## Groups That Split Over Subgroups

Annie Holden

October 27, 2022

# Amalgams

### **Amalgams**

#### Definition

If we have  $f: C \hookrightarrow A$  and  $g: C \hookrightarrow B$  then

$$A*_{C}B=\langle S_{A},S_{B}\mid R_{A},R_{B},f(c)g^{-1}(c)=1\rangle$$

 $A *_C B$  is an **amalgamated free product**.

### **Amalgams**

#### Definition

If we have  $f: C \hookrightarrow A$  and  $g: C \hookrightarrow B$  then

$$A*_{C}B=\langle S_{A},S_{B}\mid R_{A},R_{B},f(c)g^{-1}(c)=1\rangle$$

 $A *_C B$  is an **amalgamated free product**.

### Example

$$ightharpoonup SL_2(\mathbb{Z})\cong \mathbb{Z}_6*_{\mathbb{Z}_2}\mathbb{Z}_4$$

$$\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}^3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$$

## Amalgams As Fundamental Groups

### Amalgams As Fundamental Groups



#### **Definition**

If C is a subgroup of A and we have  $h: C \hookrightarrow A$ , then

$$A*_{C} = \langle S_{A}, t \mid R_{A}, tct^{-1} = h(c) \rangle$$

 $A*_C$  is an **HNN extension**.

#### Definition

If C is a subgroup of A and we have  $h: C \hookrightarrow A$ , then

$$A*_C = \langle S_A, t \mid R_A, tct^{-1} = h(c) \rangle$$

 $A*_C$  is an HNN extension.

#### HNN Extensions As Fundamental Groups



### Example

### Example



### Example



#### Example



$$\pi_1(\Sigma_2) = \pi_1(S) *_{\mathbb{Z}}$$

# Conjugation in $\pi_1(\Sigma_2)$

$$\pi_1(\Sigma_2) = \pi_1(S) *_{\langle \delta \rangle} =$$
  
 $\langle \text{generators of } \pi_1(S), \ t \mid R_{\pi_1(S)}, t^{-1} \delta t = \delta' \rangle$ 



### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

$$\Rightarrow rank(G) = rank(G_1) + rank(G_2)$$

#### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

$$\Rightarrow rank(G) = rank(G_1) + rank(G_2)$$

### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

$$\Rightarrow rank(G) = rank(G_1) + rank(G_2)$$

Showing  $rank(G) \ge rank(G_1) + rank(G_2)$ :

Assume rank(G) = n, G generated by  $x_1, ..., x_n$ 

### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

$$\Rightarrow rank(G) = rank(G_1) + rank(G_2)$$

- Assume rank(G) = n, G generated by  $x_1, ..., x_n$
- $ightharpoonup \phi: F_n \twoheadrightarrow G$

### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

$$\Rightarrow rank(G) = rank(G_1) + rank(G_2)$$

- Assume rank(G) = n, G generated by  $x_1, ..., x_n$
- $\triangleright$   $\phi: F_n \twoheadrightarrow G$
- Grushko  $\Rightarrow F_n = H_1 * H_2$  with  $\phi(H_i) = G_i$

### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

$$\Rightarrow rank(G) = rank(G_1) + rank(G_2)$$

- Assume rank(G) = n, G generated by  $x_1, ..., x_n$
- $\triangleright$   $\phi: F_n \twoheadrightarrow G$
- ► Grushko  $\Rightarrow F_n = H_1 * H_2$  with  $\phi(H_i) = G_i$
- $ightharpoonup rank(H_1) + rank(H_2) = n$

### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

$$\Rightarrow rank(G) = rank(G_1) + rank(G_2)$$

- Assume rank(G) = n, G generated by  $x_1, ..., x_n$
- $\triangleright \phi : F_n \twoheadrightarrow G$
- Grushko  $\Rightarrow F_n = H_1 * H_2$  with  $\phi(H_i) = G_i$
- $ightharpoonup rank(H_1) + rank(H_2) = n$
- $ightharpoonup rank(G_i) \leq rank(H_i)$

### Theorem (Grushko)

Let F be a finitely generated free group,  $G = G_1 * G_2$  and let  $\phi : F \to G$  be a surjective homomorphism. Then there are  $H_1, H_2 < F$  such that  $F = H_1 * H_2$  and  $\phi(H_i) = G_i$ .

$$\Rightarrow rank(G) = rank(G_1) + rank(G_2)$$

- Assume rank(G) = n, G generated by  $x_1, ..., x_n$
- $\triangleright$   $\phi: F_n \twoheadrightarrow G$
- Grushko  $\Rightarrow F_n = H_1 * H_2$  with  $\phi(H_i) = G_i$
- $ightharpoonup rank(H_1) + rank(H_2) = n$
- $ightharpoonup rank(G_i) \leq rank(H_i)$
- $ightharpoonup rank(G_1) + rank(G_2) \le n$

Basic Set Up:

#### Basic Set Up:

ightharpoonup G acts on tree T w/o edge inversions

#### Basic Set Up:

- ightharpoonup G acts on tree T w/o edge inversions
- ightharpoonup T/G has one edge (2 cases)

#### Basic Set Up:

- ightharpoonup G acts on tree T w/o edge inversions
- ightharpoonup T/G has one edge (2 cases)





#### Basic Set Up:

- ightharpoonup G acts on tree T w/o edge inversions
- ightharpoonup T/G has one edge (2 cases)





ightharpoonup Choose lift of T/G back to T

#### Basic Set Up:

- ightharpoonup G acts on tree T w/o edge inversions
- ightharpoonup T/G has one edge (2 cases)





ightharpoonup Choose lift of T/G back to T





#### Basic Set Up:

- ightharpoonup G acts on tree T w/o edge inversions
- ightharpoonup T/G has one edge (2 cases)





ightharpoonup Choose lift of T/G back to T





 $lackbox{\ }$  Consider edge and vertex stabilizers.  $G_{\widetilde{e}}\hookrightarrow G_{\widetilde{v}_i}$ 

#### Basic Set Up:

- $\triangleright$  G acts on tree T w/o edge inversions
- ightharpoonup T/G has one edge (2 cases)





▶ Choose lift of T/G back to T





- Consider edge and vertex stabilizers.  $G_{\tilde{e}} \hookrightarrow G_{\tilde{v}_i}$
- - $G \cong G_{\widetilde{v}_1} *_{G_z} G_{\widetilde{v}_2} \qquad G \cong G_{\widetilde{v}} *_{G_z}$

 $ightharpoonup \mathbb{Z}$  acts on tree T w/o edge inversions



 $ightharpoonup \mathbb{Z}$  acts on tree T w/o edge inversions



 $ightharpoonup T/\mathbb{Z}$  is a loop



 $ightharpoonup \mathbb{Z}$  acts on tree T w/o edge inversions



 $ightharpoonup T/\mathbb{Z}$  is a loop



▶ Choose lift of  $T/\mathbb{Z}$  back to T



 $ightharpoonup \mathbb{Z}$  acts on tree T w/o edge inversions



 $ightharpoonup T/\mathbb{Z}$  is a loop



▶ Choose lift of  $T/\mathbb{Z}$  back to T



ightharpoonup Stabilizers of  $\tilde{e}$  and  $\tilde{v}$  are trivial

# Example: $\mathbb{Z} = \{1\} *_{\{1\}}$

 $ightharpoonup \mathbb{Z}$  acts on tree T w/o edge inversions



 $ightharpoonup T/\mathbb{Z}$  is a loop



▶ Choose lift of  $T/\mathbb{Z}$  back to T



- ightharpoonup Stabilizers of  $\tilde{e}$  and  $\tilde{v}$  are trivial
- $\blacktriangleright \mathbb{Z} \cong \{1\} *_{\{1\}}$

 $ightharpoonup G = \mathbb{Z}_3 * \mathbb{Z}_2 = \langle a \mid a^3 \rangle * \langle b \mid b^2 \rangle$  acts on T



▶  $G = \mathbb{Z}_3 * \mathbb{Z}_2 = \langle a \mid a^3 \rangle * \langle b \mid b^2 \rangle$  acts on T



ightharpoonup T/G is a segment



ightharpoonup T/G is a segment



ightharpoonup Lift T/G to T



ightharpoonup T/G is a segment



ightharpoonup Lift T/G to T



 $\blacktriangleright \ \ \textit{$G_{\tilde{\textit{v}}_{1}} = \langle \textit{a} \rangle \cong \mathbb{Z}_{3}$, $\textit{$G_{\tilde{\textit{v}}_{2}} = \langle \textit{$b} \rangle \cong \mathbb{Z}_{2}$, $\textit{$G_{\tilde{\textit{e}}} = \{1\}$}$}$ 

ightharpoonup T/G is a segment



ightharpoonup Lift T/G to T



- $lackbox{m{arksim}} G_{ ilde{v}_1} = \langle a 
  angle \cong \mathbb{Z}_3, \ G_{ ilde{v}_2} = \langle b 
  angle \cong \mathbb{Z}_2, \ G_{ ilde{e}} = \{1\}$
- ightharpoonup Recover  $G\cong \mathbb{Z}_3*\mathbb{Z}_2$









 $ightharpoonup \pi_1(\Sigma_2)$  acts on T



- $\blacktriangleright$   $\pi_1(\Sigma_2)$  acts on T
- $ightharpoonup T/\pi_1(\Sigma_2)$  is a loop

▶ Lift  $T/\pi_1(\Sigma_2)$  to back T



- ▶ Lift  $T/\pi_1(\Sigma_2)$  to back T
- ▶ Stabilizer of  $\tilde{e}$ ?



- ▶ Lift  $T/\pi_1(\Sigma_2)$  to back T
- ightharpoonup Stabilizer of  $\tilde{e}$ ?



▶ Stab( $\tilde{e}$ )  $\cong \langle \gamma \rangle \cong \mathbb{Z}$ 

▶ Lift  $T/\pi_1(\Sigma_2)$  to back T



- ▶ Lift  $T/\pi_1(\Sigma_2)$  to back T
- ightharpoonup Stabilizer of  $\tilde{v}$ ?



- ▶ Lift  $T/\pi_1(\Sigma_2)$  to back T
- ightharpoonup Stabilizer of  $\tilde{v}$ ?



 $\blacktriangleright \ \mathsf{Stab}(\tilde{v}) \cong \pi_1(\Sigma_2 - \gamma)$ 

- ▶ Lift  $T/\pi_1(\Sigma_2)$  to back T
- ightharpoonup Stabilizer of  $\tilde{v}$ ?



- ightharpoonup Stab $(\tilde{v}) \cong \pi_1(\Sigma_2 \gamma)$
- $\qquad \qquad \pi_1(\Sigma_2) \cong \pi_1(\Sigma_2 \gamma) *_{\langle \gamma \rangle}$

Let X be a locally finite simplicial complex.

Let *X* be a locally finite simplicial complex.

#### Definition

 $e(X) = \sup\{n \mid \exists \text{ compact subcomplex } K \text{ such that } X - K \text{ has } \geq n \text{ unbounded components}\}.$ 

Let *X* be a locally finite simplicial complex.

#### Definition

 $e(X) = \sup\{n \mid \exists \text{ compact subcomplex } K \text{ such that } X - K \text{ has } \geq n \text{ unbounded components}\}.$ 

#### Examples

Let *X* be a locally finite simplicial complex.

#### Definition

 $e(X) = \sup\{n \mid \exists \text{ compact subcomplex } K \text{ such that } X - K \text{ has } \geq n \text{ unbounded components}\}.$ 

#### Examples

▶ X compact  $\iff$  e(X) = 0

Let X be a locally finite simplicial complex.

#### Definition

 $e(X) = \sup\{n \mid \exists \text{ compact subcomplex } K \text{ such that } X - K \text{ has } \geq n \text{ unbounded components}\}.$ 

#### Examples

- ightharpoonup X compact  $\iff$  e(X) = 0
- $ightharpoonup e(\mathbb{R})=2$



#### Examples

▶ 
$$e(\mathbb{R}^n) = 1, n \ge 2$$



#### Examples

 $ightharpoonup e(\mathbb{R}^n)=1, n\geq 2$ 



▶  $X = \text{infinite 4-valent tree, } e(X) = \infty$ 



**Definition** 

#### Definition

For a group G with generating set S, Cay(G,S) is the graph with:

#### Definition

For a group G with generating set S, Cay(G,S) is the graph with:

 $\triangleright$  vertices = G

#### Definition

For a group G with generating set S, Cay(G,S) is the graph with:

- $\triangleright$  vertices = G
- ▶ edges =  $g \bullet \bullet gs (g \in G, s \in S)$

#### Definition

For a group G with generating set S, Cay(G,S) is the graph with:

- $\triangleright$  vertices = G
- ▶ edges =  $g \bullet \bullet gs (g \in G, s \in S)$

#### **Definition**

If G has finite generating set S, then e(G) = e(Cay(G, S)).

#### Definition

For a group G with generating set S, Cay(G,S) is the graph with:

- $\triangleright$  vertices = G
- ▶ edges =  $g \bullet \bullet gs (g \in G, s \in S)$

#### **Definition**

If G has finite generating set S, then e(G) = e(Cay(G, S)).

#### Examples

ightharpoonup e(G) = 0 for finite G because Cay(G, S) compact

#### Definition

For a group G with generating set S, Cay(G,S) is the graph with:

- ▶ vertices = *G*
- ▶ edges =  $g \bullet \bullet gs (g \in G, s \in S)$

#### **Definition**

If G has finite generating set S, then e(G) = e(Cay(G, S)).

#### Examples

- ightharpoonup e(G) = 0 for finite G because Cay(G, S) compact
- $ightharpoonup e(\mathbb{Z})=2$  because  $Cay(\mathbb{Z},\{1\})=\mathbb{R}$



#### **Examples**

 $lackbox{e}(\mathbb{Z}^2)=1$  because  $\mathit{Cay}(\mathbb{Z}^2,\{(1,0),(0,1)\})=$  infinite grid



#### **Examples**

 $ightharpoonup e(\mathbb{Z}^2)=1$  because  $Cay(\mathbb{Z}^2,\{(1,0),(0,1)\})=$  infinite grid



•  $e(F_2) = \infty$  because  $Cay(F_2, \{a, b\}) = \text{infinite 4-valent tree}$ 



### Universal Covers of Compact Simplicial Complexes

#### Theorem

If X is a compact simplicial complex with universal cover  $p: \tilde{X} \to X$ , then  $e(\pi_1(X)) = e(\tilde{X})$ .

#### **Theorem**

If X is a compact simplicial complex with universal cover  $p: \tilde{X} \to X$ , then  $e(\pi_1(X)) = e(\tilde{X})$ .

### Corollary

If G is a finitely presented group and H < G is a finite index subgroup, then e(G) = e(H).

#### **Theorem**

If X is a compact simplicial complex with universal cover  $p: \tilde{X} \to X$ , then  $e(\pi_1(X)) = e(\tilde{X})$ .

### Corollary

If G is a finitely presented group and H < G is a finite index subgroup, then e(G) = e(H).

#### **Theorem**

If X is a compact simplicial complex with universal cover  $p: \tilde{X} \to X$ , then  $e(\pi_1(X)) = e(\tilde{X})$ .

### Corollary

If G is a finitely presented group and H < G is a finite index subgroup, then e(G) = e(H).

### Proof of Corollary.

▶ X compact simplicial complex with  $\pi_1(X) = G$ 

#### **Theorem**

If X is a compact simplicial complex with universal cover  $p: \tilde{X} \to X$ , then  $e(\pi_1(X)) = e(\tilde{X})$ .

### Corollary

If G is a finitely presented group and H < G is a finite index subgroup, then e(G) = e(H).

- ightharpoonup X compact simplicial complex with  $\pi_1(X) = G$
- Y cover of X corresponding to H

#### Theorem

If X is a compact simplicial complex with universal cover  $p: \tilde{X} \to X$ , then  $e(\pi_1(X)) = e(\tilde{X})$ .

### Corollary

If G is a finitely presented group and H < G is a finite index subgroup, then e(G) = e(H).

- ightharpoonup X compact simplicial complex with  $\pi_1(X) = G$
- Y cover of X corresponding to H
- Y is a finite cover (because H finite index)

#### **Theorem**

If X is a compact simplicial complex with universal cover  $p: \tilde{X} \to X$ , then  $e(\pi_1(X)) = e(\tilde{X})$ .

### Corollary

If G is a finitely presented group and H < G is a finite index subgroup, then e(G) = e(H).

- ▶ X compact simplicial complex with  $\pi_1(X) = G$
- Y cover of X corresponding to H
- Y is a finite cover (because H finite index)
- ightharpoonup Y is compact with universal cover  $ilde{X}$

#### **Theorem**

If X is a compact simplicial complex with universal cover  $p: \tilde{X} \to X$ , then  $e(\pi_1(X)) = e(\tilde{X})$ .

### Corollary

If G is a finitely presented group and H < G is a finite index subgroup, then e(G) = e(H).

- ▶ X compact simplicial complex with  $\pi_1(X) = G$
- Y cover of X corresponding to H
- Y is a finite cover (because H finite index)
- ightharpoonup Y is compact with universal cover  $\tilde{X}$
- $e(H) = e(\pi_1(Y)) = e(\tilde{X}) = e(G)$

 $e(\textit{G}) \in \{0,1,2,\infty\}$  if G is finitely generated

# Theorem (Freudenthal) $e(G) \in \{0, 1, 2, \infty\}$ if G is finitely generated

$$e(\textit{G}) \in \{0,1,2,\infty\}$$
 if G is finitely generated

$$ightharpoonup 2 \le n = e(G) < \infty$$

$$e(\textit{G}) \in \{0,1,2,\infty\}$$
 if G is finitely generated

- $ightharpoonup 2 \le n = e(G) < \infty$
- ightharpoonup Z = Cay(G, S)

 $e(G) \in \{0,1,2,\infty\}$  if G is finitely generated

- $ightharpoonup 2 \le n = e(G) < \infty$
- ightharpoonup Z = Cay(G, S)
- $\triangleright$  Z K has n unbounded components  $A_1, ..., A_n$

$$e(G) \in \{0, 1, 2, \infty\}$$
 if G is finitely generated

- $ightharpoonup 2 \le n = e(G) < \infty$
- ightharpoonup Z = Cay(G, S)
- $\triangleright$  Z K has n unbounded components  $A_1, ..., A_n$
- ▶  $|G| = \infty$  so can find g such that  $gK \cap K = \emptyset$ ,  $gK \subset A_1$

$$e(G) \in \{0, 1, 2, \infty\}$$
 if G is finitely generated

- $ightharpoonup 2 \le n = e(G) < \infty$
- ightharpoonup Z = Cay(G, S)
- $\triangleright$  Z K has n unbounded components  $A_1, ..., A_n$
- ▶  $|G| = \infty$  so can find g such that  $gK \cap K = \emptyset$ ,  $gK \subset A_1$
- ▶  $A_1 gK$  has 1 unbounded component

$$e(G) \in \{0,1,2,\infty\}$$
 if G is finitely generated

- $ightharpoonup 2 \le n = e(G) < \infty$
- ightharpoonup Z = Cay(G, S)
- $\triangleright$  Z K has n unbounded components  $A_1, ..., A_n$
- ▶  $|G| = \infty$  so can find g such that  $gK \cap K = \emptyset$ ,  $gK \subset A_1$
- ▶  $A_1 gK$  has 1 unbounded component
- $ightharpoonup \Rightarrow Z gK$  has 2 unbounded components

$$e(G) \in \{0,1,2,\infty\}$$
 if G is finitely generated

- $ightharpoonup 2 \le n = e(G) < \infty$
- ightharpoonup Z = Cay(G, S)
- $\triangleright$  Z K has n unbounded components  $A_1, ..., A_n$
- ▶  $|G| = \infty$  so can find g such that  $gK \cap K = \emptyset$ ,  $gK \subset A_1$
- ▶  $A_1 gK$  has 1 unbounded component
- $ightharpoonup \Rightarrow Z gK$  has 2 unbounded components
- ▶  $Z gK \cong Z K$  has 2 unbounded components

$$e(G) \in \{0, 1, 2, \infty\}$$
 if G is finitely generated

- $ightharpoonup 2 \le n = e(G) < \infty$
- ightharpoonup Z = Cay(G, S)
- $\triangleright$  Z K has n unbounded components  $A_1, ..., A_n$
- ▶  $|G| = \infty$  so can find g such that  $gK \cap K = \emptyset$ ,  $gK \subset A_1$
- $ightharpoonup A_1 gK$  has 1 unbounded component
- $ightharpoonup \Rightarrow Z gK$  has 2 unbounded components
- $ightharpoonup Z gK \cong Z K$  has 2 unbounded components
- e(G) = 2

# Big Theorem

### Theorem (Stallings)

If G is a finitely generated group, then  $e(G) \ge 2 \iff G$  splits over a finite subgroup.

# Big Theorem

### Theorem (Stallings)

If G is a finitely generated group, then  $e(G) \ge 2 \iff G$  splits over a finite subgroup.

What goes into the proof:

# Big Theorem

### Theorem (Stallings)

If G is a finitely generated group, then  $e(G) \ge 2 \iff G$  splits over a finite subgroup.

What goes into the proof:

 $(\Rightarrow)$  Construct tree T on which G acts with quotient a single edge

# A Simple Case Of The Other Direction

G finitely presented,  $G = A *_C B$  with C finite  $\Rightarrow e(G) \ge 2$ 

# A Simple Case Of The Other Direction

G finitely presented,  $G = A *_C B$  with C finite  $\Rightarrow e(G) \ge 2$ 

$$\pi_1(W) = A *_C B$$



# A Simple Case Of The Other Direction

*G* finitely presented,  $G = A *_C B$  with *C* finite  $\Rightarrow e(G) \ge 2$ 

 $\blacktriangleright \ \pi_1(W) = A *_C B$ 



 $\blacktriangleright \ e(\tilde{W}) = e(\pi_1(W))$ 



Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

#### Proof.

Assume rank(G) > 0.

Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

- Assume rank(G) > 0.
- ▶ G has a nontrivial free subgroup F of finite index  $\implies e(G) = e(F) \ge 2$ .

Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

- Assume rank(G) > 0.
- ▶ G has a nontrivial free subgroup F of finite index  $\Rightarrow e(G) = e(F) \ge 2$ .
- ▶ Theorem  $\implies$  *G* splits over finite subgroup.

Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

- Assume rank(G) > 0.
- ▶ G has a nontrivial free subgroup F of finite index  $\implies e(G) = e(F) \ge 2$ .
- ▶ Theorem  $\implies$  *G* splits over finite subgroup.
- ▶ *G* torsion free  $\implies$  *G* splits over  $\{1\}$ .

Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

- Assume rank(G) > 0.
- ▶ G has a nontrivial free subgroup F of finite index  $\Rightarrow e(G) = e(F) \ge 2$ .
- ▶ Theorem  $\implies$  *G* splits over finite subgroup.
- ▶ *G* torsion free  $\implies$  *G* splits over  $\{1\}$ .
- ▶ If  $G \cong \mathbb{Z}$ , done. Otherwise  $G = G_1 * G_2$  with  $G_i$  nontrivial.

Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

- Assume rank(G) > 0.
- ▶ G has a nontrivial free subgroup F of finite index  $\Rightarrow e(G) = e(F) \ge 2$ .
- ▶ Theorem  $\implies$  *G* splits over finite subgroup.
- ▶ *G* torsion free  $\implies$  *G* splits over  $\{1\}$ .
- ▶ If  $G \cong \mathbb{Z}$ , done. Otherwise  $G = G_1 * G_2$  with  $G_i$  nontrivial.
- ▶ Grushko  $\implies rank(G_i) < rank(G)$ .

Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

- Assume rank(G) > 0.
- ▶ G has a nontrivial free subgroup F of finite index  $\Rightarrow e(G) = e(F) \ge 2$ .
- ▶ Theorem  $\implies$  *G* splits over finite subgroup.
- ▶ *G* torsion free  $\implies$  *G* splits over  $\{1\}$ .
- ▶ If  $G \cong \mathbb{Z}$ , done. Otherwise  $G = G_1 * G_2$  with  $G_i$  nontrivial.
- ▶ Grushko  $\implies rank(G_i) < rank(G)$ .
- ▶  $F \cap G_i$  free subgroup of  $G_i$  of finite index.

Corollary: If G is a finitely generated, torsion free group with a free subgroup of finite index, then G is free.

- Assume rank(G) > 0.
- ▶ G has a nontrivial free subgroup F of finite index  $\Rightarrow e(G) = e(F) \ge 2$ .
- ▶ Theorem  $\implies$  *G* splits over finite subgroup.
- ▶ *G* torsion free  $\implies$  *G* splits over  $\{1\}$ .
- ▶ If  $G \cong \mathbb{Z}$ , done. Otherwise  $G = G_1 * G_2$  with  $G_i$  nontrivial.
- ▶ Grushko  $\implies rank(G_i) < rank(G)$ .
- ▶  $F \cap G_i$  free subgroup of  $G_i$  of finite index.
- ▶ Induction on  $rank(G) \implies G_i$  free  $\implies G$  free.