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;# The ‘History’ — Intelligent Control s
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O Foundations of classical control — 1950’s
O Adaptive and learning control — 1960’s
d Self-organizing control — 1970’s
d Intelligent control -1980’s
O K. S. Fu (Purdue) - 1970’s coins the term ‘intelligent control’
Q G. N. Saridis (Purdue) introduces ‘hierarchically intelligent control
systems’ (PhDs: J. Graham, H. Stephanou, S. Lee)
O The 1980’s
Q J. Albus (NBS, then NIST)
Q Antsaklis — Passino
O Meystel
Q Ozguner - Acar
O Saridis — Valavanis
Common theme: multi-level/layer architectures; time-based and &
event-based considerations; mathematical approaches - :
Common limitation: lack of computational power (very crucial) -
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Videos/DU2SRI/Real-time, GPU-based pose estimation of a UAV for autonomous landing - Experimental evaluation.mp4
Videos/DU2SRI/ICRA2015.mp4
Videos/DU2SRI/SID_Yaw_sweep.mp4

Hierarchical Architecture (Saridis — Valavanis)
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Functionality — One Framework

 Modular
- Spatio-temporal

- Explicit human interaction modeling
 Event-based and Time-based
* On-line / Off-line components

« Vertical/horizontal functionality

« Independent of specific methodologies

used for implementation
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p(k+1/u;) = p(k/uy) + Bia/E-p(tiuy)]
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Adaptation/Learning (Vachtsevanos et al, 30 years
later....)
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Periodic

vanigpance Ent, is a new case, Ent; represents previous cases;
pporiace & @ o 2o El; is a feature; n,,,, is a pertinence weighted
e ) —~w] ¢ variable associated with the description element EI;

: M,,eq 18 a predictive weighted variable associated
: with each case in memory, which is increased as the

Update =
-
Confimmed Solution

p=d b . .
‘[Il Update : corresponding element (feature) is favorably
: selecting a case, and decreased as this selection
- & ’

Revised Solution

leads to a failure; @ is an adjustable parameter.
Incremental learning will occur whenever a new
case is processed, and its results are identified.

REUSE

Proposed Solution
REVISE

Dynamic CBR Architecture
1 Dynamic Case Base

2 Dynamic Case

3 Dynamic Adaptation

n . n .
k=1 a X Slm(Eli,k, Ell,k) + k=1 Mg, pred X Mipert X Slm(Eli,k, Ell,k)
n
aXn+ Zk:1 Ny pred X Nipert

Incremental learning will be pursued using Q-Learning, a popular reinforcement learning scheme
for agents learning to behave in a game-like environment. Q-Learning is highly adaptive for on-line
learning since it can easily incorporate new data as part of its stored database.

Advantage: COMPUTATIONAL POWER!!!

sim(Ent,, Ent;) =
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...30 years later
(Lin—Antsaklis-Valavanis— Rutherford
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Figure 1: Hybrid hierarchical control architecture for
multi-robot systems. The red arrows between layers rep-
resent the information flow and feedback between layers.
The red arrows between coordination layers of two robots
stand for communication between robots, while the phys-
ical interactions and passive reactions are denoted as ar-
rows between physical robots.
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Advantage:
COMPUTATIONAL
POWER!!!
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2012: Challenge of Autonomy
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Framework for the Design and Evaluation
of Autonomous Systems

Cognitive Echelon View

As component agent and roles increas
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Complex System Trades Space View
e
in autonomy, critical issues shift to
relationships and coordination across
roles and echelons

whether explicitly made or not, system

level performance trades result from
design choices about where and how
to inject autonomy
Mission Dynamics View e
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Figure 1-1 Framework for the Design and Evaluation of Autonomous Systems
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* Duality of the concept of Entropy

Measure of uncertainty as defined in Information Theory (Shannon).
Measures throughput, blockage, internal decision making,
coordination, noise, human involvement etc., of data / information
flow in any (unmanned) system. Minimization of uncertainty
corresponds to maximization of autonomy / intelligence.

Control performance measure, suitable to measure and evaluate
precision of task execution (optimal control, stochastic optimal
control, adaptive control formulations)

Entropy measure is INVARIANT to transformations — major plus

Deviation from ‘optimal’ is expressed as cross-Entropy and shows autonomy

robustness / resilience

Additive properties

Accounting for event-based and time-based functionality
Horizontal and vertical measure

Suitable for component, individual layer, overall system evaluation
Independent of specific methodologies used for implementation
One measure fits all!

DENVER
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Metrice to  evaluate = Autonomyl/intelligence .........
(Vachtsevanos - Valavanis — Antsaklis)
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* Performance and Effectiveness metrics

« Confidence (expressed as reliability measure, probabilistic metric)

- Risk is interpreted via a ‘value at risk level’, which is indicative of not
nominal situation, i.e., fault, failure, etc.

 Trust and trust consensus are evaluated through Entropic measures
indicating precision of execution, deviation from optimal, information
propagation, etc.

 Remaining Useful Life (RUL) of system components, sub-systems

« Probabilistic measure of resilience (PMR) - to quantify the probability
of a given system being resilient to forecasted environmental
conditions, denoting the ratio of integrated real performance over the
targeted one — thus, expressed as Entropy, too

[, Pr(®)dt

R(T) = [, Pr(tdt
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Entropy for control (Saridis — Valavanis) .........
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Boltzmann (theory of statistical thermodynamics) defined the Entropy, S, of a perfect gas
changing states isothermally at temperature T in terms of the Gibbs energy v, the total energy
of the system H and Boltzmann’s universal constant k, as

S = k] {(y-HKT} etv0rTcx s = -kJ,p00InpOOX p(x) = e(r-HT
When applying dynamical theory of thermodynamics on the aggregate of the molecules of a

perfect gas, an average Langangian, I, may be defined to describe the performance over time of
the state x of the gas

| = IL(X, t)dt

S= -ij{(w-H)/kT}e(W'H)’dex, | = J L(x, t)dt are equivalent, which leadsto S = I/T

with T the constant temperature of the isothermal process of a perfect gas.
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Entropy for control, cont...

Express performance measure of a control problem in terms of Entropy: for example, consider
the optimal feedback deterministic control problem with accessible states for the n-dimensional
dynamic system with state vector x(t), dx/dt = f(x, u, t), with initial conditions Xx(t,)=Xx,, and cost

function V(u, x,, t,) = I L(X, u, t)dt, where the integral is defined over [t,, T], and with u(x, t) the m-

dimensional control law. An optimal control u®(x, t) minimizes the cost V(u™; x,, t,) = min J-L(x,
u, t)dt with the integral defined over [t,, T]. Saridis proposed to define the differential Entropy for
some u(x, t) as

(%, UK, 1), D)) = H(W) = - Jo] o PGor 1)INDQt,, Uebedl
where the integrals are defined over Q, and Q,, and found necessary and sufficient conditions to
minimize V(u(x, t), X,, t,) by minimizing the differential Entropy H(u, p(u)) where p(u) is the
worst Entropy density as defined by Jayne’s Maximum Entropy Principle [104, 105].

By selecting the worst-case distribution satisfying Jaynes’ Maximum Entropy Principle, the
performance criterion of the control is associated with the Entropy of selecting a certain control

law.”” Minimization of the differential Entropy results in the optimal control solution.
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Entropy in general - duality

H(X) = - ZX p(x)logp(x) or H(X) = j f(x)Inf(x)dx

Conditional Entropies

Hy(X) =- 2. ., p(x, Y)logp(xly) = - 3, p(¥)D. « p(x/y)logp(x/y)
(9)
Transmission of information
T(X YY) =H(X) + H(Y) - H(X, Y) = H(X) - H/(X) = H(Y) — Hy(Y)
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Entropy - Intelligence and Robust ........
Intelligence
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Entropy Interval = H, ., — H,,, Kullback-Leibler (K-L) measure of cross-Entropy (1951) and
Kullback’s (1959) minimum directed divergence or minimum cross-Entropy principle,

MinxEnt

Human intervention introduced mathematically via additional probabilistic constraints, for

example p;, i=1, 2, 3..., n, ) _p;=1, and ) cp=c, ¢;5 are weights and ¢ a bound, which are
imposed on (unconstraint) probability distributions and influence/alter the H,.., — H,;, interval.

p = (py Py Py) @and q = (q4, Gy, ..., Q) May be measured (and evaluated) via the K-L

measure D(p:q) =Zpiln(pi/qi). For example, when ¢ is the uniform distribution (indicating
maximum uncertainty), then D(p:q) = Inn-H(p) where H(p) is Shannon’s Entropy.

Under this information theory related approach, which connects Entropy with the event-
based attributes of multi-level systems, the system starts from a state of maximum uncertainty
and through adaptation and learning, uncertainty is reduced as a function of accumulated and

acquired knowledge and information over time.
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Entropy for control, cont....
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DS = {So, Scs Se} - So = {U, &, & feo, OSing, Yiod - Sc = {Y oo feer “Sine, Fic}

Se ={ Fe» “Sint, Zc}

DS = {So, S, Sg} ={u, ¢, & T, T, OSint, CSint, ESint, L.}

Augmented input is U = {u, ¢, &}, internal variables are S; = { fo, fee, ©Sine. “Sine. ESinct
and the output is Z,.

GPLIR considers external and internal noise;
7 internal control strategies and internal coordination
: of the levels and between the levels to execute the
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- { Coordination, St ]<
Y Fic Jie GPLIR is also derived for the coordination and
[ Execution, ESint ]7 -
execution levels.
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(to control processes)
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THANK YOU
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