Inclusive learning analytics for identifying and boosting non-thriving students in large-enrollment general chemistry course

Schalk, Catlin, Young, Kelley, Ambrose, G. Alex, Duan, Xiaojing, Weber, Woodard, Victoria (2020) “Inclusive learning analytics for identifying and boosting non-thriving students in large-enrollment general chemistry course.” Biennial Conference on Chemical Education. Poster.

Because of the global COVID-19 pandemic, the 2020 Biennial Conference on Chemical Education was terminated on April 2, 2020, by the Executive Committee of the Division of Chemical Education, American Chemical Society; and, therefore, this presentation could not be given as intended

ABSTRACT
Our goals are to identify non-thriving students in a gateway introductory chemistry course, and to develop methods that increase student success and retention rates in the College of Science and College of Engineering. General Chemistry is required for all first semester STEM majors, which totaled 949 students in Fall 2019. Specifically, our focus is on maximizing students’ potential to thrive — that is earning a final grade of C or higher in the course — not just to survive the class. We use student background data, historical performance data, as well as real-time academic performance data in the development of a visual analytics dashboard. This inclusive learning platform is a tool for instructors and administration to identify admissions characteristics and academic performance triggers that lead to non-thriving in the course, or in STEM programs. Course homework and exam item analysis was conducted to identify students who are not likely to thrive based on course performance identifiers so that early actions can be taken to intervene during the semester to boost the chances of these students to thrive in the course. Additionally, a special treatment program, the Science and Engineering (S&E) scholars program, is implemented as an effort to close the achievement gap of underserved and underprepared students while also maintaining the rigor of the course. The 45 students in this small cohort take a summer math refresher course, are enrolled in the same chemistry and calculus sections together, have a reduced course load, and attend extra graded problem solving classes with more one-on-one time with experienced professors and TAs.

Comments are closed.