• 2016
  • Animations
  • Bayesian conditional diffusion models for versatile spatiotemporal turbulence generation
  • CoNFiLD: Conditional Neural Field Latent Diffusion Model Generating Spatiotemporal Turbulence
  • Events
  • Gallery
  • Home
  • Lastest News
  • List of All Publications
  • Openings (2025 Fall)
  • Our Team
  • Presentations & Tutorials
  • Publication
  • Research
    • Data assimilation and Uncertainty Quantification
    • Data-Augmented Physiological Modeling
    • Data-Driven Turbulence Modeling
    • Scientific Machine Learning Techniques
    • Inverse Problems in Computational Physics
    • Bayesian uncertainty quantification and reduction in turbulence model
  • Scholarship Opportunities
  • Scientific Machine Learning for Spatio-temporal Predictions
  • Software & Codes
  • Teaching & Outreach
Skip to content
  • University of Notre Dame

Computational Mechanics & Scientific Artificial Intelligence Lab (CoMSAIL)

Prof. Jian-xun Wang's research group -- we advance knowledge at the Interface of scientific AI and computational physics (scientific machine learning, data assimilation, physics-informed deep learning, Bayesian learning, differentiable programming, uncertainty quantification)

Menu

Animations

2024, CoNFiLD: Conditional Neural Field Latent Diffusion Model Generating Spatiotemporal Turbulence

2023, Bayesian conditional diffusion models for versatile spatiotemporal turbulence generation

Contact me

Email (Cornell): jw2837@cornell.edu
Email (ND): jwang33@nd.edu

Follow me

[Google Scholar Link]

[ResearchGate Link]

[Linkedin Link]

[Twitter Link]

[Youtube Channel]

Copyright © 2026 University of Notre Dame

Computational Mechanics & Scientific Artificial Intelligence Lab (CoMSAIL) Notre Dame, IN 46556 USA

Accessibility Information

University of Notre Dame