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1 Eisenstein Series

Definition 1.1. The Eisenstein series for SL(2,Z) is defined as

B(z,s) = 2r=°T(s) Y y

2s
2 m,n€Z,(m,n)#(0,0) |mz + 77/|
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By basic complex analysis, when R(s) > 1, the Eisenstein series converges absolutely.
Moreover, by direct computation, we see that it is strictly automorphic.

Definition 1.2. The K-Bessel function is defined as
1 [ 1)/2,s 4t
K, _ = —y(t+t~ /2ts
v) =3 /0 e .

Remark 1.3. We develop some properties of the K-Bessel function: If y > 0, ast — 0 or
00, K4(y) — 0. Thus it is convergent for all s.
Leta=y/2, b=t+t"' ifa,b>2ab>a-+0b Thus e ® < e %",

1 [ - a 1 [~ _1y,.dt
K(y) = 5/ eyt /2 - < 5/ e Y2t s = = e Y Ky,)(2)
0 0

Moreover, it is easy to see that K,(y) is invariant under ¢ — t~' s — —s. We have

Ky(y) = K_(y).
We then compute:

B & . 0 dt s ‘
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Theorem 1.4. E(z,s) has meromorphic continuation to all s. It is analytic except at s = 1
and s = 0, where it has simple poles with residue 1/2 at s = 1. Moreover, E(z,s) =
E(z,1—=35), and E(x +iy,s) = O(y?) as y — oo, where 0 = max(R(s), 1 — R(s)).
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Proof. Since E(z,s) is automorphic, E(z,s) = E(z + 1,s). Then, we compute its Fourier
expansion. Let E(z,s) =Y. a,(y,s)e*™*. We compute its Fourier coefficients. a,(y, s) =

fol E(z + iy,s)e > dz. When m = 0, this term contributes to ag. Since n and —n
contributes equally, we have contribution

T °I(s Zn =T (s)C(2)y°

When m # 0, since (m,n) and (—m, —n) contributes equally, the contribution is

yZZ/ ma +n)? + m2y?] 5™ da

n=1 —oo

= Z Z / m$+n +my] 86271'17“:cdx

n=1n modm

_ W_SF(S)yS Z m—23 Z eQﬂ'irn/m / (1,2 + y2)—s€27rirxdx
n=1 -

n  mod m
oo
S>ys 2 m12s/ (.T2 4 y2)75627m"96d3j
m|r -
Therefore, by our remark, one can compute a, easily as a sum of the above two expressions.

ap = 7 *T(s)C(28)y* +m'T(1 — 5)¢(2 — 2s)y'

_1
ar = 2|r[*"2 01 ao(|7]) VYK, 1 (27[r[y)

Therefore, each term has analytic continuation to all s besides ag has poles at s = 0 and

s = 1. Since the K-Bessel function decays, this converges. And the functional equation can

be observed by a,(y,s) = a,(y,1 — s). Thus the statement is proven. O

Since summing (m,n) is equivalent to sum (N¢, Nd) over N being a positive integer and
(¢, d) over all coprime numbers. We associate a coset in ' ,\I'(1) by (¢, d) being the bottom
row. Then = N723(y(2))®. Then

E(zys)=n"T(s) Y S((=)

€T \PSL(2,2)

\mz+n\2s

2 Rankin-Selberg Method

Let ¢ be automorphic on H. Let ¢(z+iy) = O(y~) for all N > 0 as y — 00. Since ¢(z+1) =
¢(z), we have Fourier expansion ¢(z) = > > (bn( ) zmm, on(y fo (z+iy)e?™"*dz. Let

the Mellin transform of ¢q be M (s, ¢g) fo dey. Then since ¢ is bounded on the
fundamental domain, ¢q is bounded and decays as y — 00, thus the Mellin transform is
absolute convergent when $(s) > 0. Let

A(s) = 7T(s)¢(25) M (s — 1, o)
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Proposition 2.1.

B 5 Zda:dy
A(s) = / RCOrCL

Then A has meromorphic continuation to all s with at most simple poles at s = 1,s =0, and

1 dxd
res(A(s))|s=1 = 3 /r(l)\H P(2) x2y

Y

Proof. If we prove the first identity, then by Theorem 1.4, we have the rest. Let R(s) > 1
consider

dxdy
y2

75T (5)C(25) /F o *p(v(2))

WEFOO\PSL(Q VA)

T T(s)2s) [ S

Foo\H Yy

(&%) 1 d d
— 7T (s)C(25) / / oo+ gy

which is what we desired. O

Remark 2.2. Let f(z) = > A(n)q",g(z) = > B(n)¢" are modular forms. Let ¢(z) =
f(2)g(z)y*. Then ¢o(y) = > o2, A(n)B(n)e *™¥y* by direct computation. Then

dxdy

2

M(s, ¢o) = (4m)"C*MT(s + k) f} A(n)B(n)n~ ")

n=0

Then since B(n) is self-adjoint:

A(s) = 4~ p=25-kH D ()T (s — k + 1)¢(25) Z A(n)B(n)n—*k+1

n=1
Then we let L(s, f X g) = ((2s —2k +2) > " A(n)B(n)n"*, then
As, fxg)=02m) >T(s)[(s—k+1)L(s, fxg)=m""A(s —k+1)=A2k —1—5,f x g)
Then we observe that this has simple poles at s = k, s = k — 1, with resudue at s = k£ being
s (S ).

Then the Rankin-Selberg Method can help us prove the following Lemma and Theorem
(mostly by computation, so we know the Euler product of L(s, f X g))

Lemma 2.3. If > 2 JA(r)a" = (1 —ayz) (1 —aox) " and > 02  B(r)a" = (1— )1 (1—
Bax)~t, then

Z A(r)B(r)z" = (1 — an fragfaa®) ™! H H(l - Oéiﬁgw)_l

i=1 j=1

Theorem 2.4.



