Tag Archives: walking

Ditching the shoes: Minimalist trend or natural advantage?

The discussion of returning to minimalist ways, namely walking or running barefoot, is a question that rises in many circles, from new parents to elite runners. For example, parents are told to let children learn to walk barefoot, as studies have shown early use of footwear can lead to feet deformities and can alter natural gait, which is especially important when learning to walk. Likewise, many avid and elite runners have shown interest in barefoot running (or minimalist running shoes), as some are convinced that the forefront strike (FFS or also known as NRFS – non rear foot strike), more commonly used during barefoot running, lowers the loading rate on the foot and minimizes injuries from the repeated stress that occurs in the feet during running. 

Diagram illustrating four phases of foot contact with the ground for forefront strike and rear foot strike patterns
Forefront strike (top) and rear foot strike (bottom). Modified from Daniel E. Lieberman et al., Springer Nature 2010

In general, walking or running barefoot yields more frequent steps, a smaller stride length and a slower velocity (most noticeable while running). Barefoot running is thought to reduce some of the injuries many runners are prone to, such as shin splints, stress fractures or plantar fasciitis. Additionally, the stiff fit of modern shoes limits the width and spreading of feet in the natural walking or running motion. However, barefoot running also comes with a cost, with injuries in the achilles region more prevalent. 

A study in the Gait & Posture journal examined foot motion in children and found modern commercial footwear does have a large impact on gait, especially in regards to range of motions of different muscles and joints in the foot, likely due to the stiffness of shoes. More flexible shoes, similar to minimalist running shoes, were found to have a smaller impact on foot motion in reference to bare feet, but still had a significant difference in regards to the added support in the arch area. 

The common belief that barefoot motion lowers the impact on the body has been questioned by a recent research study from Southern Methodist University. The findings indicated that while running barefoot with a forefront strike, the feet strike the ground at a more pronounced angle which generates a longer contact time, thus decreasing the loading rate and allowing the muscles in the back of the feet and legs (especially the Achilles) to absorb some of the loading stress. When humans adapted to running in shoes, especially shoes with thick cushioning, the landing switched to a rear foot strike that allows the heel cushioning to absorb some of the loading stress, resulting in a fairly equal loading rate for both cases. The heel cushioning, with a flatter angle of contact, also allows for decreased impact time with the ground surface, which is why higher running speeds are achieved with footwear. 

barefoot person walking outdoors during the day
Photo by ‏🌸🙌 في عین الله on Unsplash

While the advice to encourage barefoot walking in young children certainly makes sense as they continue to grow and learn to control their bodies, the choice to use shoes or go barefoot for older children and adults remains an individual preference. There is no significant difference in the stresses the body experiences, but the footwear choice does influence the likelihood of certain, which is important for runners with past injuries to consider.

For more information, check out this extensive technical review of studies on barefoot vs. footwear mechanics or this video from Exercising Health comparing running shoes with minimalistic barefoot shoes.

The Weight of Combat: Are powered exoskeletons the solution to heavy combat loads?

Have you ever wondered how much weight a soldier carries in a combat zone?

Military servicemembers, particularly those in physically demanding roles such as infantry, are routinely required to carry heavy combat loads ranging from 25- to over 100-lbs. This load potentially includes weapons, ammunition, body armor, food, sleeping equipment, and other necessities for the mission. Consider that these loads are often carried for hours or even days at a time in both deployed and non-deployed environments and it becomes clear that these loads take a physical toll on those who bear them.

The physiological demands of these loads often lead to servicemember injury or discomfort both during and after their time in service. The most common musculoskeletal injuries resulting from carrying heavy combat loads include increased lower back pain and injuries to the knee, ankle, and spinal cord. Such injuries lead to acute and chronic effects over the servicemembers’ lifetimes, increased military healthcare costs, and decreased military readiness.

While it would be advantageous to decrease both the weight of the combat load as well as the frequency of weight-bearing events, the reality of modern warfare gives little hope to these suggestions. However, there is another solution: external, electrically powered exoskeletons to aid with carrying combat loads.

American defense and technology company Lockheed Martin is currently developing a prototype exoskeleton for military use – the ONYX exoskeleton. Two prior-service soldiers are shown performing common physical tasks under load – walking up a steep incline and walking up flights of stairs – while aided by the exoskeleton. Both soldiers involved in the test indicated a high level of comfort with the exoskeleton as well as improved weight-bearing ability using the ONYX exoskeleton. Check out the video to learn more:

Powered exoskeletons come with drawbacks, namely mobility/comfort issues and the need for a mobile, long-lasting power source. While the devices may perform well in a laboratory or controlled setting, reliability in the field will require durable materials and electronics. Additionally, while Lockheed-Martin’s ONYX exoskeleton is designed to reduce load on the wearer’s knees and quadriceps muscles, it gives no such support to the lower back or other parts of the body. This shift in load distribution throughout the body may have unintended consequences and potentially lead to further injury. A 2006 study by researchers at Loughborough University in the UK found that existing military load carriage systems result in gait and posture changes (head on neck angle, trunk angle, etc.) which lead to muscle tensions that increase one’s risk for injury.

A figure visualizing the angles made by the head, torso, and legs when walking
Image taken from Attwells et al., Ergonomics, 2006.

Thus, while there have been many improvements in robotic and soft electronics technology in recent years, powered exoskeletons have much to prove before they see time in service.

What do you think – are powered exoskeletons going to be commonplace on the battlefields of tomorrow, or are they a passing fad?

For more information, check out the following articles from the Army Times and Breaking Defense on the ONYX exoskeleton.

Put One Foot in Front of the Other? It’s Not that Easy

From Christmas movies to pop songs to motivational posters, we are encouraged to keep putting “one foot in front of the other.” While the sentiment is inspiring, recent studies show that there is a lot more to the seemingly simple task of walking than this phrase would suggest. Understanding this is especially important for balance and mobility after an injury or as people age.

The steps that make up the human walking cycle. Order of steps: heel-strike right, toe-off left, midstance right, heel-strike left, toe-off right, midstance left, hell-strike right. The body spends the time between heel-strike and toe-off with double support and the midstances are single-leg support.

Image from Wikimedia Commons

The human gait has a set structure that switches the weight between each leg, with only 20% of the typical walking motion distributing the weight across both feet. Maintaining balance throughout this process requires coordination in the muscles controlling the hips, knees, ankles, and feet. Mechanically, these adjustments keep the body’s center of mass (also known as center of gravity) over the base formed by feet positioning.

Obstacles and challenges to balance require a body’s quick response to mitigate shifts in the acceleration and momentum at the center of mass. Lack of efficient control over these parameters results in a fall. Many conditions, as well as age, can affect a person’s ability to respond to mobility challenges.

One specific study looked at how people who had had a stroke and subsequent partial paralysis on one side (paresis) faced mobility challenges compared with healthy folks. This condition effects approximately 400,000-500,000 people in the United States annually. It presents a unique opportunity to compare an individual’s non-damaged stride with their deficient stride at the point in the gait at which only one leg is on the ground (SLS, or single-leg-stride). The timing of the gait, the body’s momentum in all three planes of the body, and the location of the center of mass were recorded in this study.

Anatomical planes of the body. The sagittal plane splits the body left and right. The coronal plane splits the body forward and back. The transverse plane splits the body top and bottom.
Image from Wikimedia Commons

Versus healthy people, stroke survivors had significant trouble regulating momentum in the coronal plane, making falls more likely. Although it makes sense that momentum regulation suffers when muscles are paretic, it is yet unclear why the coronal plane was most affected. Additionally, post-stroke individuals’ centers of gravity were higher, which is also linked to instability. For stroke survivors, the partially paralyzed SLS took longer and extended farther from the center of mass than the regular SLS. While this is not as immediately dangerous as increasing falling risk, it slows mobility, unevenly works muscles (which can lead to injury), and is less efficient.

Going forward, these findings can be used to improve mobility success in people with balance issues or after injuries. This could manifest in better technologies, such as walkers that better help settle a person’s center of mass and partial exoskeletons that would help a person mitigate acceleration and momentum changes, or more targeted and individualistic physical therapies to strengthen weakened muscles and practice patient-specific challenges, such as overcoming obstacles that threaten coronal-plane balance. Understanding more about balance adjustment when walking may make some common phrases trite, but its potential benefits have life-changing impacts for many.

Further Reading and Sources:

Stroke/Paresis Information

Stability of Stepping

Medical Marvel: Robotic exoskeletons enable those with spinal cord injury to walk again

Claire Lomas surrounded by supporters as she walks the 2012 London Marathon
Lulu Kyriacou [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)]
A fall off of her horse in 2007 caused Claire Lomas to lose all function in her legs. In 2012, she completed the London Marathon, all 26.2 miles. Robotic exoskeletons can literally get people back on their feet shortly after a spinal cord injury occurs, but how exactly do these medical devices not only supplement but restore human performance? What does the future look like for robotic exoskeletons and those with paralysis?

There are approximately 300,000 people living with SCI in the United States, with 17,700 affected annually. So what exactly is a spinal cord injury? A spinal cord injury occurs when trauma, disease, or compression due to tumors causes damage to your spinal cord, which is responsible for your body’s motor functions (voluntary muscle movements), sensory functions (what you feel, such as temperature, pressure and pain), and autonomous functions (your heart beat, body temperature regulation, or digestion). Injuries are classified as complete or incomplete, with complete corresponding to a total loss of function or sensory feedback in areas of the body which are lower than the injury level.

Image showing the area of injury corresponding to the resulting level of paralysis
http://www.living-with-attendant-care.info/Content/Spinal_Cord_Injury_c_Understanding_spinal_cord_injury.html

Studies have shown that people with spinal cord injury, specifically individuals with paraplegia-paralysis who retain function of their upper limbs, prioritize walking as the main function they wish to regain. Robotic exoskeletons, which operate in collaboration with the user to reinforce and retrain certain functions, may be the answer to this pressing need. An exoskeleton  facilitates untethered step repetitions and evenly redistributes the user’s weight to his or her core, minimizing stress on the user’s back, neck, and shoulder muscles. One study testing the exoskeleton from Ekso Bionics also showed an improvement in unassisted balance, since the device only initiates the next step if the user properly shifts his or her weight. Though primarily used for gait or mobility training in rehabilitation facilities, these devices are on their way to becoming everyday mobility aids for people with paralysis.

Rehabilitation for spinal cord injuries is long and tedious. Robotic exoskeletons enable patients to begin rehabilitation early after injury, which helps to prevent joint contracture (which is a limit in a joint’s range of motion, preserve muscle memory and strength, retain bone density, and ensure proper functioning of the digestive and respiratory systems). Humans are meant to be vertical and active, so just the act of standing reduces spasticity (perpetual muscle contraction) and pain, decreases the risk of pressure ulcers or osteoporosis from sitting or laying down for extended periods, and improves bowel and bladder functioning. Moreover, the ability to stand at eye-level and walk again reduces instances of depression.

Despite all of these benefits, current models aren’t perfect yet. The energy demand to operate the devices and consequential fatigue of the user limits long-term use, which restricts use outside of therapy. When people hear exoskeleton, images of Marvel’s Iron Man or soldiers carrying heavy packs come to mind. The advance of robotic exoskeletons may expand their use beyond rehabilitation facilities, allowing them to become integrated into everyday life.