Tag: muscle

Is Static Stretching the Key to Muscular Gains?

In the present day, it can seem as though nearly every young person wants to be muscular. Phrases such as “winter arc” or “the bulk” are frequently used on social media platforms to describe people changing their physique through weight training. With this resurgent fitness craze, it is evident that there are many gym-goers who are actively looking for ways to maximize muscular growth gains. Researchers have recently discovered that one unconventional method for making those gains is through static stretching.

Read more: Is Static Stretching the Key to Muscular Gains?

Static Stretching Explained

Static stretching, which entails maintaining a stationary position where a muscle is at full extension, has often been a topic of discussion in weightlifting communities in years past. There have been many unsettled debates on whether or not stretching techniques can improve strength performance and muscle size. In recent years, however, new studies have been conducted which may point towards the potentially massive benefits of static stretching for muscle growth.

The current understanding is that static stretching induces mechanical stresses, primarily tension, on the muscles of the body. If performed for a long enough duration, this induced stress can lead to muscle hypertrophy. During hypertrophy, the organelles inside of muscle fibers, called myofibrils, which are made up of actin and myosin proteins surrounded by a gel like substance called sarcoplasm, experience some damaging and deformation. In the reconstruction process, new proteins are then generated through muscle protein synthesis, which causes the myofibrils to become thicker and denser, ultimately leading to increased strength. Thus, to achieve any significant muscle growth, hypertrophy must be reached.

First Human Testing

Man performing a static stretch of his calf using a stretching device while seated.
Stretching device utilized for prolonged holds (Obtained from Warneke et al. 2022)

Multiple studies within the last two years have demonstrated that prolonged static stretching in humans can lead to similar levels of muscle hypertrophy in comparison to traditional weight lifting methods. One such study conducted by Wohlann et al. concluded that multiple fifteen minute stretching sessions focused on the pectoral muscles had a nearly equivalent increase in muscle strength when compared to performing traditional weighted exercises concentrated on the same muscles. Another study, by Warneke et al. obtained similar results with the plantar flexors, although in this case the static stretch was held for one hour every day. These findings indicate that regardless of the mechanism or method for creating stress, as long as muscle fibers are kept in constant tension there can be hypertrophy and thereby growth.

To achieve constant stress, the studies mentioned utilized external loads and re-adjusted positioning. Study participants would strap into simple devices which allowed for continual tightening as their muscles loosened over time after being initially stretched. Although uncomfortable to maintain, this constant stress is crucial for breaking down the myosin proteins. Only after the proteins are broken down mechanically does the body generate an inflammatory response which signals to begin the repairing process.

Graph showing the re-tightening of stretched muscles over time. Y axis is Measured Tensile force in Newtons and X-axis is measurement times. Whenever the force decreases substantially is when the device is retightened.
Graph of tension force over time from stretching device (Obtained from Wohlann et al. 2024)

Current Applications

Although the practicality of static stretching as a primary means of achieving muscle growth still remains in question, there is no doubt that the potential benefits of stretching are much greater than sole flexibility. These findings grant deeper insights into the large role tension plays in muscle growth which can be taken and applied to weight training. As more research is conducted, it is highly possible that the answer to the long-asked question of how to achieve maximum hypertrophy may involve some combination of traditional weight lifting techniques and more novel static stretching holds.

Additional Reading:

Muscular Hypertrophy

Myofibril Structure

Feature photo by Andrea Piacquadio from Pexels.

The Extraordinary Grip of Octopus Arms: How Soft-Bodied Creatures Master Precision and Power

Why should we care about the movement of octopus arms? Octopuses have evolved some of the most sophisticated soft-bodied mechanics in nature, capable of moving in ways that rigid-limbed creatures simply can’t. Their unique flexibility and control over movement offer valuable insights for fields like medical robotics, where delicate and adaptive handling is crucial. This research also helps us understand decentralized control, a model where each part of the body can act somewhat independently, a concept that may transform future technology in fields like disaster recovery robotics and innovative medical devices. By studying how octopuses control their arms, we learn from nature’s solutions to complex challenges. 

Continue reading “The Extraordinary Grip of Octopus Arms: How Soft-Bodied Creatures Master Precision and Power”

Power in Muscles

Power to many is control, electricity, or strength depending on what one is talking about. But to muscles, it involves all three. When at the gym and thinking that someone looks powerful they usually have a lot of muscle. However, to control or activate all that muscle and use their strength it requires electrical power. 

Continue reading “Power in Muscles”

What are the RICE Method’s Impacts on the Healing Process Following Muscle Injuries?

Have you ever been instructed to use the RICE protocol? Maybe you twisted your ankle on a root, slipped and fell hard on a patch of ice, or pulled your hamstring in an intramural soccer match. Rest, Ice, Compression, and Elevation is the common advice for immediate management of a soft tissue injury. But when you wrap a swollen calf, cover it with ice, and prop it on a pillow, what is actually going on beneath the skin? You may be able to feel the numbing cold of the ice and the compressive pressure of the wrap, but what about the healing processes that are harder to distinguish?

Continue reading “What are the RICE Method’s Impacts on the Healing Process Following Muscle Injuries?”

Evolutionizing ALS Treatment: Can 3D-Printed Muscles Bring Hope to Patients?

ALS (Amyotrophic Lateral Sclerosis, a.k.a. Lou Gehrig’s disease) is is a rare but serious neurodegenerative condition that gradually causes muscle weakness and loss of control, eventually impacting the ability to move, speak, and breathe. It affects around 20,000-30,000 people in the U.S. at any time, with most cases diagnosed between ages 40 and 70.

Current ALS treatments are limited by a focus on symptom management and lack of understanding of the disease’s cause, but new technologies like 3D printing can offer exciting opportunities for innovation, such as custom prosthetics, artificial muscles, tissue engineering, and personalized medicine, which could significantly improve patient outcomes.

Continue Reading

“Ant Power Unleashed: The Secret of Muscle and Scale”

Image credit: Pixabay (adopted from Leuzinger 2022)

Ever wondered how ants generate such extraordinary force despite their size? Beyond curiosity, understanding their biomechanics can inspire real-world advancements in fields like micro-robotics, bio-engineering, materials science, and prosthetics. Discover how these tiny powerhouses hold the key to strength, efficiency, and adaptability.

Continue reading ““Ant Power Unleashed: The Secret of Muscle and Scale””

New Hope for Pelvic Floor Health: Models and Scaffolds

About 30% of women worldwide experience Pelvic Floor Dysfunction (PFD), the failure of the pelvic floor muscles. PFD is often caused by childbirth and pregnancy, and it significantly impacts the quality of life for many women, highlighting the need for scientific solutions.

Continue reading “New Hope for Pelvic Floor Health: Models and Scaffolds”

Can Smartphone Overuse Permanently Damage Thumb Function?

Recently, a few studies(Inal et al. and Osailan) have been conducted on young people and adults regarding their pinch grip and hand grip strength. Shockingly those studies show that people who spend a long time using smartphones show very poor performance in their pinch and hand grip. We know our thumb is the finger used mostly for operating smartphones. It is also the most significant finger for any grip as well. Is it possible that the thumb is damaged permanently by overuse of a smartphone or is it just a correlation, not a causation?

Continue reading “Can Smartphone Overuse Permanently Damage Thumb Function?”

The Biomechanical Blueprint: How Cheetahs’ Bodies Are Engineered for Speed

The cheetah (Acinonyx jubatus) is the fastest land animal on earth reaching speeds of over 60 miles per hour (29 m/s). The cheetah is native to Africa and parts of the Middle East and is a predator of the impala, along with several other prey animals of the Savannah and Middle East. The biomechanics of the cheetah can help us understand how to create such high speeds in biological organisms and how to protect the body against high acceleration and decelerations.

Read more: The Biomechanical Blueprint: How Cheetahs’ Bodies Are Engineered for Speed Continue reading “The Biomechanical Blueprint: How Cheetahs’ Bodies Are Engineered for Speed”

Aliens of the Ocean – How Can an Octopus Manipulate its Body So Well?

Nine brains, eight arms, three hearts, and zero bones – what on Earth could be built like this? The answer… an Octopus! 

The octopus is a creature that not only intrigues the avid scuba divers of the world but many in the science community. Often referred to as a “sea alien” – the octopus is a creature that contains extraterrestrial looks and abilities. Regardless of their size, octopuses can morph themselves into incredible shapes and sizes to allow themselves to squeeze through small spaces or expand to demonstrate strength against possible predators. The purpose of this paper is to explore the unique muscular and connective tissue structure of octopuses and how this allows them to do so many out-ofworldly abilities.  

Continue reading “Aliens of the Ocean – How Can an Octopus Manipulate its Body So Well?”