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Connected Vehicles

Goals: Enhanced throughput & safety with
decreased emissions.

e \V2V: Vehicle to vehicle

e \V/2I: Vehicle to Infrastructure
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Reliable Precise Positioning: AV & CV

e Autonomous & Connected Vehicles are in our future.
e Early Phase: Commercial
e Later: Consumer
 Vehicle Position Accuracy
 Routing (10.0 m)
e Coordination (1.0 m)
e Infrastructure
e Other vehicles
e Control (0.1 m)
e Sensor Fusion
e Reliability = Trust
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Signal Rich Environments

Significantly more measurements are available than are required to achieve

observability or to meet the accuracy specification: P, <P, or J, >J, where P, = (J|)'1

Camera-based navigation Global Navigation Satellite Systems
ST g e e GPS (original): 7-10 sv available per epoch w/ 1
signal/sv = 7-10 measurements/epoch

* GPS (modified): 7-10 sv available per epoch w/ 3
signal/sv =» 21-30 measurements/epoch
* Now also have GLONASS, Galileo, Beidou ...

On the order of 50 measurements soon to be

e Hundreds of features per frame available per epoch

e Each requires tracking and
association between frames.

e Four sufficiently diverse measurements are needed for observability

e Asthe number of used measurements increases, both accuracy and risk increase

What is the most appropriate risk-reward tradeoff, given high probability of outliers?
Which measurements should be selected to achieve a stated accuracy specification?



Sensor Fusion: Inertial Navigation

* Inertial Navigation: Full state, acceleration, angular rate
 Pro: High bandwidth, high sampling rate, high reliability
e Pro & Con: Well modeled slow, but unbounded, error growth
e Pro: Used in military & commerce since 1960’s

R for commercial applications
o IC: 2(0) ~ N(2(0), P(0))

{l’a — f+ba + Ng,
e IMU data: u=9 .

u;, = w+b, +ny,
e Kinematic model: &(t) = f(x(t), u(t))

The INS numerically solves:
Ti41
T(1i11) = x(m) —|—/ f(x(r),a(r))dr

where 7; represents the ¢-th IMU sample time and

qb(:i:(n),ﬁ(n)) = x(r) + f;";’“ f(x(7),a(r))dr
State: z(t) = [pT(1),v7(1),q7(1),b; (1), b)(t)]T € R™, n,>15
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Sensor Fusion: Aiding Measurements

Aiding Measurement Model: Y = h,(mk) + Nk + €,
Residual Computation: 5yk = :ljk — h(ﬁ?k)
Residual Model: 0Yr = Hpox, + 1.+ ep
Zn = @(ty) = @(kT)

*GNSS: Position, attitude, velocity
Pro: Bounded absolute positionerror 1 > T
e Pro: Bound is dependent on processing and signals used
e Con: Reliability is dependent on environment

* Feature sensors: Relative position

 Pro: Bounded feature relative accuracy. Abundant in urban areas.
e Con (?): No absolute accuracy (without EDM).
e Con: Not robust to environmental conditions (e.g. lighting)

Outlier Accommodation:

NP-KF: Discard measurements for which the residual: |y, | >y
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Linear KF Problem Statement UcRIVERSIDE

Given:
-+ +
o £, = Px)_1 + Bup_1 +wp_1

o y. = Hxy +ny

Find: :fc}: = arg max (pm: (yk — Hwk)pwk (:L‘k))
where k
pa‘:k(wk) = N(‘%;;:Pk_)
Py = &, P, & +Q
.’ftg = ‘I’ﬁ?k_l+Buk_1
,\_|_ L . A — 2 2
£, = argmin (||a:k — T HPE + llyr — H«'BkHRk)
Lk
4+ —1 Tpp—1lrr\~ ! (p—1.— T p—1
z, = (P, +H R, H) (P, 2 +H R, y)

Standard Kalman Filter in Information Form
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New Perspectives: Signal Rich Environment RIVERSIDE

e Sensor rich Environments: many more signals available than required
e GNSS: GPS + GLONASS + Galileo + ....
* Images with numerous features
e Sliding Window of measurements
* Important Points:
e The specified accuracy can be achieved with a subset of measurements
e Using all measurements, exposes the estimate to unnecessary risk

New Perspectives:
e Maximal consistent set: Choose a maximal subset of self-consistent measurements
> L. Carlone, A. Censi, and F. Dellaert. "Selecting good measurements via €,
relaxation: A convex approach for robust estimation over graphs.” Intelligent
Robots and Systems (IROS), 2014.
» N. Sinderhauf and P. Protzel, “Towards a robust back-end for pose graph SLAM,”
in Robotics and Automation (ICRA). IEEE, 2012, pp.1254-1261.

e Risk-Averse Performance-Specified (RAPS): Choose a subset of measurements with
minimum risk that achieves specified accuracy.
» E. Aghapour and J. A. Farrell, "Performance specified state estimation with
minimum risk." American Control Conference (ACC), 2018




MAP Cost: Risk Quantification ucRIVERSIDE

X = arginax P (X, Xp1,Ug—1,2%)
= argmax p(xg_1 ) p(x|xe—1, uk—1)p(2k|x)
X

x, = argmin ([l —XZ_1|\%;_I + [ f Cex—1, uk—1) _tzQk

+ [|A(x) - zllz,)
_l_

= argmin (o= |3 + () — 23]
X

Assumptions:
e State transition and prior are trusted. Measurements may have outliers.

m

subject to: (Z %hThg—i—]k) > J
i=1 9i

b; € {O,I}fori: l,...,m.



Solution Approach: Relaxation UcCRIVERSIDE

Nonbinary RAPS: NP2
1) Selecting the measurements: Given b’ and xﬁ, find the optimal b**!:

NP2 : mmHZ i (=R |2+ A= b))
subject to: J; — Z ther_) <0
i=1 l

e€[0,1]fori=1,..

where A > 0 is a user-defined proximal parameter, H;f = Vh(x)|x:x£ € R™" and h; is the i-th row of Hf.
This is a standard semidefinite programming (SDP) problem.

2) State update: Given b’ and xk, find the optimal x”l.

m P
_f

NP2, : min [Hx X \|2_+|\Z (h(x)—zk)||2+ﬁ|\x—xgl\2]

Problem NP2, can be solved over multiple linearized iterations.

Summary Drawbacks:
* Multiple iterations to achieve convergence  « User-selected proximal parameters A and 3
* Interior point methods solve the SDP. affect the rate of convergence.
* Final solution only converges to a local
H. Attouch, J. Bolte, P. Redont, and A. Soubeyran, “Proximal alternating minimum, even when h(x) is convex.

minimization and projection methods for nonconvex problems: An
approach based on the Kurdyka-Eojasiewicz inequality,” Mathematics
of Operations Research, vol. 35, no. 2, pp. 438-457, 2010.



Solution Approach: Binary Search UcRIVERSIDE

Binary RAPS
Find Minimum Risk Feasible Measurement Subset:

Clx,b) = [lx —x sz— +[|D(5) (h(x) = 2t)lI7,

1) For each b € ., keep the zero elements of b unchanged and deactivate exactly one of the active elements of b. Each
b € .#; will produce the (m —s) permutations denoted as b’ for £ =1,...,(m—s). Each of the resulting b’ vectors will
have: n.(b*) = (n,(b)+1) = (s+1).

(a) For each b, solve the least square optimization:

£¢ = argmin C(x, b").
X
Define ¢! = C(#,b").
(b) Check whether b satisfies the performance constraint. If it does, then add b’ to .# and #,.;. If ¢’ < ¢*, then set

c*=c', £ =%, and b* =b".

2) If #., is empty the algorithm terminates; otherwise set s = s+ 1 and go to Step 1.

Since the algorithm considers all 5’s for which J; > J;, the final »* and £ achieve the global minimum.

Summary Drawbacks:
e Expands the full feasible set e The number of feasible vectors is O(2°)
* Finds the globally minimum risk feasible where s<m

subset of measurements  Computationally prohibitive for large m.



Computationally Feasible Implementation

Select measurements based on prior:

mm [HZ

subject to: () b—;

=1

el (h(x0) — )1

bic{0,1}fori=1,..

where #; is the i* row of H = Vh(x)|,_,

Diagonal Performance Specification:

NPD : min IIZ O -2
i=1

m
b.
subject to: z o_—’ | +diag(J, ) > Ja
=1 9i

bic{0,1}fori=1,...,m

hi hi+J.) > J,

1y

2)

3)

4)

Definitions.

Let ¢ be the number of selected mea-
surements. The set S contains the in-
dices of deactivated bits in by (i.e.,i €S
means the /" element of by is 0). Let
H = Vh(x)|x x;\ *

Initialization.

Initialize ¢ =0, S ={1,---,m}, by =
0 € R™, and vector J, = diag(J, ) —Ja.
Choose the next measurement.

Let [J,]; be the minimum element in J),.
Activate a non-active bit of by to max-
imize the added information to [J,];:

2
. hij
[ —argmax | — | .
i€S 0%,

Update.

Jp = Jp + Sdiag(h h;), S = S"\ i,
bo —ngBe;, and / =/+1. If.] < 0y,
go to Step 3. Otherwise stop.

(47)

Algorithm 1: Greedy Search for b



GNSS Aided INS Experimental Results UcRIVERSIDE
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Horizontal error, risk, and information Mean horizontal position error and the
diversity (i.e., GDOP) for pu = 2 percentage of selected measurements

versus mean outlier magnitude.

The yellow, green, blue and black curves display the results for NP-EKF with y =2, 3, 4, and
5, respectively.

The red curve shows the results for RAPS.



GNSS Aided INS Experimental Results UcRIVERSIDE

: GNSS-INS Vertical Performance Statistics

Algorithm Comparison for p = 2 (top) and u = 7 (bottom) For pt =2 (top) and p =7 (bottom).
Methods Mean of Std. of  Sub-meter ~Maximum Methods Mean of Std. of Error  Maximum
error (m)  error (m)  accuracy  error (m) error (m) error (m) < 2m  error (m)
NP-EKF1 y=5 0.63 0.35 0.77 1.35 NP-EKFI y=5 1.89 0.52 0.62 3.46
NP-EKF1 y = 4 0.58 0.26 0.92 1.23 NP-EKFI y=4 1.92 0.51 0.61 3.46
NP-EKFI y=3 0.45 0.23 0.99 1.04 NP-EKF1 y=3 1.42 0.61 0.83 2.90
NP-EKFl y=2 028 0.15 | 0.94 NP-EKFl y=2  0.59 0.47 1 1.85
RAPS1 0.24 0.10 1 0.62 RAPSI 0.37 0.39 1 1.63
NP-EKF2 y=5 0.35 0.19 0.99 1.34 NP-EKF2 y=5 0.39 0.36 1 1.86
NP-EKF2 y=4 0.35 0.19 0.99 1.34 NP-EKF2 y=4 0.39 0.36 1 1.86
NP-EKF2 y=3 0.34 0.18 | 0.90 NP-EKF2 y=3 0.38 0.35 1 1.74
NP-EKF2 y =2 0.30 0.15 I 0.89 NP-EKF2 y=2 0.36 0.37 | 1.70
RAPS2 0.27 0.10 1 0.59 RAPS2 0.39 0.40 1 1.82
% %

e All results are post-processed filters (not smoothers)

 Error computed relative to “ground truth”, which is a full trajectory
smoothed estimate based on integer-resolved carrier phase
measurements.

e Real-time implementations are being investigated.
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