• 2016
  • Animations
  • Bayesian conditional diffusion models for versatile spatiotemporal turbulence generation
  • CoNFiLD: Conditional Neural Field Latent Diffusion Model Generating Spatiotemporal Turbulence
  • Events
  • Gallery
  • Home
  • Lastest News
  • List of All Publications
  • Openings (2025 Fall)
  • Our Team
  • Presentations & Tutorials
  • Publication
  • Research
    • Data assimilation and Uncertainty Quantification
    • Data-Augmented Physiological Modeling
    • Data-Driven Turbulence Modeling
    • Scientific Machine Learning Techniques
    • Inverse Problems in Computational Physics
    • Bayesian uncertainty quantification and reduction in turbulence model
  • Scholarship Opportunities
  • Scientific Machine Learning for Spatio-temporal Predictions
  • Software & Codes
  • Teaching & Outreach
Skip to content
  • University of Notre Dame

Computational Mechanics & Scientific Artificial Intelligence Lab (CoMSAIL)

Prof. Jian-xun Wang's research group -- we advance knowledge at the Interface of scientific AI and computational physics (scientific machine learning, data assimilation, physics-informed deep learning, Bayesian learning, differentiable programming, uncertainty quantification)

Menu

Bayesian conditional diffusion models for versatile spatiotemporal turbulence generation

Gao et al. Bayesian Conditional Diffusion Models for Versatile Spatiotemporal Turbulence Generation, 2023.

Contact me

Email (Cornell): jw2837@cornell.edu
Email (ND): jwang33@nd.edu

Follow me

[Google Scholar Link]

[ResearchGate Link]

[Linkedin Link]

[Twitter Link]

[Youtube Channel]

Copyright © 2025 University of Notre Dame

Computational Mechanics & Scientific Artificial Intelligence Lab (CoMSAIL) Notre Dame, IN 46556 USA

Accessibility Information

University of Notre Dame