Tag Archives: COVID

COVID-19 Vaccines: Helping You Combat One Spike Protein at a Time

COVID-19 vaccinations reduce the risk of infection and have the potential to ensure life returns to normal. Everywhere you turn someone is talking about which vaccine they have received: Pfizer, Moderna, Janssen, AstraZeneca… But what is the difference? How do the different types of COVID-19 vaccinations protect us? And does it matter which vaccine you receive?

COVID-19 vaccine comparison chart illustrating Pfizer and Moderna are RNA vaccines and Janssen and AstraZeneca are viral vector vaccines.
COVID-19 Vaccine Comparison. Photo by BBC News on Wikimedia Commons.

To start off, it is important to understand how coronavirus enters our cells: spike protein. Spike proteins are visually the spikes protruding from the spherical coronavirus and what bind to our cells to transmit the RNA virus (a code for COVID-19), enveloped inside the coronavirus, to our cell’s cytoplasm (the area inside a cell excluding the nucleus). The spike proteins fuse to our cell membrane (the outside of the cell) and are the target for researchers and vaccine developers.

Image of SARS-CoV-2 with red spike protein protruding from the spherical coronavirus.
SARS-CoV-2 (red spike proteins). Photo by Alissa Eckert, MS; Dan Higgins, MAM on Wikimedia Commons.

There are various types of vaccines that stop the spike proteins from fusing to our cell membrane, however, the two main types of vaccines used in the United States are mRNA vaccines and viral vector vaccines. Pfizer and Moderna are mRNA vaccines, while Janssen and AstraZeneca are viral vector vaccines. Both types of vaccines have the same goal: create antibodies to bind to spike proteins to block the spikes from attaching to and infecting healthy cells.  

The Pfizer and Moderna vaccines use messenger RNA technology to deliver genetic code to our cells to instruct how to make the SARS-CoV-2 spike protein. mRNA is very fragile thus it is encapsulated in something called lipid nanoparticles (LNPs) in order to reach the cell. LNPs increase translatability and stability to ensure mRNA’s delivery to the cell. When the mRNA vaccine is delivered to our cell it breaks free of the LNPs. 

Diagram of mRNA with LNPs.
mRNA and LNPs. Photo by Andreas M. Reichmuth, Matthias A. Oberli, Ana Jaklenec, Robert Langer, and Daniel Blankschtein, “mRNA vaccine delivery using lipid nanoparticles,” NCBI, PMID: 27075952.

After the mRNA is released from the LNPs, the cell begins making spike proteins. The spike proteins then trigger an immune response to begin producing antibodies. Ultimately, the antibodies latch onto the coronavirus’s spikes making the virus unable to latch onto other cells.

The Janssen and AstraZeneca vaccines incorporate viral vector vaccine technology. The viral vector is a genetic code that creates an instruction manual for human cells to produce the SARS-CoV-2 spike protein transported into the body by a harmless virus called an adenovirus. The adenovirus acts as the delivery system for this important DNA code and helps the body to trigger an immune response. 

The vector vaccine attaches onto proteins on the cell’s surface and the adenovirus is pulled into the cell. The main difference between the mRNA vaccine and the viral vector vaccine is that the DNA in the adenovirus of the viral vector vaccine must travel into the cell’s nucleus in order to be transcribed whereas the mRNA vaccine remains in the cytoplasm throughout the process. From there viral vector vaccine acts very similar to mRNA vaccines—once the DNA is transcribed into mRNA, the mRNA leaves the nucleus and the cell begins assembling spike proteins.

Further research is being completed to determine exactly how COVID-19 vaccines enter the cell. However, endocytosis is thought to be the answer based on previous vaccine knowledge. Endocytosis is a cellular process in which something is brought into the cell by engulfing it in a vesicle (small fluid bubble). In mRNA vaccines, the LNPs take advantage of the natural process of endocytosis. The LNPs are engulfed in a bubble, triggering a reaction that allows the nanoparticle to enter the cell and eventually release the mRNA.

Image depicting endocytosis in COVID-19 vaccines.
Endocytosis in COVID-19 vaccines. Photo by Oleg O. Glebov, “Understanding SARS‐CoV‐2 endocytosis for COVID‐19 drug repurposing,” NCBI, PMID: 32428379.

Overall, both the mRNA and viral vector vaccinations are great options each with their own unique design to produce antibodies and stop coronavirus from latching onto our cells.

Doses of the Pfizer COVID-19 vaccine.
Doses of the COVID-19 vaccine are seen at Walter Reed National Military Medical Center, Bethesda, Md., Dec. 14, 2020. Photo by Lisa Ferdinando on Wikimedia Commons.

the novel coronavirus: how an invisible invader halted the world

Last year the world changed. With modifications to daily life such as wearing masks and attending class online, a lot of what was common became uncommon. More severely, millions of deaths globally shook the world. All of this change and devastation can be attributed to a coronavirus variant that was shockingly good at two things… 1.) Stability outside of cells 2.) Breaching the lower respiratory tract. A few questions must be understood as to why this virus is so effective in its affinity towards destruction. First, How does COVID-19 penetrate a cell? How does COVID 19 replicate? Finally, why is COVID-19 able to survive outside of a cell so well?

Detailing of S spike Proteins on Coronavirus Molecule
Coronavirus Spike Illustration Provided by NIH

With regards to cellular penetration, Coronavirus has two main parts in order to enter a cell. The first part is the use of its spike-like proteins to bind to the outside of a cell, otherwise known as the cell’s surface receptors. This spiky outer layer of the coronavirus makes it easily bindable to a number of human cells. After an initial bind between the coronavirus and the cell’s surface receptors, the coronavirus is absorbed into the inside of the cell, analogous to the way an amoeba absorbs an organism. The second part of this process involves what is called protein priming. Before entering the cell, coronavirus primes the S protein through the host cell’s proteases. From there, the S protein allows for ACE-2 binding which can be thought of as the mode for physically transporting the coronavirus into the cell. The current variant of Coronavirus is exceptionally dangerous because its spike proteins are able to attach to cells in the lower respiratory tract, a very vulnerable system in many humans.

Scanning Electron Micrograph of Coronavirus infected tissue
Coronavirus Scanning Electron Micrograph From Patient

Once in the cell, coronavirus seeks to reproduce. In order to reproduce, Coronavirus seeks out ribosomes to make copies. The viral molecule carries the blueprint on how to convert RNA into more RNA via creating a polymerase. This polymerase reproduces the genetic RNA genome and ultimately forces the ribosomes to produce more Coronavirus molecules. Because there are millions of ribosomes in every human cell, it does not take long for this process to occur. One of the key modes of trying to treat people with extreme cases is medicine that targets this polymerase. The drug fakes out the polymerase into replicating genomic material that will not lead to greater virus production.

Coroanvirus armor and encasement illustrated.
Coronavirus armor and encasement illustration from Scientificanimations.com

Finally, Coronavirus is exceptional at surviving outside of the cellular environment. It has been noted that in the right conditions (humid), coronavirus can survive on a given surface anywhere from a few hours to 9 days. On paper, the virus may only survive for a few hours while on glass, the virus can exist for 5 days. Why Coronavirus is able to survive on these surfaces relates back to its spike proteins. These proteins act as armor in protecting the genomic material inside the virus. If this armor is broken, the genome of the virus is spilled out as well the virus no longer having a physical form.

Understanding is the first step in disarming. By having a better understanding of how coronavirus binds and enters into cells, replicates, and survives in outside environments, better strategies to prevent the spread of this dangerous virus can be better developed.