

Synthesis, model validation, and dataassimilation on centennial time-scales

Michael Dietze, Jason McLachlan, Steve Jackson, Simon Goring, Chris Paciorek, Jack Williams, and PalEON team members

February 5, 2013

Biology drives Physics

Biology drives Physics

Jason McLachlan Michael Dietze Steve Jackson Chris Paciorek Jack Williams Notre Dame Boston University U. Arizona UC Berkeley U. Wisconsin

60+ PalEON team members

PalEON Goals

Validation

- How well do current models simulate decadal-to-centennial ecosystem dynamics when confronted with past climate change, and what factors most limit model accuracy?

Inference

- What net carbon fluxes are compatible with an observed species composition and disturbance regime? Was the terrestrial biosphere a carbon sink or source during the Little Ice Age and Medieval Climate Anomaly?

Initialization

- How sensitive are ecosystem models to initialization state and equilibrium assumptions? Do data-constrained simulations of centennial-scale forest dynamics improve 20th-century simulations?

Improvement

PalEON Approach

Pre-PalEON

PalEON Approach

Historical Vegetation Potential Vegetation

Goring in prep

Ramankutty & Foley

Species Composition

STEPPS

An example from New England

Key features of past 2000 years

- Arrival of American chestnut
- Decline in beech and hemlock
- Spatial persistence of ecotone
- 19th century land-use impact

(Fuller et al 1998)

Statistical estimates of changing forest composition

3000

2000

1000

0 yr BP

Phase 1: Validation

Temperate Broadleaf Deciduous 850 AD CMIP5/PMIP3 "Last Millennium"

Plant Functional Type Grid Fraction

Year 850; PFT 9 C3 Crop

Centennial Sensitivity Analysis

ED2 model, Harvard Forest

Brett Raczka & Ken Davis, PSU See Poster 128

Phase 2: Assimilation

State-Variable Data Assimilation

$$P(\theta|y) \propto P(y|\theta) P(\theta)$$

Updated State

Data

Model

Ecological Applications, 17(7), 2007, pp. 1942–1953 © 2007 by the Ecological Society of America

TREE GROWTH INFERENCE AND PREDICTION FROM DIAMETER CENSUSES AND RING WIDTHS

James S. Clark, 1,2,3,4,6 Michael Wolosin, 2,3 Michael Dietze, 2,3 Inès Ibáñez, 2,3 Shannon LaDeau, 2,3,7 Miranda Welsh, 1 and Brian Kloeppel 5

Phase 2 Goals

- Proof of concept:
 Assimilate 1000+ yrs for 5 sites
 - Data: pollen proxy, tree rings, settlement & modern inventory
 - Drivers: CMIP5 GCM downscaled realizations
 - Ensemble of CMIP5 GCMs
 - Ensemble of downscaled realizations
- Expand to regional scale
 - Inference
 - Initialization for the modern

Where we are now...

 GCM downscaling more complex and time consuming than anticipated...

Very little proxy data independent of vegetation

PalEON2

- New PLS
- Experimental design
- HIPS
 - **Climate Similarity Most Similar Least Similar**

- Tree rings
- Charcoal
 - Paleo-climate

