Tag Archives: marine animals

Nine Brains Are Better Than One: An Octopus’ Nervous System

Picture this: Earth has made its first contact with an extraterrestrial species, and, as to be expected, their anatomy and nervous system are entirely different from our own. Rather than having a single brain where all sensory information and motor controls are processed, they have nine brains. Rather than having a rigid skeleton, they have compact arrays of muscle tissue that stiffen and soften when they move, and their many limbs have an infinite number of degrees of freedom. Oh, and they can only breath underwater, too.

What was just described isn’t an alien at all, but actually the complex anatomy belonging to a common octopus, otherwise known as Octopus Vulgaris, and there is a lot we can learn from it. So how does an octopus fully control all eight of its flexible limbs? The answer lies in its partially de-centralized nervous system. When most people think of a nervous system, they think of a single brain sending out messages to move our arms and legs, then gathering information back to process everything we touch, see or hear. For an octopus, though, this process is much more complicated.

Independent Thinkers

Each arm of an octopus is able to control itself semi-independently from the central brain. An octopus has about 500 million neurons in its body, two-thirds of which are distributed amongst its limbs. This means that there are about 40 million neurons in each tentacle. That’s more than two times the number of neurons the average frog has in its entire body! An experiment conducted by German Sumbre et al. showed that even when a disconnected arm was electrically stimulated, it would still move in the same basic patterns of a tentacle being controlled naturally by an octopus. The arm even adapted its movement patterns the same way a still-connected tentacle did when the arm’s environment and initial posture were changed.

There are two columns of images. The left shows an octopus outstretching its arm over the course of 920 seconds. An arrow tracks the movement of a bend in the arm that travels along the arm until it is fully stretched out. The right column shows a single, detached octopus arm outstretching over a similar time frame. The single tentacle follows a similar movement pattern as the original octopus' arm. Another arrow also follows a similar bend that travels along the single arm as it stretches out.
An experiment shows that an electrically stimulated octopus arm (right), when detached from its central nervous system , will still move in the same basic patterns as an arm naturally controlled by an octopus (left). Image modified from G. Sumbre, Science Magazine.

Master Delegaters

So how does this partially de-centralized nervous system work? The octopus does, in fact, have a central brain located between its eyes containing about 180 million neurons. This is the part of the nervous system that determines what the octopus wants or needs, such as if it needs to search for food. These are sent as messages through groupings of neurons. Commands like “search for food” are then received by each of the tentacles, who all have their own smaller, independent brains. With these commands in mind, each tentacle gathers its own sensory and position data, processes it, and then issues its own commands on how to move by stiffening or relaxing different parts of the arm, all without consulting the central brain upstairs. As the tentacle moves, it keeps collecting and processing sensory information, and any relevant information, such as the location of food, gets sent back to the central brain to make larger decisions.

Beyond the Octopus

There is still a lot left unknown about how exactly an octopus’ nervous system functions. However, new and upcoming fields such as soft robotics and artificial intelligence are starting to look towards the opportunity for innovation that octopuses present. Learn more about how the anatomy of an octopus is being applied to science and technology here and here!

Further Reading

Sources

Sumbre, G. “Control of Octopus Arm Extension by a Peripheral Motor Program.” Science, vol. 293, no. 5536, Sept. 2001, pp. 1845–48. DOI.org (Crossref), doi:10.1126/science.1060976.

Zullo, L., Eichenstein, H., Maiole, F. et al. Motor control pathways in the nervous system of Octopus vulgaris arm. J Comp Physiol A 205, 271–279 (2019). https://doi.org/10.1007/s00359-019-01332-6

Levy, Guy, et al. “Arm Coordination in Octopus Crawling Involves Unique Motor Control Strategies.” Current Biology, vol. 25, no. 9, May 2015, pp. 1195–200. DOI.org (Crossref), doi:10.1016/j.cub.2015.02.064.

Dolphin Magic or Dolphin Muscle?

Because of the film Bee Movie, many people at one point were intrigued by the idea that bumblebees should not physically be able to fly due to their large bodies and tiny wings. But, they fly anyway. Technology is advanced enough to study bee wing movement and determine that they produce enough lift to allow them to fly, disproving the previous notion. Similarly, Gray’s Paradox for a long time inferred that dolphins should not be able to swim nearly as fast as they do. But, they still consistently swim at speeds over twenty miles per hour. It was not until recent history that advancements allowed researchers to determine why they are able to reach such high speeds.

Gray’s Paradox

All the way back in 1936, Sir James Gray observed the high speeds dolphins could reach in the ocean. He calculated an approximation of the amount of power the dolphins would need to produce to sustain these speeds, based on the drag force on the dolphin as it travels through the water. Gray compared this to the amount of power he expected the dolphin to be able to produce. In order to compute this, Gray used muscle power data from oarsmen. When he compared the muscle mass of these oarsmen compared to dolphins, he determined that the power dolphins could produce was only about one seventh what was needed to travel at the high speeds of which they are capable.

Force Diagram, showing that the same forces that the swimming mammal applies to water are applied back on it. Allows observation of max speed to determine these forces.
This diagram shows that the drag force, D, thrust force, T, and net axial force, Fx, must be equal for the swimmer and the fluid. The lateral velocity, u, can be used to determine the resulting drag force, allowing researchers to estimate how much thrust is needed. Credit: [2]

And now we have arrived at Gray’s Paradox. What allows dolphins to move so quickly? To Gray and other researchers for most of a century, this was a mystery. If the assumptions they had made were correct, that would mean dolphins have some way of travelling through water more efficiently than was thought to be possible. This sparked a large amount of speculation into how dolphin skin could reduce the drag force of the water, which was originally believed to be the way Gray’s Paradox would be resolved.

Answering Questions while Creating More

Finally in 2008, Timothy Wei’s research team was able to definitively disprove Gray’s Paradox. He set up an experiment that would allow the force that dolphins exert to be measured. This mainly consisted of having dolphins swim through a curtain of bubbles in a tank. By recording at high resolution the movement of these bubbles as the dolphins swam by, the researchers determined the speed of the water around the dolphin as it traveled. With this information, Wei’s team showed that dolphins are able to produce over 300 pounds of force at one moment, and over longer periods of time 200 pounds of force. This is approximately ten times more force than Gray estimated.

Wei’s findings resolve Gray’s paradox by showing that dolphins have the ability to produce sufficient power from their tail movement to overcome the strong drag force of the water as they move at high speeds. However, this does not explain how dolphins produce so much power with their amount of muscle mass, which is still being examined. One idea is that this is caused by anaerobic muscle fibers that behave in different ways than in humans, and allow more power to be generated than Gray expected.

Future Plans: Investigating Force Generation

Timothy Wei plans to continue examining force generation in the swimming of other marine animals. This has the potential to provide more understanding of how marine animals evolved in their swimming aptitude. On the level of microbiology, this research could improve understanding of how dolphin and other animal muscles can perform such high levels of power generation over sustained periods of time.

Additional Reading and Sources

The Ship of Pearl – Jet Propulsion in the Chambered Nautilus

In the aptly titled poem The Chambered Nautilus, Oliver Wendell Holmes Sr. praises the eponymous cephalopod for its elegant shape and vibrant colors. The ship of pearl, as Wendell calls it, might not be the swiftest vessel; but Thomas R. Neil and Graham N. Askew’s research indicates that the chambered nautilus might be among the most energy efficient ships in the seven seas.

The Nautilus pompilius is constantly moving to depths up to 700 m. At such depths, oxygen concentration decreases significantly: only 30% of that available at the surface. In such harsh environments, the nautilus must find a way to use its oxygen reservoir most efficiently while still being able to carry out metabolic functions. As such, the nautilus has adapted to use jet propulsion in a most efficient manner.

Jet propulsion mechanism of the chambered nautilus
modified from Neil & Askew, Royal Society Open Science (2018)

Jet propulsion in the nautilus is achieved by the simultaneous contraction of the head retractor and funnel muscles (shown in diagram above). The compression of the mantle cavity causes a pressure difference with its surroundings, resulting in a jet of water being expelled from the mantle cavity via the funnel. The nautilus uses its flexible funnel to control its swimming direction as shown in the video. Slower swimming is powered by rhythmic contractions of the funnel flaps that generates a wave that travels along the funnel wings. This produces a unidirectional flow across the gills. Although jet propulsion is less efficient than undulatory swimming (think of the swimming motion of a ray), the Nautilus converts chemical energy into hydrodynamic work for motion more efficiently than fellow cephalopods such as the squid and even salmons (at lower speeds).

 

In their study, Neil and Askew used particle image velocimetry (PIV) to study the wake of the nautilus’s jet. PIV consists of spreading particles of aluminum oxide in a water tank and shinning a laser on them. As the nautilus moves, the particles in the tank move with the jet. A high-speed camera is used to take multiple pictures of the floating particles and the relative position of these between snapshots is used to determine a velocity profile of the nautilus’s water jet.

Nautilus and its jet wake as seen in PIV
Photo by: Simon and Simon Photography, University of Leeds. Taken from Greenwood, The New York Times (2018)

 

 

 

 

 

The results from the study show that the whole cycle propulsive efficiency and thrust generation are related to the swimming orientation of the nautilus. The propulsive efficiency ranged between 30% and 75% for posterior-first swimming and 48% to 76% for anterior-first swimming (orientations defined in diagram above). Moreover, efficiency increases with greater speed in posterior-first orientation but decreases in anterior-first. This might have to do with energy losses associated with the re-orienting of the funnel that turns back on itself to move in the anterior orientation. Moreover, at low speeds, the nautilus spends more time jetting water than refilling, resulting in a lower jet speed but overall more efficient propulsion.

Although not covered in their research, Neil and Askew’s findings about jetting duty cycles and efficient propulsion at low speeds could be potentially applied to the design of more efficient hydrojets to be used in underwater vehicles. Engineering seeks to imitate nature’s most intelligent designs; and as Wendell puts it in his work, the nautilus proves to be a truly awe-inspiring creature worthy of imitation.

Fish in Flight: The Science Behind Great White Breach Attacks on Cape Fur Seals

Great white shark employs vertical attack on prey decoy
Great white shark employs vertical attack on prey decoy – from Sharkcrew via Wikipedia Commons

If you’ve ever turned on Discovery channel during Shark Week, then you’ve probably seen the iconic footage of a 2.5-ton great white shark leaping out of the water to catch its next meal.  If you’re weird like me and you’ve ever tried to mimic one of these epic breaches in a backyard pool, then you realize just how difficult it is to generate enough momentum to jump even partway out of the water and therefore have a real appreciation for what it takes to pull off this incredible feat.

Great white breaks the ocean surface
Great white breaks the ocean surface – from Alex Steyn via Unsplash

So if a breach attack is so difficult to pull off, how are great white sharks able do it, and why do they do it?  As per usual, some basic physics can help us answer both these questions.

 

Great white shark mid-breach
Great white shark mid-breach – from Alex Steyn via Unsplash

According to a 2011 paper by Martin and Hammerschlag, who spent 13 years studying great white predation in South Africa, breach attacks allow great whites to play to their strengths and maximize stealth.

Millennia of evolution have left great whites with long bodies great for straight-line speed (can reach speeds  >11m/s) but not so great for agility. Additionally, roughly 95% of a great white’s muscle is white muscle, which allows for rapid contraction (e.g. speed bursts) but also results in poor endurance.  Considering these aspects of their physiological makeup, it’s in a great white’s best interest to attack swiftly, avoiding prolonged chases.  Martin and Hammerschlag report that the majority of great white attacks on seals are over within 2 minutes and that the longer an attack drags on, the less likely it is to be successful.

Great white shark chases decoy prey from behind
Great white shark chases decoy prey from behind – from Sharkcrew via Wikipedia Commons

As great whites are less agile than seals, maximizing stealth and minimizing the time seals have to react is imperative.  Having evolved to have a dark grey dorsal (top) surface, great whites are hard to distinguish from the coral on the ocean floor when viewed from above (seal’s perspective).  Additionally, since very little of the light entering the water is reflected back towards the surface, it is estimated that under even the best lighting conditions, a seal could only reliably distinguish a shark a maximum distance of roughly 5m below it, which explains why great whites attack from below rather than behind. Great whites need about 4m to reach top speed, so due to this acceleration distance and seal vision, Martin and Hammerschlag report that great white attacks generally start between 7m and 31m below the ocean surface, with the majority staring closer to 30m.  Looking at data for great white breach attacks ranging from vertical to 45 degree ascents, Martin and Hammerschlag estimate that it typically takes a shark between 2 and 2.5 seconds to go from initial acceleration to surface breach, and that when considering shark speed and average visibility conditions, a seal generally has only about 0.1 seconds to react if it spots the shark before contact is made.  Ultimately, due to the advantages it gives them, great whites are successful in over half their breach attacks when lighting conditions are ideal.

Schematic of geometry and optics of great white shark attacks on cape fur seals from Martin and Hammerschlag - not to scale
Schematic of geometry and optics of great white shark attacks on cape fur seals from Martin and Hammerschlag – not to scale

 

Sources & Further Reading:

Fallows, Chris & Aidan Martin, R & Hammerschlag, Neil. (2012). Predator-Prey Interactions between White Sharks (Carcharodon carcharias) and Cape Fur Seals (Arctocephalus pusillus pusillus) at Seal Island, South Africa and Comparisons with Patterns Observed at Other Sites

Martin, R. Aidan, and Neil Hammerschlag. “Marine Biology Research.” Marine Biology Research, vol. 8, no. 1, 30 Nov. 2011, pp. 90–94., doi:10.1080/17451000.2011.614255.

Egdall, Mark. “New Research Reveals Physics Behind Great White Shark Attacks.” Decoded Science, Decoded Science, 10 Dec. 2011, www.decodedscience.org/new-research-reveals-physics-behind-great-white-shark-attacks/7497.

Sloat, Sarah. “Shark Week: Here Is the Wild Physics of a Great White Leap.” Inverse, Inverse, 25 July 2018, www.inverse.com/article/47437-shark-week-great-white-jumps.

Madrigal, Alexis C. “The Physics of Great White Sharks Leaping Out of the Water to Catch Seals.” The Atlantic, The Atlantic Monthly Group, 9 Dec. 2011, www.theatlantic.com/technology/archive/2011/12/the-physics-of-great-white-sharks-leaping-out-of-the-water-to-catch-seals/249799/.

 

Archerfish: Nature’s Master Marksmen

Picture of an archerfish swimming
Photo by Chrumps on Wikipedia

The name archerfish refers to seven species of freshwater fish that are all members of the Toxotes genus. These fish derive their name from their ability to hunt land-based creatures, ranging from insects to small lizards, using jets of water shot from their mouth with remarkable accuracy. They only grow to a maximum of a foot long, but they’ve been recorded in the wild propelling their water jets distances of up to two meters. A recent study in the Journal of Experimental Biology was conducted by Stephan Schuster to investigate the mechanics behind their unorthodox hunting technique.

Archerfish Learning to Aim

As it turns out, the archerfish has many circumstances working against it. Not only must they account for gravity when hunting, but because their eyes remain underwater during the attack, they must also adjust for the effects of the light refracting through the water. Refraction could cause the fish’s perceived angle of the prey to be off by up to 25˚ from the actual angle. They compensate for these factors by adjusting their spitting angle prior to releasing the jet. The ability to compensate for various environmental factors seems to be a skill developed through experimentation and practice. Archerfish will indiscriminately fire off shots at objects that are new to their habitat. They then judge whether they should continue to attack those objects in the future by remembering if a successful hit rewarded them with food. This was tested in the lab and shown that when the fish wasn’t rewarded, it would ignore the target in the future.

A diagram showing archerfish potential targets. Once the archerfish was only getting consistently rewarded for a single kind of target, insects, that's the only target it would shoot at
Modified from Schuster, Journal of Experimental Biology

In the past, studies were conducted that underestimated the accuracy of archerfish because of the variation in test specimens. Studies now show that a well-practiced archerfish can achieve a 100% hit rate on targets within distance of 65 cm. Accuracy will begin to drop off with increased height and distances beyond 65 cm.

Hunting Mechanics

While most animals who utilize their ability to spit depend on the spit’s glue-like properties or venom, archerfish hunting relies on the force at which the jet contacts the target. Depending on the size of their prey, archerfish can modulate their jets between the range of 40-500 mN. To exert strong enough forces to dislodge targets from leaves and branches, the fish expelling the jet acts like a vessel under pressure. The water starts out slow and increases in velocity as the fish’s mouth stays open, like turning a valve. This means that the jet’s tail catches up to its tip as the water travels along its trajectory, causing a more focused impact. As the water travels, the stream will break into individual blobs of water due to Plateau-Rayleigh instability, creating multiple jets. Since water ejected later is moving faster, these jets will join over time and create a single, larger jet which will impact the target.

Race to the Food

While utilizing their ability to create forceful jets of water can be an effective method of hunting, it does come with one disadvantage. Archerfish have evolved to react to plummeting objects much quicker than other fish, regardless of what caused the object to fall. While this means that an archerfish having its prey stolen by another type of fish is very rare, its prey will often be stolen by other archerfish which happen to be closer to where the prey impacts the water.

Additional information on archerfish hunting can be found at wired.com and in the video from below. There are also some beautiful photos of archerfish in action at stevegettle.com.

 

How the Mantis Shrimp Packs its Punch

The mantis shrimp, a six inch long crustacean residing in the warm waters of the Pacific and Indian oceans, may look harmless with its rainbow shell, but it is able punch its prey with the same acceleration as a 0.22 caliber bullet, providing around 1500 newtons of force with each blow. The mantis shrimp can shatter the glass of aquariums, catch and kill their prey with minimal effort, and punches so fast that cavitation bubbles form behind their hammer-like clubs. Cavitation bubbles are pockets of low pressure air that form when a liquid is moved faster than it can react, and collapse with tremendous heat and force—enough to crack the shells of other crustaceans or even a glass bottle.

Rainbow colored mantis shrimp on ocean floor, with two white clubs visible.
Mantis shrimp on the ocean floor, with its two white dactyl clubs visible. (Source: Wikimedia Commons)

The mantis shrimp gets the power for its punches from elastic energy storage—that is, it stores energy in its muscles as they are compressed when cocking its dactyl club back into the locked position. A four bar mechanism within the club and body of the shrimp is used to hold the club back in place until it is ready to punch and a latch is released, transferring the stored energy into rapid motion of the club.

Diagram of how the mantis shrimp locks his club back, storing energy, then releases it and swings it forward to attack prey.
Mechanics of the mantis shrimp’s club swing. (Source: Maryam Tadayon/Nanyang Technological University)

The material composition of the mantis shrimp’s shell enables it to hit so hard without damaging itself. The two layers of the shell on the club allow it to withstand large stresses in both tension and compression, which is uncommon of most shells since they are ceramic materials, which are very brittle. Both layers are made out of hydroxyapatite (HA), a highly crystalline and hard calcium phosphate that is found in human bone, and chitin, a hard biopolymer fiber found in outer shells of most crustaceans and insects. Differing structures and amounts of each material provide different functions in the layers of shell. The outer layer is arranged in a wave-like pattern of HA and chitin that effectively redistributes stresses evenly over the whole surface, greatly decreasing the chance of cracking. The inner layer is less stiff than the outer layer, and is composed of HA and chitin in helical patterns, which allows for small cracks to form in a spiral shape instead of cracking straight through the shell. This greatly increases the lifetime of the club’s shell.

Ceramics are typically not used in robotics due to their brittle nature, but, if modeled after the shell of the mantis shrimp, this could be overcome and provide a stiffer and lighter material to be used in the robotics industry. Additionally, the material composition of their clubs could be used to develop resilient protective body armor for the military and police forces, or helmets for bike riders or football players.

Additional information on the mantis shrimp can be found at Wired.com and theoatmeal.com, and in the following video.