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1 Eisenstein Series

Definition 1.1. The Eisenstein series for SL(2,Z) is defined as

E(z, s) =
1

2
π−sΓ(s)

∑
m,n∈Z,(m,n)6=(0,0)

ys

|mz + n|2s

By basic complex analysis, when <(s) > 1, the Eisenstein series converges absolutely.
Moreover, by direct computation, we see that it is strictly automorphic.

Definition 1.2. The K-Bessel function is defined as

Ks(y) =
1

2

∫ ∞
0

e−y(t+t−1)/2ts
dt

t

Remark 1.3. We develop some properties of the K-Bessel function: If y > 0, as t → 0 or
∞, Ks(y)→ 0. Thus it is convergent for all s.

Let a = y/2, b = t+ t−1, if a, b > 2, ab > a+ b. Thus e−ab < e−ae−b.

Ks(y) =
1

2

∫ ∞
0

e−y(t+t−1)/2ts
dt

t
≤ 1

2

∫ ∞
0

e−y/2e−(t+t−1)ts
dt

t
= e−y/2K<(s)(2)

Moreover, it is easy to see that Ks(y) is invariant under t 7→ t−1, s 7→ −s. We have
Ks(y) = K−s(y).

We then compute:(
y

π

)s
Γ(s)

∫ ∞
−∞

(x2 + y2)−se2πirxdx =

∫ ∞
0

tse−t
dt

t

∫ ∞
−∞

(
y

π(x2 + y2)

)s
e2πirxdx

=

∫ ∞
−∞

∫ ∞
0

e−t
(

yt

π(x2 + y2)

)s
e2πirxdt

t
dx =

∫ ∞
0

∫ ∞
−∞

e−πt(x
2+y2)/ytse2πirxdx

dt

t

=

∫ ∞
0

√
y

t
e−yπr

2/tts
dt

t
= 2|r|s−1/2√yKs−1/2(2π|r|y)

Theorem 1.4. E(z, s) has meromorphic continuation to all s. It is analytic except at s = 1
and s = 0, where it has simple poles with residue 1/2 at s = 1. Moreover, E(z, s) =
E(z, 1− s), and E(x+ iy, s) = O(yσ) as y →∞, where σ = max(<(s), 1−<(s)).
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Proof. Since E(z, s) is automorphic, E(z, s) = E(z + 1, s). Then, we compute its Fourier
expansion. Let E(z, s) =

∑∞
−∞ ar(y, s)e

2πirx. We compute its Fourier coefficients. ar(y, s) =∫ 1

0
E(x + iy, s)e−2πirxdx. When m = 0, this term contributes to a0. Since n and −n

contributes equally, we have contribution

π−sΓ(s)ys
∞∑
n=1

n−2s = π−sΓ(s)ζ(2s)ys

When m 6= 0, since (m,n) and (−m,−n) contributes equally, the contribution is

π−sΓ(s)ys
∞∑
n=1

∞∑
−∞

∫ 1

0

[(mx+ n)2 +m2y2]−se2πirxdx

= π−sΓ(s)ys
∞∑
n=1

∑
n mod m

∫ ∞
−∞

[(mx+ n)2 +m2y2]−se2πirxdx

= π−sΓ(s)ys
∞∑
n=1

m−2s
∑

n mod m

e2πirn/m

∫ ∞
−∞

(x2 + y2)−se2πirxdx

= π−sΓ(s)ys
∑
m|r

m1−2s

∫ ∞
−∞

(x2 + y2)−se2πirxdx

Therefore, by our remark, one can compute ar easily as a sum of the above two expressions.

a0 = π−sΓ(s)ζ(2s)ys + πs−1Γ(1− s)ζ(2− 2s)y1−s

ar = 2|r|s−
1
2σ1−2s(|r|)

√
yKs− 1

2
(2π|r|y)

Therefore, each term has analytic continuation to all s besides a0 has poles at s = 0 and
s = 1. Since the K-Bessel function decays, this converges. And the functional equation can
be observed by an(y, s) = an(y, 1− s). Thus the statement is proven.

Since summing (m,n) is equivalent to sum (Nc,Nd) over N being a positive integer and
(c, d) over all coprime numbers. We associate a coset in Γ∞\Γ(1) by (c, d) being the bottom
row. Then ys

|mz+n|2s = N−2s=(γ(z))s. Then

E(z, s) = π−sΓ(s)
∑

γ∈Γ∞\PSL(2,Z)

=(γ(z))s

2 Rankin-Selberg Method

Let φ be automorphic onH. Let φ(x+iy) = O(y−N) for allN > 0 as y →∞. Since φ(z+1) =

φ(z), we have Fourier expansion φ(z) =
∑∞
−∞ φn(y)e2πinx, φn(y) =

∫ 1

0
φ(x+iy)e−2πinxdx. Let

the Mellin transform of φ0 be M(s, φ0) =
∫∞

0
φ0(y)ys dy

y
. Then since φ is bounded on the

fundamental domain, φ0 is bounded and decays as y → ∞, thus the Mellin transform is
absolute convergent when <(s) > 0. Let

Λ(s) = π−sΓ(s)ζ(2s)M(s− 1, φ0)
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Proposition 2.1.

Λ(s) =

∫
Γ(1)\H

E(Z, s)φ(z)
dxdy

y2

Then Λ has meromorphic continuation to all s with at most simple poles at s = 1, s = 0, and

res(Λ(s))|s=1 =
1

2

∫
Γ(1)\H

φ(z)
dxdy

y2

Proof. If we prove the first identity, then by Theorem 1.4, we have the rest. Let <(s) > 1,
consider

π−sΓ(s)ζ(2s)
∑

γ∈Γ∞\PSL(2,Z)

∫
Γ(1)\H

=(γ(z))sφ(γ(z))
dxdy

y2

= π−sΓ(s)ζ(2s)

∫
Γ∞\H

=(z)sφ(z)
dxdy

y2

= π−sΓ(s)ζ(2s)

∫ ∞
0

∫ 1

0

ysφ(x+ iy)y−1dxdy

y

which is what we desired.

Remark 2.2. Let f(z) =
∑
A(n)qn, g(z) =

∑
B(n)qn are modular forms. Let φ(z) =

f(z)g(z)yk. Then φ0(y) =
∑∞

n=0A(n)B(n)e−4πnyyk by direct computation. Then

M(s, φ0) = (4π)−(s+k)Γ(s+ k)
∞∑
n=0

A(n)B(n)n−(s+k)

Then since B(n) is self-adjoint:

Λ(s) = 4−s−k+1π−2s−k+1Γ(s)Γ(s− k + 1)ζ(2s)
∞∑
n=1

A(n)B(n)n−s−k+1

Then we let L(s, f × g) = ζ(2s− 2k + 2)
∑∞

n=1A(n)B(n)n−s, then

Λ(s, f × g) = (2π)−2sΓ(s)Γ(s− k + 1)L(s, f × g) = π1−kΛ(s− k + 1) = Λ(2k − 1− s, f × g)

Then we observe that this has simple poles at s = k, s = k− 1, with resudue at s = k being
1
2
π1−k〈f, g〉.

Then the Rankin-Selberg Method can help us prove the following Lemma and Theorem
(mostly by computation, so we know the Euler product of L(s, f × g))

Lemma 2.3. If
∑∞

r=0A(r)xr = (1−α1x)−1(1−α2x)−1 and
∑∞

r=0 B(r)xr = (1−β1x)−1(1−
β2x)−1, then

∞∑
r=0

A(r)B(r)xr = (1− α1β1α2β2x
2)−1

2∏
i=1

2∏
j=1

(1− αiβjx)−1

Theorem 2.4.

L(s, f × g) =
∏
p

2∏
i=1

2∏
j=1

(1− αi(p)βj(p)p−s)−1
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