Locally solvable vector fields and Hardy Spaces

Gustavo Hoepfner Universidade Federal de São Carlos

Abstract: Work with Jorge Hounie

We define a new class of Hardy spaces $h_F^p(\mathbb{R})$, $0 , associated to a finite set <math>F \subset \mathbb{R}$ by considering atomic decompositions of a special kind. For most values of $p \le 1$ this "new" Hardy spaces coincide with the localizable Hardy space $h^p(\mathbb{R})$ of Goldberg but for a discrete set of values $p = 1, 1/2, \ldots$, we have $h_F^p(\mathbb{R}) \subsetneq h^p(\mathbb{R})$. Functional properties of $h_F^p(\mathbb{R})$ will be discussed, such as the multiplication invariance of functions in the Schwartz class and the characterization of dual spaces. As an application we will characterize the homogeneous solutions of a real analytic planar vector field satisfying the one-sided Nirenberg-Treves condition (\mathcal{P}^+) with boundary value in $h_{F(L)}^p(\mathbb{R})$ in terms of L^p uniform boundaress of their traces, 0 .