Research Focus Areas

Custom Synthesis of Metal/Porous Nanoparticles
Plasmonic nanoparticles include silver and gold. Metal oxides include iron and the lanthanide-series elements of gadolinium, cerium, and hafnium. Porous nanoparticles are silica-based or polymeric micelles.

Nanotoxicology
Assessing in vitro toxicity of nanoparticles on murine and human cell lines. In vivo toxicity was assessed in zebrafish models, and in vivo biodistribution was assessed in mouse models.

Biomedical Image Contrast Agents
Plasmonic, fluorescence, MRI, and X-ray modalities of detection in a mouse animal model. Single-mode and multi-mode detections.

Precision Nanoprobes
Antibody, affibody, biologics mediated targeting. Volume loaded therapeutics, photosensitizers and radiosensitizers. This is applicable to cancer biology and neurodegenerative disease studies.

Molecular Nanotechnology
Utilizing anisotropic and hybrid nanoparticle architectures to introduce directionality in motion, precisely orienting targeting molecules and directed exertion of force by nanosystems. Anisotropic nanoparticles can be ‘Janus’ hybrids or non-spherical nanoparticles and includes rods, plates, prisms, and core-shells.

Custom Synthesis of Metal/Porous Nanoparticles

Standardized synthesis of Gold nanoparticles (nanoclusters, 5 nm, 10 nm, 16 nm) Silver nanoparticles (nanoclusters, 10 nm, 40 nm, 95 nm) Iron oxide nanoparticles (10 nm) Gadolinium oxide (5 nm, 10 nm) Hafnium oxide (5 nm, 10 nm) Microporous silica particles (15 nm, 50 nm, 100 nm, 400 nm) Other nanoparticles currently being optimized include …

View page »

Nanotoxicology

Nanotoxicity assessment is an integral part of designing biomedical probes. In vitro toxicity of nanoparticles is assessed using murine (L929) and human cell lines (HUVEC, RAW246.7). In vivo toxicity was assessed in zebrafish models, and in vivo biodistribution/blood pool kinetics was assessed in athymic and euthymic mouse models. Representative Publications           …

View page »

Biomedical Image Contrast Agents

Scaled up the synthesis of nanoparticle contrast agents. I specialize in the synthesis of long emission lifetime, fluorescent and photoluminescent nanoparticles. This is achieved by modifying Au cores with fluorophore embedded shells or Au nanoclusters with tunable photoluminescence. Fluorescent silica particles with sizes ranging from 15 nm to 400 nm are also available. Such probes …

View page »

Precision Nanoprobes

Antibody-drug conjugates are emerging as a frontrunner in precision targeted therapeutics. However, this capability is still beyond the ability of most academic laboratories. The primary reason for this is the need to identify a precise binding site on the constant region of the antibody (Fc) for the drug molecule to be conjugated, while not affecting …

View page »

Molecular Nanotechnology

This is the current focus of my research. Utilizing anisotropic and hybrid nanoparticle architectures to introduce directionality in motion, precisely orienting targeting molecules and directed exertion of force by nanosystems. Anisotropic nanoparticles can be Janus hybrids or non-spherical nanoparticles and include rods, plates, prisms, and core-shells. This will lay the basis for nanomotors and nanomachines …

View page »

Nanoparticles that act as an “ON and OFF” switch to improve the safety and effectiveness of CAR-T cancer therapy

Always thankful for the internal support from Notre Dame Research #notredameresearch for supporting high risk-high gain projects such as mine. Here’s hoping that my faculty research support program initiation grant (FRSP-IG) #FRSP will pave the way for safer, more accessible CAR-T therapies and better quality of life for patients. https://research.nd.edu/news/developing-an-on-and-off-switch-for-breast-cancer-treatment/ The biggest bottle neck in Chimeric …

Read more

Inaugural Woodward family endowment for excellence in NDNANO undergraduate research awarded to Margo Waters

Congratulations to Margo Waters of the Nallathamby lab for having being selected for the Inaugural Woodward family endowment for excellence in NDnano undergraduate research! Margo has been an exceptional contributor to advancing research on novel cancer therapeutics in our lab. You can check out more about what motivates her at https://research.nd.edu/news/inaugural-woodward-family-endowment-for-excellence-in-ndnano-undergraduate-research-awarded/

Read more