrey's result proves that, on a compact subset K 
of ~,  functions analytic in a complex neighborhood are dense in the maximum norm. Such a high 
regularity assumption was needed in [34] to pass from L 2 estimates to estimates in the maximum 
norm, but it was soon reduced by various authors using integral formulas and/or hyperfunction 
theory. However, there is a better way. The classical proof of Weierstrass' approximation theorem, 
by convolution of a function with compact support in R n with a Gaussian e -  (r ~)/e. (err)-"/2, gives 
at once when E --+ 0 that if u 6 C(E)  has very small support, then one can find ue. analytic in a 
complex neighborhood oJ and converging to u uniformly in E No~ and to 0 uniformly in a complex 
neighborhood of a compact set C (E A 09) \ supp u. Multiplication by a suitable cutoff function 
which is equal to 1 near supp u gives re. converging to u uniformly on E such that 0v~. ~ 0 in 
C a in a neighborhood of Z. To approximate an arbitrary continuous function u ~ C(K) one first 
decomposes u by a partition of unity into a sum for which the preceding Weierstrass argument 
works and adds the results. This gives ve converging uniformly to u in a neighborhood of K on 
E such that ~v~. --~ 0 in C a in a complex neighborhood of K. Using (4.9) we can then find w~. 
with ~we, = ~v~ in a "tubular" neighborhood f2 of K converging to 0 on compact subsets, and 
v~ - w~ then gives the required approximation. If E ~ C ~ then the approximation works in C r- t 
too. (Precise existence theorems for 0 in L 2 are no longer essential for this argument.) 

That solutions of convolution equations in convex domains can be approximated by sums of 
exponential solutions was proved in [30] by means of (4.9). The analytical problem encountered 
there is the following: Let f and g be distributions with compact support in R n such that the 
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quotient f ( ( ) / ~ ( ( )  = ~p(() of the Fourier-Laplace transforms is also an entire function. If  H f  
and Hg are the supporting functions of supp f and of supp g then H = Hf - Hg is the supporting 
function of a convex compact set K C R n, and 

I~P(~')I -< Ce eH(lm()eslr ( E C n , 

for every e > 0. If  r does not grow faster than a polynomial in R n then r =/~ where h E E p and 
supp h C K, hence g �9 h = f .  Then an approximation theorem for solutions of the convolution 
equation g �9 u = 0 follows from the Hahn-Banach theorem. However, r may grow faster than 
any polynomial in R n and the problem is to prove that in any case f is a limit in g '  of convolutions 
g �9 h where h e f '  has support close to K. This suffices for the application of the Hahn-Banach 
theorem. To approximate ~p by functions which are Fourier-Laplace transforms of distributions 
with support close to K we first define ~ ( ~ )  = e-~(r ") when I Re ~'1 > [ I m  ~'1+ 1 and 
~ (()  = ~p (()  when I Im ( I > I Re ~ I and make a smooth transition by a partition of unity so that 

a~(~)  < C'81~12eH(Imr Imr ~(~')~(~')  -- f(~') < I/(~')lt~l~'l 2 . 

Passing to L 2 norms, using_ (4.9), and returning to pointwise estimates we conclude that we can 
find u~(() with au~(() = alPs(() and 

lua(~')l _< C~8(1 + Ir H(lmf)+ellmr 

for some N depending only on the dimension. Then ~p~(() = ~ ( ( )  - ua(~) is entire and 

_< a (17(r162 § C 'eHf(Im()+sllmr + [ ( [ )N) . 

Thus ~p, is the Fourier-Laplace transform of a distribution h~ with support in an e-neighborhood 
of K, and g �9 ha --+ f in $ '  when ~ ~ 0. 

A construction of analytic functions with prescribed zeros using (4.9) was first achieved 
by Bombieri [6] in solving a problem from algebraic number theory. The point is that, given 
a plurisubharmonic function ~o in a pseudoconvex open set f2 C C n, one can by repeated use 
of (4.9) construct analytic functions f in ~2 with 

~ lf(z)12e-~~ (l  + lzl2)-3n d~(z) < oo (5.1) 

and f(zo) ~ 0 for a given point z0 such that e -*  is integrable in some neighborhood. Such 
points always exist. On the other hand, (5.1) implies that f (z)  = 0 ife  -~~ is not integrable in any 
neighborhood of z. (In the first edition of [27] I had tried to avoid the technical difficulties dealt 
with in Appendix A by a device using weight functions converging to 0 with different speeds at 
the boundary, perhaps motivated by [3]. This did not affect the conclusions on the a operator 
acting on C ~176 forms. However, the full force of (4.9) was only given for ~2 = C n where there is 
no boundary. Using a minor additional technical device the full result was restored in the second 
edition of [27], where the result of Bombieri was included.) The idea was further developed by 
Skoda [53] in a study of analytic submanifolds of cn; he also noted that the passage from (4.8) 
to (4.9) can be made so that one does not lose a factor ( I + lz  12) 2 in the estimates but only ( 1 + lz  12) 
times a power of the logarithm. Finally, Bombieri's idea is indispensable for the proof of Siu's 
theorem on the Lelong numbers of plurisubharmonic functions, or more generally closed positive 
currents. For these matters and references see e.g., [31]. 

Approximation of plurisubharmonic functions. Every subharmonic function p in an open set 
f2 C C is a limit of subharmonic functions of the form N - t  log If(z)l  where f is analytic in 
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and N is a positive integer. This can be proved by approximating the positive measure ( N / 2 z r ) A p  
with a discrete measure having integer point masses and constructing suitable analytic functions 
with the corresponding zeros and multiplicities. If instead p is plurisubharmonic in an open 
set ~2 C C n with n > 2 such an argument is impossible since the zeros are surfaces and not 
discrete. However, after a preliminary approximation showing that one may assume that p is 
strictly pseudoconvex, the same conclusion can be obtained as follows. First one chooses a 
dense sequence z l, z2, " ' "  E Q and for fixed v an analytic function g .  in a neighborhood o~v 
o fz l  . . . . .  zv such that Igu(z)l is equal to exp(Np(z ) )  when z = zl . . . . .  zv but is smaller by a 
factor e x p ( - N c v d ( z )  z) in wu where cv > 0 and d(z)  = minj_<v [z - z j[. After multiplication of 
gu  by a suitable cutoff function one can then use the existence theorems for the 0 operator with 
weight function e -2Np t O  change gN tO an analytic function fN with f .  - gN much smaller than 
e up for large N. When v and N tend to infinity in a suitable way then N - l  log I ful  ~ P. (See 
e.g., [3 I, Theorem 4.2.13].) 

A much deeper result for entire functions of order Q > 0 was proved with similar methods 
by Sigurdsson [52, Theorem 1.3.1]: If p is a plurisubharmonic function in C n of order O and 
finite type, then there exists an entire function f in C n such that 

t - ~  - log I f ( t z )D --+ 0 in L~o c (C n) when t ~ + o o .  

This leads to very complete results on the possible behavior at infinity for entire functions of order 
O. However, in the particularly interesting case 0 = 1 when one imposes boundedness conditions 
in R n the results are still incomplete (see [33]). 

The Bergman kernel for open sets f2 C C n with strictly pseudoconvex boundary is now well 
understood. If K is the Bergman kernel and f 6 C~(~2) then the projection f - K f  on the 
orthogonal space of the holomorphic functions is equal to Oc (Oc 0 + 00c)-10 f ,  hence 

K f  = f - -  Oc (OcO + OOc) -1 0 f  

which is the analogue of the classical formula (3.3). By Kohn's theorem on regularity at the 
boundary, the right-hand side is in C~176 if 0fl ~ C ~176 If  we take f depending only on the 
distance to a point w ~ f2 and with integral one, this means that z w-~ K(z ,  w) is smooth up 
to the boundary. Hence K(z ,  w) ~ Coo(~ x f2 \ 0 ~  x 0~2). As proved by Kerzman [36], 
one can replace 0~  x af2 by the diagonal. A complete asymptotic expansion of K(z ,  z) at the 
boundary was given by Fefferman [ 16]: If - Q  is a defining function of f2 then there are functions 
a, b ~ Coo(~) such that K(z ,  z) = a(z) /Q(z)  n+l + b(z) log Q(z). Here a(z)  is given for Z ~ 0f2 
by [26, Theorem 3.5.1]. Kashiwara [35] proved that when the boundary is real analytic then this 
is true with a and b real analytic close to the boundary. More complicated asymptotics of K(z ,  w) 
when z and w approach the same boundary point in an arbitrary way were obtained by Boutet de 
Monvel and Sjrstrand [7], but discussing their work would take us too far afield here. It seems 
clear that the methods used in these articles should suffice to determine the asymptotics for the 
reproducing kernels of "harmonic" (p, q) forms in a strictly pseudoconvex domain, as intended 
in [20, 21], but as far as I know this has not yet been done. 

We can also get an analogue of (3.4), for the self-adjoint operator (~c0 + 0~c) - l  is a right 
inverse o f - - l A  O0 + 00 _ y ~  9 - = = O-/OZjOZj, so the kernel can be written 

- E ( z  - w)~5.ik + Rjk (Z, ~o), where E(z  - w) = - ( n  - 2)!rr-nlz - wl 2-2n 

is the classical fundamental solution of �88 and Rjk E Coo(~ x ~ \ O~ X 0 ~ ) ,  AzRjk ( z ,  6o) = 
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Au, Rjk(z, tb) = 0. We have the boundary condition 

FI 

~o(z)/azj (Rj~ (z ,  Co) - E ( z  - w ) ~ j ~ )  = 0, z ~ 0 ~ ,  u, ~ ~ ,  ~: = l . . . . .  n ,  (5 .2)  

j = I  

and a similar condition for ]~--]~=l ~zRjk(z, Cv)d~j. Hence 

j .k 

which means that we have an analogue of (3.4), 

n 

K(z, w) = - ~ O2Rjk (z, Co)/OzjOCo~. (5.3) 
j .k=l  

With Gj(Z) = - ~ k  ORjk(z, Co)/~Cok, the formulas (3.5), (3.6) of Garabedian are justified for 
strictly pseudoconvex domains by (5.3) and application of 0/OCok to (5.2). For the form u = 
(~cO + ~ c ) - l ~ f ,  f ~ C~(f2), we have ~c~U + ~(~cU - f )  = 0, and since the two terms are 
orthogonal it follows that 0r = 0. Hence (~c~u, u) = lieu II 2 = 0, that is, 

~(~ f E(z - w) f (w)dX(w) - ~ f Ri' (z' Co) Of (w)/OCo' dX(t~ = ~ 

which means that ~y.k f ~Rik(z, Co)/OCo~f(w) d)~(w) d~j is ~ closed. Since f E C ~  is arbi- 

trary this implies that ~ ~--~7 Gj (z)dzj = 0. For strictly pseudoconvex domains it follows that 
there exists a smooth function 0 such that Gj(Z) ---- OO(Z)/OZj, as claimed by Garabedian in 
general. 

Appendix A 

In this appendix we shall review some basic facts concerning weak and strong definitions 
of maximal and minimal differential operators. (See also [26, Section 1.2].) Let s C R N be an 
open set, and let L(x, D) = ~-]~ Lj(x)Dj + Lo(x) be a first-order differential operator where 
L.i E Cl(f2, oK• j = 1 . . . . .  N, Lo E C~ CK• Here C K• denotes the space of 
K • J matrices with complex coefficients. (The extension to manifolds and vector bundles poses 
no difficulties, and this setup will simplify the notation.) The graph of the maximal differential 
operator defined by L(x, D) in L 2 consists of all pairs (u, f )  6 L2(~, C J) x L2(~2, C K) such 
that L(x, D)u = f in the sense of distribution theory. This means, that with L 2 scalar products, 

(u, L*(x, D)v) = (f, v), v ~ C~(f2,  cK) ,  where 

N N 

L*(x, o) = E L (x)oj + L; + ojLT(x) 
1 1 

is the formal adjoint of L(x, D). Thus the maximal operator defined by L(x, D) is the adjoint 
o f the formal adj o i nt L* (x, D ) with domain C ~  ( f2, C K ), so the maximal operator is closed and 

its adjoint is the closure of L*(x, D), first defined with domain C ~ ( ~ ,  cK);  it is called the 
minimal operator defined by L*(x, D). Similarly, the adjoint of the maximal operator defined 
by L*(x, D) is the minimal operator defined by L(x, D), that is, the closure of L(x, D) with 
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domain C ~ ( f l ,  C J).  I fu  �9 L2 (~ ,  C J)  is in the minimal domain of  L(x,  D) and L(x,  D)u = f ,  

and iff i  = u, f = f in ~ ,  ti = 0, f = 0 in Cfl, then L(x,  D)fi = f in R N if Lj  are defined 
in a neighborhood of  f2 with the regularity properties assumed above in ft. This is obvious if 
u E C ~ ( f 2 ,  C J)  and follows in general since L(x,  D) is continuous from LZ(R N) to D ' (RN) .  

Proposition A.1.  I f  f2 is bounded and 0~2 �9 C l, Lj  �9 C 1 when j r 0 and Lo �9 C O in a 
neighborhood off2, then the maximal operator defined by L ( x,  D) is the closure o f  its restriction 
to functions which are in C ~176 in a neighborhood off2. The minimal domain o f  L (x, D) consists 
precisely o f  the functions u �9 L2(~2, C J)  such that L ( x , D ) fi �9 L2(R N, C r )  i f  fi = u in [2 and 
fi = 0 in C[2. Then u is said to have vanishing Cauchy data with respect to L(x,  D). 

P r o o f  Application of  a partition of unity shows that when proving the statements it suffices to 
consider functions u with support close to a boundary point, with exterior normal v say. Choose 
a function X �9 C ~ ( R  N) with integral 1 and support in the half space where {x, v) > 0, and set 
X~.(x) = X ( x / e ) / e  iv. Then 

ue(x) = u �9 Xe.(x) = f a  u(y)x~.(x - y ) d x  

m 

is for small e > 0 in C ~ in a neighborhood of  f2 if {x,/z) > 0 for x ~ supp X when/z  is the 
exterior normal of  092 at a point in the closure of  supp u. I f  L(x,  D)u = f then u~, ~ u and 
f~. -*  f in L2(~)  when e --+ 0, and 

L(x,  D)ue. - re. = L(x,  D)(u * Xe) - (L(x,  D)u) * Xe. 

converges to 0 in L2(g2) by the classical Friedrichs' lemma. (See e.g., [26, Lemma  1.2.1].) This 
proves the first statement. To prove the second one we argue similarly. With L(x,  D)u = f in 
f2 and t~ = u, f : f in f2, fi = 0, j~ = 0 in Cf2 we have L(x,  D)fi = f by hypothesis. If  we 
set )~(x) = X ( - x )  and define ue. = fi * )(e., fe. = J 7 * )(e., then ue. �9 C~( f2 )  for small e > 0, 

and L(x,  D)ue. - fe ~ 0 in L 2 when e ~ 0, again by Friedrichs' lemma, so u~ -+ u and 
L(x,  D)ue. --* f in L 2 when e --* 0, which proves the second statement. [ ]  

A technical diff• in the study of the 0-Neumann problem is that one has to approximate 
at the same time within the domain of one minimal and one maximal differential operator. The 
following proposition covers the local arguments required after a change of variables which 
flattens the boundary 092, which is possible if 0f l  �9 C 2. 

Thus we consider now in an open neighborhood U of 0 �9 R s two differential operators 

N N 

L(x,  D) = E L j ( x ) D j  + Lo(x), M(x ,  D) = E M j ( x ) D j  + Mo(x), 
1 1 

and Lo ~ C~ cK~215  MO ~ C~ cKI• Let U_ = {x 6 U; xu  < 0}. 

where 

Proposition A.2.  Assume thatKer L s ( x )  andKer LN(x)  A Ker MN(X) haveconstantdimen- 
sion when x �9 U. I f  u �9 L2(U_,  C J)  is in the minimal domain o f  L(x,  D) and the maximal 
domain o f  M(x ,  D) in U_, and i f  suppu is sufficiently close to the origin, then there exists a 
sequence uv �9 CI(U)  such that uv restricted to U_ is in the minimal domain o f  L(x,  D) and 

uv -* u, L(x,  D)u~ --, L(x,  D)u, M(x ,  D)uv -+ M(x ,  D)u in L2(U_). 
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P r o o f  Letr0 = J - d i m K e r  LN(x)andr  = J- -d im(Ker  LN(x)NKer  MN(x ) ) ,whenx  ~ U. 
Since Ker L N (x) C)Ker MN (x) C Ker L iv (x) C C J we can choose a basis er+t (x) . . . . .  e j  (x) for 
Ker LN(x)  N Ker MN(X), and extend first to a basis er~+l(X) . . . . .  e j ( x )  for Ker LN(x)  and then 
a basis el (x) . . . . .  e j  (x) for C J. Shrinking U if necessary we can choose ej as a C 1 function of  
x, for if we first choose el (0) . . . . .  ej  (0) we can define ej (x) by projecting ej (0) along the space 

spanned by the other vectors ei (0) on the appropriate space. Writing u(x) = Y~J uu(x)ev(x) we 
have 

J N J N 

L(x, D)u(x)  = E  Z L j ( x ) e v ( x ) O j u v ( x ) - t - Z (  E L j ( x ) O j e u ( x )  + Lo(x)ev(x))uv(x).  
v=l j=t  v=l j= l  

Here LN(x)eo(x) = 0 when u > r0, and LN (x)el (x) . . . . .  Lu  (x)er~(x) are linearly independent. 
By left multiplication of  L by an appropriate C l matrix we can attain that 

LN(x)eu(x) .i,:o = (~v~)~=l, v < ro, LN(x)eo(x)  = O, v > ro �9 

Since MN(x)ev(x)  = 0 when v > r and these vectors are linearly independent when r0 < v < r 
we can similarly attain that 

MN(X)ev(x) = (Sv-r0.k)~tl, ro < v < r, MN(X)eu(x) = O, v > r . 

Finally we can choose a KI x K0 matrix A(x)  in C t such that we have Mu(x)ev(x)  = 
A(X)LN(X) ev(x), v = l . . . . .  ro, for this only defines the first r0 columns in A(x). Replac- 
ing M(x,  D) by M(x,  D) - A(x )L(x ,  D), we have attained that for the new operators, still 
denoted by L(x,  D) and M(x,  D), with the basis {e~} in C "t, we have 

LN(X)~j = 1 when 1 < j = k < r o ,  MN(X)k j=  1 when r0 < j = k + r 0 < r ,  

while all other elements in Lu (x) and in MN (x) vanish. 

The proof of  the proposition is now easy, for the only terms in L(x,  D) and M(x,  D) 
which contain derivatives with respect to xN have constant coefficients, so they commute with 
convolution with respect to the variables x' = (xl . . . . .  x u - t ) .  Choosing X 6 C~o(Rn-l)  with 
integral 1, we set 

/ 1  

ue(x) = ] u ( x ' -  ey ' ,Xu)  X (y') dy'  . 

Then u ~. is in the domain of  the minimal operator defined by L (x, D), u~ and all its derivatives with 
respect to the x r variables are in L2(U_),  and u~. ~ u, L (x , D )ue. ~ L (x , D) and M (x, D )u~. --~ 
M(x ,  D)u when e ~ 0, by Friedrichs' lemma. Hence also the derivatives with respect to xN 
of the first r components of ue. are in L 2, so they are continuous functions in U-'-~_. The first r0 
vanish when xu  = 0 since u~ is in the minimal domain of  L(x,  D). Making a small translation 
of  the first r0 components of  u~. in the negative Xu direction we do not change u~ or L(x, D)u~ 
very much, and then the support of these components becomes compact in U_. We can make a 
final approximation of ue. by convolving with )~ (x/8)/gJ N where ~ 6 C ~ ( R  N) has integral I and 
xu  > 0 in supp )~, and letting 8 ~ 0. Friedrichs' lemma is not needed in this final step. [ ]  

Phrased for two first order operators L and M between two vector bundles over an open 
subset f2 of  a manifold, with C 2 boundary having defining function 0, the hypothesis required 
to apply Proposition A.2 at every boundary point is that the kernel of  the principal symbol of L 
at (x, do(x))  and its intersection with that of  M have constant dimension in a neighborhood of  
0~.  This condition depends on the choice of  defining function and it is natural to expect that it 
should be sufficient to assume that it is valid on 0~.  Under a stronger regularity condition this is 
in fact true but we omit the proof, for the stronger hypotheses in Proposition A.2 are fulfilled by 
the 0-Neumann problem for any choice of  defining function. 
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A p p e n d i x  B 

For the convenience of the reader we shall here recall some basic facts from functional 
analysis used in this article. Proofs or references can be found in [26, Section 1.1] for example. 

(i) If Hi and/-/2 are Hilbert spaces and T : HI --+ /-/2 is a linear closed densely defined 
operator, then the adjoint T* :/-/2 --+ Hi is also closed and densely defined, and (T*)* = T. 

(ii) The orthogonal complement of the kernel Ker T of T is the closure of the range 7r of 
T*, thus the closure of RT is the orthogonal complement of Ker T*. 

(iii) The range of T is closed if and only if the range of T* is closed, and then 

IlfllHt <CIITfIIH2, f ~ Dr  07-r [Iglln2 <fliT*glint,  g e D r ,  O g r  ; 

moreover, the range of the selfadjoint operator T*T (resp. TT*) is equal to that of T* (resp. T). 

(iv) If H3 is another Hilbert space and S : H2 --+ /-/3 is a linear closed densely defined 
operator with ST = 0, then R,r and ~ s  are both closed if and only if 

,g,%, < c 2 (llT-*gll 2 2 0 . - H, + II Sg II ; g ~ D r ,  n ~gs,  g _L N ,  

N = Ker T* O Ker S = Ker (TT* + S'S) . 

Then H2 = R.T ~ Tr ~ N = ~TT* ~ T~s*s (~ N and the range of TT* + S*S is closed. 
Conversely, the ranges of T and S are closed if the range of TT* + S*S is closed. 

(v) R.r and 74.s are both closed and N = Ker T* n Ker S is finite-dimensional if and only if 
every bounded sequence gt e 79T, n 79s such that T*gk -+ 0 in Hi and Sgk --+ 0 in H3 has a 
convergent subsequence. In particular this is true if 

{g  vr, nvs; Ilr*gll2+llSgll , + IIg1122 _< l} is precompact in H2. 

The condition in (v) means that T and S have closed range and that Ker S / R r  is finite- 
dimensional so it is not affected if the norms in Hi, H2, H3 are replaced by equivalent norms. 
However, the operator T* changes a great deal, and this is exploited in the estimates involving 
weight functions discussed in Section 4. 

Appendix C 

As mentioned in the introduction, I have found in my files a three page manuscript with 
the heading ~-Neumann Problem (History). I believe that it was written by D.C. Spencer and 
reproduce it here with the only change that the keys to the references are changed to fit the more 
extensive bibliography in this article. 

"The problem was first formulated by D.C. Spencer in 1954, as a modification of an earlier 
problem considered by P.R. Garabedian and D.C. Spencer [20, 21]. The relationship between 
the ~-Neumann problem and the Garabedian-Spencer problem was described by Spencer in 
lectures at the Coll~ge de France in January-February, 1955, entitled "Les opdrateurs de Green 
et de Neumann sur les varirt~s ouvertes riemanniennes et hermitiennes" (copy in the library 
of the Institut Henri Poincar6). The relationship is described in the real case (with the exterior 
differential operator d replacing 3) by P.E. Conner in his thesis [9] where the ~-Neumann problem 
corresponds to the laplacian AM and the Garabedian-Spencer problem to the laplacian AN. 

The solution of the a-Neumann [problem] on strongly pseudo-convex manifolds with smooth 
boundary was first obtained by J.J. Kohn [38] who, as a by-product, obtained new proofs of 
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the theorem of Newlander-Nirenberg [49] and of the Levi problem. Kohn's solution used, in 
particular, a basic estimate which, in the case of (0, 1) forms on strongly pseudo-convex manifolds, 
was first given by C.B. Morrey [47] (to whom Spencer had communicated the 0-Neumann problem 
in 1956). 

Later, L. H6rmander [26, 27] introduced Carleman type estimates in the context of this 
problem and was able to generalize many of the above results and simplify their proofs. However, 
his methods do not yield the boundary regularity. 

A. Andreotti and E. Vesentini [3] also used Carleman-type estimates, but on a complete 
manifold; their results are parallel to those of H6rmander. 

Kohn and H. Rossi [44] treated the 0-operator restricted to the boundary of a domain (or 
to submanifolds of higher codimension), the so-called 0b-problem. The abstract 0b-Neumann 
problem was solved by Kohn [41]." 
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