Publications

[Submitted articles]

  1. G. Fu, J. Guzman, and M. Neilan. Exact smooth piecewise polynomial sequences on Alfeld splits. Submitted to Math. Comp. [.pdf]

[Accepted articles]

  1. G. Fu and C.-W. Shu. Optimal energy-conserving discontinuous Galerkin methods for linear symmetric hyperbolic systems. J. Comput. Phys., 394(2019), pp. 329-363 [http], [.pdf]

  2. G. Fu. An explicit divergence-free DG method for incompressible magnetohydrodynamics.
    J. Sci. Comput., 79(2019), pp. 1737-1752.
    [http], [.pdf]

  3. G. Fu. An explicit divergence-free DG method for incompressible flow. Comput. Methods Appl. Mech. Engrg., 345(2019), pp. 502-517. [http], [.pdf]

  4. B. Cockburn, G. Fu, and W. Qiu. Discrete H1-inequalities for spaces admitting M-decompositions. SIAM J. Numer. Anal., 56(2018), pp. 3407-3429.[http], [.pdf]

  5. M. Ainsworth and G. Fu. Dispersive behavior of an energy-conserving discontinuous Galerkin method for the one-way wave equation. J. Sci. Comput., 79(2019), pp. 209-226. [http], [.pdf]

  6. G. Fu and C.-W. Shu. An energy-conserving ultra-weak discontinuous Galerkin method for the generalized Korteweg-De Vries equation. J. Comput. Appl. Math., 349 (2019), pp. 41-51. [http], [.pdf]

  7. G. Fu. A high-order HDG method for the Biot’s consolidation model. Comput. Math. Appl., 77 (2019), pp . 237-252. [http], [.pdf]

  8. M. Ainsworth and G. Fu. Bernstein-Bezier Bases for Tetrahedral Finite Elements. Comput. Methods Appl. Mech. Engrg., 340(2018), pp. 178-201.[http], [.pdf]

  9. M. Ainsworth and G. Fu. Fully computable a posteriori error bounds for hybridizable discontinuous Galerkin finite element approximations. J. Sci. Comput., 77(2018), pp. 443-466.[http], [.pdf]

  10. G. Fu and C. Lehrenfeld. A Strongly Conservative Hybrid DG/Mixed FEM for the Coupling of Stokes and Darcy Flow. J. Sci. Comput., 77 (2018), pp. 1605-1620.[http]

  11. G. Fu, Y. Jin, and W. Qiu. Parameter-free superconvergent H(div)-conforming HDG methods for the Brinkman equations. IMA J. Numer. Anal., 39(2019), pp. 957-982. [http], [.pdf]

  12. B. Cockburn and G. Fu. Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity. IMA J. Numer. Anal., 38(2018), pp. 566-604.[http], [.pdf]

  13. M. Ainsworth and G. Fu. A lowest-order composite finite element exact sequence on pyramids. Comput. Methods Appl. Mech. Engrg., 324(2017), pp. 110-127.[http], [.pdf]

  14. G. Fu and C.-W. Shu. A new troubled-cell indicator for discontinuous Galerkin methods for hyperbolic conservation laws. J. Comput. Phys., 347(2017), pp. 305-327. [http], [.pdf]

  15. G. Fu and C.-W. Shu. Analysis of an embedded discontinuous Galerkin method with implicit-explicit time-marching for convection-diffusion problems. Int. J. Numer. Anal. Model., 14(2017), pp. 477-499. [http], [.pdf]

  16. B. Cockburn and G. Fu. A systematic construction of finite element commuting exact sequences. SIAM J. Numer. Anal., 55(2017), pp. 1650-1688. [http], [.pdf]

  17. B. Cockburn, G. Fu, and W. Qiu. A note on the devising of superconvergent HDG methods for the Stokes flow by M-decompositions. IMA J. Numer. Anal., 37(2017), pp. 730-749 [http]

  18. B. Cockburn and G. Fu. Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements. ESAIM: Math. Model. Numer. Anal., 51(2017), pp. 365-398. [http]

  19. B. Cockburn and G. Fu. Superconvergence by M-decompositions. Part II: Construction of two-dimensional finite elements. ESAIM: Math. Model. Numer. Anal., 51(2017), pp. 165-186.[http]

  20. B. Cockburn, G. Fu, and F.-J. Sayas. Superconvergence by M-decompositions. Part I: General theory for HDG methods for diffusion. Math. Comp., 86(2017), pp. 1609-1641.[http]

  21. E. Chung, B. Cockburn, and G. Fu. The staggered DG method is the limit of a hybridizable DG method. Part II: the Stokes system. J. Sci. Comput., 66(2016), pp. 870-887. [http]

  22. G. Fu, B. Cockburn, and H. Stolarski. Analysis of an HDG method for linear elasticity. Internat. J. Numer. Methods Engrg., 102(2015),pp. 551-575. [http]

  23. G. Fu, W. Qiu, and W. Zhang. An analysis of HDG methods for convection dominated diffusion problems. ESAIM: Math. Model. Numer. Anal., 49(2015), pp. 225-256. [http]

  24. H. Chen, G. Fu, J. Li, and W. Qiu. First order least squares method with weakly imposed boundary condition for convection dominated diffusion problems. Comput. Math. Appl., 68(2014), pp. 1635-1652. [http]

  25. E. Chung, B. Cockburn, and G. Fu. The staggered DG method is the limit of a hybridizable DG method. SIAM J. Numer. Anal., 52(2014), pp. 915-932. [http]

[Thesis]

  1. G. Fu. Devising superconvergent HDG methods by M-decompositions. Ph.D. Thesis, University of Minnesota Twin Cities, 2016.[http]