Tag: marine animals

Pacific Rim In Real Life?

How Close are we to a Pacific Rim Reality?

A picture of a kaiju infected robot
A photo from the movie Pacific Rim 2

Remember those giant hybrid kaiju-fighting robots from Pacific Rim where the brain of a kaiju (strange beast in Japanese) has successfully infected the mechanical brain of the robots and turned human’s greatest defense against them ? Well, it turns out, the boundary between science fiction and reality isn’t as far as we thought. A researched field “Necrobotics” has taken the world by storm and it is so new that Google is still highlighting “Necrobotics” as red. Imagine a world where nature’s most complex design is integrated into human’s innovation, leading to the most incredible biohybrid systems. If you are drawn the future application of this field or the potential harmony between biology and robotics, you’re in for a treat. In this blog post, we’ll be exploring the existing researches within Necrobotics and the future outlook on this unique field.

Necrobotics, a term derived from “Latinized form of Greek nekros” (relating to death ) and “robotics,” may sound a tad bit eerie, but it’s far from sinister. In fact, it’s all about bringing life to machines. The heart of the research is focused on producing biohybrid system that utilizes the intricate abilities of a living organism while combining with the precision and flawless decision making skills of a robot. Similar to our natural world, it draws inspiration from our environment such as the symbiotic relationship of Bees feeding on a flower’s nectar while carrying its pollen from plant to plant.

So, why should you be interested in this intersection of biology and technology? The applications are nothing short of astounding. One day, we will have biohybrid robots aiding in disaster relief events, enhancing our healthcare capabilities and assisting us in answering humankind most complex questions. These robots are able to mimic natural organism abilities, making them more adaptable, versatile, and resilient than conventional robots. From robotic limbs that respond to neural signals in the body to machines that slither like snakes, Necrobotics are in prime position to push humankind to the next level.

Gecko skin adhering to smooth surfaces
Photos from the article “Evidence for van der Waals adhesion in gecko setae”

Scientists and engineers have developed a variety of technology by studying organisms that have evolved over millennia of evolution. These technology include surface wettability modification based on lotus leaves and Namib beetles, adhesion mechanisms that mimic gecko toes, and even sensing for smart materials by imitating the color-changing chameleon and the humidity-sensitive pine cone. In order to inform the design of robots and actuators, researchers have also taken inspiration from the locomotion of aquatic and terrestrial animals, such as starfish, jellyfish, and cephalopod. Here is a famous example of dead spider corpse used as a mechanical claw.

In conclusion, these scientific topics may have been initially perceived as science fiction but it has quickly garnered attention and are becoming a crucial step for mankind to take. Future discoveries in this field will have the potential to redefine countless industries while acknowledge nature’s design. So if you’ve ever imagined a time where science and nature coexist, now is the perfect time to get excited about necroboticsᅳthe future is here, and it’s amazing.

Read more: Pacific Rim In Real Life?

Nine Brains Are Better Than One: An Octopus’ Nervous System

Picture this: Earth has made its first contact with an extraterrestrial species, and, as to be expected, their anatomy and nervous system are entirely different from our own. Rather than having a single brain where all sensory information and motor controls are processed, they have nine brains. Rather than having a rigid skeleton, they have compact arrays of muscle tissue that stiffen and soften when they move, and their many limbs have an infinite number of degrees of freedom. Oh, and they can only breath underwater, too.

Continue reading “Nine Brains Are Better Than One: An Octopus’ Nervous System”

Do Hammer-Shaped Heads Help Sharks Swim?

With their sandpaper skin, cartilage skeleton, electroreceptive sensors, and rows of dangerous teeth, sharks fascinate many people. However, even within this distinctive group the hammerhead sharks that make up the Sphyrnidae family have attracted a special attention due to the unusual shapes of their namesake heads, called cephalofoils. Several evolutionary benefits of the cephalofoil have been proposed by researchers. The wide hammer-shaped head may allow the shark to house more sensory receptors in its snout, to bludgeon prey, and to move and maneuver through the water more easily. Here we will address the question posed by the third theory: Does the cephalofoil found on hammerhead sharks provide an advantage in moving and maneuvering underwater?

Continue reading “Do Hammer-Shaped Heads Help Sharks Swim?”

Dolphin Magic or Dolphin Muscle?

Because of the film Bee Movie, many people at one point were intrigued by the idea that bumblebees should not physically be able to fly due to their large bodies and tiny wings. But, they fly anyway. Technology is advanced enough to study bee wing movement and determine that they produce enough lift to allow them to fly, disproving the previous notion. Similarly, Gray’s Paradox for a long time inferred that dolphins should not be able to swim nearly as fast as they do. But, they still consistently swim at speeds over twenty miles per hour. It was not until recent history that advancements allowed researchers to determine why they are able to reach such high speeds.

Continue reading “Dolphin Magic or Dolphin Muscle?”

Swimming Fast and Slow: What We Know About the Sailfish’s Iconic Fin

Sailfish, or Istiophorus platypterus, are one of the most recognizable fishes in the ocean due to their large sail-like dorsal fin. But, did you know that they are also iconic because they are one of the fastest swimmers in the ocean?

Continue reading “Swimming Fast and Slow: What We Know About the Sailfish’s Iconic Fin”

The Ship of Pearl – Jet Propulsion in the Chambered Nautilus

In the aptly titled poem The Chambered Nautilus, Oliver Wendell Holmes Sr. praises the eponymous cephalopod for its elegant shape and vibrant colors. The ship of pearl, as Wendell calls it, might not be the swiftest vessel; but Thomas R. Neil and Graham N. Askew’s research indicates that the chambered nautilus might be among the most energy efficient ships in the seven seas.

Continue reading “The Ship of Pearl – Jet Propulsion in the Chambered Nautilus”

Fish in Flight: The Science Behind Great White Breach Attacks on Cape Fur Seals

If you’ve ever turned on Discovery channel during Shark Week, then you’ve probably seen the iconic footage of a 2.5-ton great white shark leaping out of the water to catch its next meal.  If you’re weird like me and you’ve ever tried to mimic one of these epic breaches in a backyard pool, then you realize just how difficult it is to generate enough momentum to jump even partway out of the water and therefore have a real appreciation for what it takes to pull off this incredible feat.

Continue reading “Fish in Flight: The Science Behind Great White Breach Attacks on Cape Fur Seals”

Archerfish: Nature’s Master Marksmen

The name archerfish refers to seven species of freshwater fish that are all members of the Toxotes genus. These fish derive their name from their ability to hunt land-based creatures, ranging from insects to small lizards, using jets of water shot from their mouth with remarkable accuracy. They only grow to a maximum of a foot long, but they’ve been recorded in the wild propelling their water jets distances of up to two meters. A recent study in the Journal of Experimental Biology was conducted by Stephan Schuster to investigate the mechanics behind their unorthodox hunting technique.

Continue reading “Archerfish: Nature’s Master Marksmen”

How the Mantis Shrimp Packs its Punch

The mantis shrimp, a six inch long crustacean residing in the warm waters of the Pacific and Indian oceans, may look harmless with its rainbow shell, but it is able punch its prey with the same acceleration as a 0.22 caliber bullet, providing around 1500 newtons of force with each blow. The mantis shrimp can shatter the glass of aquariums, catch and kill their prey with minimal effort, and punches so fast that cavitation bubbles form behind their hammer-like clubs. Cavitation bubbles are pockets of low pressure air that form when a liquid is moved faster than it can react, and collapse with tremendous heat and force—enough to crack the shells of other crustaceans or even a glass bottle.

Continue reading “How the Mantis Shrimp Packs its Punch”