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Local Passivity Indices of Nonlinear
Systems

= Behaviors of nonlinear systems change in different regions

=  Examples: stability, controllability, and even uniqueness and
existence

= Even systems that are passive around one equilibrium and non-
passive around another

= Limited course of action in most physical systems bounded control
input

= Controllers and feedback loops “tame” the system to operate
around an equilibrium

= Solution: studying IO properties (particularly passivity indices) with
respect to regions of state space and known bounds on input signal

= New definitions for passivity indices with respect to restrictions on
the state and input spaces
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Example

P versus r
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Figure: OFP index p, for X = {x | ||x||3 < r}

For an example nonlinear system
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Approximate Methods For Passivity
Indices

Approximate f and h as
polynomials with remainder

Find bounds for remainder/error

Incorporate the bounds
in the inequalities

Incorporate the sets A
and U in the inequalities

Solve/reduce size if necessary
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Adaptation Method Based on
Experimental Passivity Indices

= Experimental passivity indices of the system (with respect to
current input)
= A measure of failure in the system (data-driven, no model)

= Adaptive method to mitigate any shortage with changing the
controller

Make an estimate

Gather input- SU
output Data of.pa.ssw;ty —>
indices

Are the indices lower
than a threshold?

lYes

Adapt the controller
to the new estimated
index

T T T R T T
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Challenge in Connection Level

~ Attack / Disturbance
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Joint Disturbance Observer and Controller

Measurement

Design

The immune system (from the Latin work immunis, meaning:
“untouched”) protects the body like a guardian from harmful
influences from the environment and is essential for survival”.

* U.S. National Library of Medicine, “Immune System”. https://www.ncbi.nlm.nih.gov/pubmedhealth/.
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Y. Yan, P. Antsaklis and V. Gupta, “A resilient design for cyber physical systems under attack,” 2017 American Control Conference

(ACQC), Seattle, WA, 2017, pp.4418-4423.
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Joint Disturbance Observer and Controller

Design
Attack Monitor:
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Self-Triggered Strategy under DoS Attack

A denial-of-service (DoS attack) is a cyber-attack where the perpetrator seeks to make
a machine or network resource unavailable to its intended users by temporarily or
indefinitely disrupting services of a host connected to the Internet*.

* “Understanding Denial-of-Service Attacks”. US-CERT. https://www.us-cert.gov/ncas/tips/ST04-015 Retrieved Dec 8t 2017.

\ _ ‘/ Actuator Plant Sensor |
:: U % -E u'{t) Jf(i')
| e mea a—_—TT= -,"F._-—'}" ‘‘‘‘‘ -~
e B - — T ﬁ.’T LY "-.\
\ -% ?gﬁ ) *T<T, 1= )
e = - < Communication network __51 ;
— — o - S ~ -
- - U 2 -
\._\ -EJ ,;.._? \ -=® e "‘-"..,____ e ,1-.____--’,
) u(t !
Normal connection Under DoS attack . (t) Controller AU

Y. Yan, M. Xia, A. Rahnama and P. Antsaklis, “A passivity-based self-triggered strategy for cyber physical systems under denial-of-
service attack,” 2017 IEEE 56™" Annual Conference on Decision and Control (CDC), Melbourne, VIC, 2017, pp. 6072-6088.
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Self-Triggered Strategy under DoS Attack

Attack : communication through the network is not ideal

Objective :

- Maximum tolerable length of attack

- Switching strategy
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Microgrids
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Distributed Mixed Voltage Angle and Frequency Droop Control of Microgrid
Interconnections with Loss of Distribution-PMU Measurements
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e Passivity under loss of PMU-measurement °

Robustness to topology changes

Next question — How do we facilitate ad-hoc connections of microgrids?

S. Sivaranjani*, E. Agarwal*, L. Xie, V. Gupta, and P. J. Antsaklis, “Distributed mixed voltage angle and frequency
droop control of microgrid interconnections with loss of distribution-PMU measurements,” submitted to IEEE

Transactions on Smart Grid, arXiv:1810.09132,

Oct 2018.
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Compositional Control of Large-Scale

)
“We refer to a system as large-scale if it is I I 25 < Y, 6 I
more appropriate to consider the system as AT R
an interconnection of small sub-systems . il B2 PR
than dealing with it as a whole” [ 2 | L 2o IR L 23;{:::2 :<::
/
27

Objective:

Develop an algorithm to guarantee passivity of a dynamically growing interconnection,
such that the addition of new subsystems does not require redesigning the pre- existing
local controllers in the network.

» Distributed verification of passivity using equivalent analysis on passivity of individual
subsystems and coupling at individual interconnections.

* Local synthesis of individual sub-system level controllers, with no direct knowledge of
the dynamics of other subsystems, for passivity guarantees on large-scale system.
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Sequential Synthesis of Distributed Controllers for Cascade Interconnected Systems

New subsystem
control design

Messenger matrix communication
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E. Agarwal*, S. Sivaranjani*, V. Gupta, P. J. Antsaklis, “Sequential synthesis of distributed controllers for cascade

interconnected systems,” submitted to American Control Conference, 2019, pre-print: goo.gl/JTCV6z.
L T T e e
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Thank You

For always being there for us, and for all your
mentorship
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Microgrids
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Dissipativity of Networks of Hybrid Systems

E. Agarwal, M. J. McCourt, and P. J. Antsaklis, “Dissipativity of hybrid systems: Feedback

interconnections and networks," in American Control Conference (ACC), 2016. IEEE, 2016, pp.
6060-6065.

E. Agarwal, M. J. McCourt, and P. J. Antsaklis, “Dissipativity of finite and hybrid automata: An
overview," in Control and Automation (MED), 2017 25% Mediterranean Conference on. IEEE,
2017, pp. 1176-1182.

. Networks — Effect of Time Delays
Analysis & Contra

of Hybrid Systems

Dissipative Control of Switched Systems

.. Stand-Alone Microgrid
Applications to

Microgrids

Network of Microgrids

Performance-Aware Dissipative Control of HS

Proposed
Research

Compositional Control of Large-Scale Systems
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Resilient Design for Connection Level

Yang Yan and Panos Antsaklis, “Stabilizing Nonlinear Model Predictive Control Scheme Based
on Passivity and Dissipativity,” 2016 American Control Conference (ACC), Boston, MA, 2016,

pp-76-81.

Y. Yan, P. Antsaklis and V. Gupta, “A resilient design for cyber physical systems under attack,”
2017 American Control Conference (ACC), Seattle, WA, 2017, pp.4418-4423.

Y. Yan, M. Xia, A. Rahnama and P. Antsaklis, “A passivity-based self-triggered strategy for
cyber phys1ca1 systems under denial- of-service attack,” 2017 IEEE 56t Annual Conference on
Decision and Control (CDC), Melbourne, VIC, 2017, pp. 6072-6088.

Dissipativity under Model discrepancy between plant& model

approximation Application to NMPC

Security under Attack monitor design

injection attack

Passivity-based defense mechanism

Self-triggered Wave variable transformation with time delay
design over

imperfect network

Triggering condition under packet dropouts
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Dissipativity

The system (1) is said to be dissipative with respect to the supply rate w(w(t), y(t)), if
there exists a positive definite function V(x): R® — R* with V(0) = 0, called the
storage function, such that

ty
j w(w(t),y(®))dt =V (x(ty)) — V(x(to))
t

0

holds, for allw € R™, and all t; = t, = 0, where x(t;) is the state at time t; resulting
from the initial condition x(ty) and input w(-).
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Dissipativity

Supply rate Dissipativity

— Dissipativity

Passivity

State Strict Passivity;

Input Feed-Forward Passivity (IFP); ISP if
Output Feedback Passivity (OFP); OSP if
Finite Gain stability,

Passivity, ISP, OSP Lyapunov Stability

State Strict Passivity Asymptotic stability
— Dissipativity, Finite Gain Stability
OSP Finite Gain Stability
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Dissipativity
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Cyber-Physical Systems

1CPS are engineered systems that are built from, and depend upon, the
seamless integration of computational algorithms and physical components.

Large scale interconnection — Compositional design tools

thttp://www.nsf.gov/funding/pgm\_summ.jsp?pims\_id=503286
L T T e e
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