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If we have f: C — Aand g: C < B then
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A xc B is an amalgamated free product.

Example
> SLQ(Z) = Z6 *7, Z4

2/23



Amalgams As Fundamental Groups

3/23



Amalgams As Fundamental Groups




HNN Extensions

4/23



HNN Extensions

Definition
If C is a subgroup of A and we have h: C < A, then

Axc = (Sa,t | Ra, tct™ = h(c))

Axc is an HNN extension.

4/23



HNN Extensions

Definition
If C is a subgroup of A and we have h: C < A, then

Axc = (Sa, t | Ra, tct™1 = h(c))
Axc is an HNN extension.

HNN Extensions As Fundamental Groups

7(X):4

Y = "f.; subspaces 4
(Y )e
r(2)= Ax
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HNN Extensions

Example

» Surface Groups

7T1(22) = 7"—1(5)*2
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Conjugation in m1(X>)

71(22) = 7T1(5)*<5> =
(generators of m1(S), t | Ryys), t 1ot = &)
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Application to Group Theory

Theorem (Grushko)

Let F be a finitely generated free group, G = Gy x Gy and let
¢ : F — G be a surjective homomorphism. Then there are
Hi, Hy < F such that F = Hy x Hy and ¢(H;) = G;.
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Application to Group Theory

Theorem (Grushko)

Let F be a finitely generated free group, G = Gy x Gy and let
¢ : F — G be a surjective homomorphism. Then there are
Hi, Hy < F such that F = Hy x Hy and ¢(H;) = G;.

= rank(G) = rank(Gy) + rank(G)

Showing rank(G) > rank(Gi) + rank(Gy):

» Assume rank(G) = n, G generated by x, ..., X,
¢:Fp— G
Grushko = F, = H; x Hy with ¢(H;) = G;
rank(Hy1) + rank(H2) = n
rank(G;) < rank(H;)
rank(Gi1) + rank(Gz) < n

vVvYvyyVvyy
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Special Case of Bass-Serre Theory

Basic Set Up:
» G acts on tree T w/o edge inversions
» T/G has one edge (2 cases)

P > ™

¥ TR -___-

» Choose lift of T/G back to T

» Consider edge and vertex stabilizers. Gz — Gy,
> G= G\71 * Gy G\72 G= 7*Gs
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Example: Z = {1}xq,

» 7 acts on tree T w/o edge inversions

» T/Zis a loop
e

W

» Choose lift of T/Z back to T

e
i

» Stabilizers of & and Vv are trivial

> 2= {1}
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Example: G = Z3 *x Z»

» T/G is a segment

» Lift T/Gto T

> G‘71 = <a> = Z31 G\72 = <b> = ZQ, Gé‘ = {1}
» Recover G = 73 * 7
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Example: Surface Group G = m1(X»)

» m1(Xp) actson T
> T/m(X2) is a loop
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> Stab(8) = (1) = Z
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Example: Surface Group

» Lift T/m(X2) to back T
» Stabilizer of V7

> Stab(\7) = 7T1(22 — ’y)
> w1 (X2) = (X2 — )%y

14/23



Ends of Spaces

Let X be a locally finite simplicial complex.

15/23



Ends of Spaces

Let X be a locally finite simplicial complex.

Definition
e(X) = sup{n | 3 compact subcomplex K such that X — K
has > n unbounded components}.

15/23



Ends of Spaces

Let X be a locally finite simplicial complex.

Definition
e(X) = sup{n | 3 compact subcomplex K such that X — K
has > n unbounded components}.

Examples

15/23



Ends of Spaces

Let X be a locally finite simplicial complex.

Definition
e(X) = sup{n | 3 compact subcomplex K such that X — K
has > n unbounded components}.

Examples

» X compact <= e(X)=0

15/23



Ends of Spaces

Let X be a locally finite simplicial complex.
Definition
e(X) = sup{n | 3 compact subcomplex K such that X — K
has > n unbounded components}.
Examples
» X compact <= e(X)=0
> e(R)=2

|2

K
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Ends of Spaces

Examples

» X = infinite 4-valent tree, e(X) = o0
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Ends of Groups

Definition
For a group G with generating set S, Cay(G, S) is the graph with:
> vertices = G

> edges =geegs(ge G,s€S)
Definition
If G has finite generating set S, then e(G) = e(Cay(G, S)).

Examples

» ¢(G) = 0 for finite G because Cay(G,S) compact
» e(Z) =2 because Cay(Z,{1}) =R

i
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Ends of Groups
Examples

» e(Z?) = 1 because Cay(Z?,{(1,0),(0,1)}) = infinite grid

]
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Ends of Groups
Examples
» e(Z?) = 1 because Cay(Z?,{(1,0),(0,1)}) = infinite grid

a——

a5

» e(F2) = oo because Cay(Fz,{a, b}) = infinite 4-valent tree
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Universal Covers of Compact Simplicial Complexes

Theorem

If X is a compact simplicial complex with universal cover
p: X — X, then e(m1(X)) = e(X).

Corollary
If G is a finitely presented group and H < G is a finite index
subgroup, then e(G) = e(H).

Proof of Corollary.
» X compact simplicial complex with 71(X) = G
» Y cover of X corresponding to H
» Y is a finite cover (because H finite index)
> Y is compact with universal cover X

> e(H) = e(m(Y)) = e(X) = (6)
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Theorem (Freudenthal)
e(G) € {0,1,2,00} if G is finitely generated

Proof.
> 2<n=¢(G) <
> Z = Cay(G,S)
» Z — K has n unbounded components Ay, ..., A,
» |G| = oo so can find g such that gk N K =), gK C A;
> A; — gK has 1 unbounded component
» = Z — gK has 2 unbounded components
» 7/ — gK = Z — K has 2 unbounded components
> e(G)=2
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Big Theorem

Theorem (Stallings)

If G is a finitely generated group, then e(G) > 2 <= G splits
over a finite subgroup.

What goes into the proof:

(=) Construct tree T on which G acts with quotient a single edge

21/23
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A Simple Case Of The Other Direction
G finitely presented, G = A ¢ B with C finite = e(G) > 2
> 7T1(W) =AxcB

nixX)=A
{7 =B
(2=
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Application

Corollary: If G is a finitely generated, torsion free group with a free
subgroup of finite index, then G is free.

Proof.

>
| 4

VvvyVvYvyy

Assume rank(G) > 0.

G has a nontrivial free subgroup F of finite index

— e(G)=-¢e(F)>2.

Theorem — G splits over finite subgroup.

G torsion free = G splits over {1}.

If G =27, done. Otherwise G = Gy * G with G; nontrivial.
Grushko = rank(G;j) < rank(G).

F N G; free subgroup of G; of finite index.

Induction on rank(G) = G; free = G free.
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